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C-di-GMP regulates Pseudomonas 
aeruginosa stress response to 
tellurite during both planktonic 
and biofilm modes of growth
Song Lin Chua1, 2, Krishnakumar Sivakumar1, 3, Morten Rybtke4, Mingjun Yuan1, 
Jens Bo  Andersen4, Thomas E. Nielsen1 , Michael Givskov1, 4, Tim Tolker-Nielsen4, Bin Cao1, 5, 
Staffan Kjelleberg1, 6 & Liang Yang1, 7

Stress response plays an important role on microbial adaptation under hostile environmental 
conditions. It is generally unclear how the signaling transduction pathway mediates a stress response 
in planktonic and biofilm modes of microbial communities simultaneously. Here, we showed that 
metalloid tellurite (TeO3

2–) exposure induced the intracellular content of the secondary messenger 
cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and 
SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels 
by TeO3

2– further increased P. aeruginosa biofilm formation and resistance to TeO3
2–. P. aeruginosa 

Δ sadCΔ siaD and PAO1/plac-yhjH mutants with low intracellular c-di-GMP content were more sensitive 
to TeO3

2– exposure and had low relative fitness compared to the wild-type PAO1 planktonic and 
biofilm cultures exposed to TeO3

2–. Our study provided evidence that c-di-GMP level can play an 
important role in mediating stress response in microbial communities during both planktonic and 
biofilm modes of growth.

Microorganisms display a striking ability to adapt to unfavorable conditions such as exposure to UV radi-
ation, heavy metals and antibiotic treatments, by inducing stress responses and forming surface-attached 
biofilms1,2. Biofilms consist of microbial cells embedded in their self-produced extracellular polymeric 
substances (EPS). The EPS can account for up to 90% of the biofilm biomass and serve as physical barri-
ers to protect biofilm cells3. Hence, biofilms dramatically increase the tolerance of bacterial cells towards 
environmental stress and immune attack during the course of infections4,5. Extensive intercellular com-
munication and interactions have been observed within biofilms, and cells with distinct physiology may 
play different roles under stress conditions6–8.

Bis-(3′ -5′ )-cyclic dimeric guanosine monophosphate (C-di-GMP) plays an important role in biofilm 
formation of a wide range of bacteria9. Bacterial intracellular c-di-GMP content is determined by digua-
nylate cyclases (DGCs) that catalyze the formation of c-di-GMP and phosphodiesterases (PDEs), which 
degrade c-di-GMP9. When intracellular c-di-GMP content is high, bacterial cells reduce motility and 
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increase synthesis of EPS matrix, resulting in biofilm formation10,11. In contrast, biofilm cells increase 
their motility and disperse from biofilms when the intracellular c-di-GMP content is low12,13. C-di-GMP 
signaling can be induced by stress conditions such as antimicrobial exposure14,15. The impact of c-di-GMP 
on mediating stress response by microbial communities during both planktonic and biofilm modes of 
growth remains unclear.

Anthropogenic activities have resulted in serious metal(loid) pollution, especially in industrialized 
countries and regions. The natural ecosystems are often direct or indirect recipients of toxic metal(loid)s 
such as TeO3

2−. Many environmental bacteria including Pseudomonas aeruginosa are capable of surviving 
in the presence of TeO3

2− at low concentrations by reducing TeO3
2− to Te(0) nanomaterials, as a result of 

either detoxification, redox maintenance or respiration16–19. Although the toxic effects of metal(oild)s on 
environmental microorganisms at individual cell levels have been extensively studied20, little is known 
about the impacts of metal(loid)s on bacterial social behaviours21.

In the present study, we investigated the role of c-di-GMP in mediating stress responses by the 
opportunistic pathogen Pseudomonas aeruginosa to a toxic metalloid, tellurite (TeO3

2–). TeO3
2− is highly 

toxic to most microbes and had been previously described by Alexander Fleming as an antimicrobial 
agent22. Bacterial cells take up TeO3

2– and subsequently reduce it to tellurium nanoparticles, which can 
be easily tracked by the black precipitates on the bacterial cell surface. Quantification of intracellular 
c-di-GMP and proteomic analysis indicated that c-di-GMP levels were induced by TeO3

2– exposure, 
which enhanced P. aeruginosa TeO3

2– resistance and biofilm formation. SadC and SiaD were found to be 
important in the induction of c-di-GMP by TeO3

2– exposure. We showed that mutants with low intra-
cellular c-di-GMP content could be outcompeted by the wild-type strain from biofilm and planktonic 
cultures under metalloid stress condition.

Results
Stress responses of P. aeruginosa to TeO3

2− induced c-di-GMP signaling.  Cultivation of different 
bacterial species in the presence of sub-lethal concentrations of antimicrobial agents is a widely employed 
method to investigate their stress responses23–25. The MIC of P. aeruginosa to TeO3

2− is 100 μg/ml in 
ABTGC medium. Large aggregates (approximately 1-3 mm) were formed when P. aeruginosa was grown 
in ABTGC media containing 10 μg/ml TeO3

2− at 37 °C (Fig. 1a). Further analysis of the TeO3
2−-induced 

aggregates by field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray 
spectroscopy (EDX) revealed the presence of tellurium-containing precipitates around the bacterial 
cells (Fig.  1b,c). No tellurium-containing precipitates were observed for P. aeruginosa cells growing 
in medium without TeO3

2−. Thus, the tellurium-containing precipitates might generate conditions of 
membrane-associated stress for P. aeruginosa cells.

TeO3
2− and oxyanions such as selenate/selenite are well known to exert their toxic effects on micro-

organisms via generation of reactive oxygen species (ROS)26,27. We measured the generation of ROS by 
P. aeruginosa cells exposed to sub-lethal concentrations of TeO3

2− as well as SeO3
2− and SeO4

2− by using 
the OxiSelect™ in vitro ROS/RNS assay kit. As anticipated, exposure of P. aeruginosa cells to the TeO3

2−, 
SeO3

2− and SeO4
2− significantly increased their cytoplasmic ROS content regardless of the nutrient con-

ditions (Fig. 1d).

Proteomic analysis of TeO3
2− stressed P. aeruginosa cells.  Oxidative stress response by P. aerugi-

nosa leading to aggregate formation, recently reported to resemble the biofilm physiology28 has not been 
documented. We thus investigated the overall impact of TeO3

2− on P. aeruginosa cells using a comparative 
proteomic approach for cells cultivated with and without 10 μg/ml TeO3

2−.
Using a p-value cut-off of 0.05 and a fold change cut-off of 5 (as described in the Materials and 

Methods), 129 proteins were significantly affected by TeO3
2− exposure with 64 proteins upregulated 

(Supplementary table 1) and 65 proteins being down-regulated (Supplementary table 2).
The expression of several of outer membrane associated proteins was induced by TeO3

2− treatment, 
including OprQ (PA2760, 28.8-fold), OprI precursor (PA2853, 15-fold), probable outer membrane pro-
tein precursor (PA2391, 10.9-fold), OprM (PA0427, 10.5-fold), OprL precursor (PA0973, 9.8-fold), OprD 
precursor (PA0958, 9.8-fold), OprB (PA3186, 9.7-fold) and OprC (PA3790, 8.1-fold) (Supplementary 
table 1). The membrane transporter CdrB of the large extracellular protein CdrA29 was induced 25.8-fold 
by exposure to TeO3

2− (Supplementary table 1). CdrAB expression has been used as a c-di-GMP indica-
tor30 and reported to promote biofilm formation and auto-aggregation in a Psl polysaccharide dependent 
manner29, and co-immunoprecipitation experiments have clearly shown that CdrA binds to Psl29. HPLC 
analysis showed that P. aeruginosa PAO1 cultivated in ABTGC medium with 10 μg/ml TeO3

2− treat-
ment had a higher relative intracellular c-di-GMP concentration compared to untreated control samples 
(approximately 2.5-fold) (Fig. 1e).

SadC and SiaD contribute to c-di-GMP induction by TeO3
2−.  CdrAB belongs to a family of bacte-

rial proteins secreted by the two-partner secretion system31. Recently, two other members of this family, 
XacFhaB from Xanthomonas axonopodis pv. Citri and FHA from Bordetella pertussis have also been 
implicated in biofilm formation32,33. These large inter-bacterial adhesins may play a key role in establish-
ing structured biofilm communities under stress conditions. The cdrA promoter is positively regulated 
by the c-di-GMP concentration, and the expression of PcdrA-gfp has been recently used as a biosensor 
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of the intracellular content of c-di-GMP in P. aeruginosa30. We tested the expression of the PcdrA-gfp 
reporter in P. aeruginosa cultures with and without the presence of TeO3

2− and found that TeO3
2− expo-

sure significantly increased the expression of fluorescence in a dose dependent manner (Fig.  2a). This 
result is in accordance with our HPLC quantification and indicates that TeO3

2− exposure increases the 
intracellular content of c-di-GMP and that TeO3

2− induced aggregates might carry physiological traits 
similar to those of biofilms.

Recently, both SadC and SiaD, were shown to be able to transduce an extracellular signal generated 
by the toxic detergent SDS and catalyze synthesis of c-di-GMP for facilitating biofilm formation by P. 
aeruginosa34,35. The defect environmental signaling Δ sadC and Δ siaD mutants were severely impaired in 
expression of the PcdrA-gfp reporter in the presence of TeO3

2− (Fig. 2a). SiaD appears to be more impor-
tant than SadC for PcdrA-gfp induction by TeO3

2− since the Δ sadC mutant still displayed a slight induction 
of PcdrA-gfp by TeO3

2− (Fig. 2a).
Exopolysaccharides are the major EPS components of P. aeruginosa biofilms and are well known to 

be induced by high intracellular c-di-GMP content in P. aeruginosa. We examined the expression of a 
lacZ-based biosensor of the Pel synthesis operon (mini-CTX-pel-lacZ36) in P. aeruginosa strains under 
TeO3

2− stress. As with PcdrA-gfp fusion, the expression of the pel-lacZ fusion was induced by TeO3
2− 

treatment, with SiaD essential for this induction (Fig. 2b). However, there was a slight induction of the 
pel-lacZ fusion by tellurite even in the Δ sadCΔ siaCD double mutant (Fig. 2b).

Consistent with our observation of TeO3
2−-induced aggregation, P. aeruginosa grown in the presence 

of TeO3
2− formed more biofilms than cells grown without TeO3

2− (Fig. 3). The induction of biofilm for-
mation was dependent on the presence of Pel and Psl polysaccharides (Fig. 3).

Induction of c-di-GMP confers a growth advantage under tellurite exposure during plank-
tonic cultures.  Since c-di-GMP signaling was induced by TeO3

2− exposure, we examined whether 
induction of c-di-GMP signaling would confer a growth advantage of P. aeruginosa under TeO3

2− expo-
sure. There was no growth defect of Δ sadC, Δ siaD and Δ sadCΔ siaD mutants under normal growth 
condition as compared to PAO1 control (Fig.  4a). However, the P. aeruginosa Δ sadC, Δ siaD single or 
double mutants were more sensitive to TeO3

2− (Fig.  4b). Similarly, the PAO1/plac-yhjH mutant, which 

Figure 1.  Aggregates formed by P. aeruginosa wild-type PAO1 in ABTGC medium with and without 
10 μg/ml TeO3

2− under shaking condition after 1 d (a). Aggregates formed in TeO3
2− containing medium 

were analyzed by FE-SEM (b) and energy-dispersive X-ray spectroscopy (c). Arrows in the FE-SEM image 
indicate the bacterial cell and nanoparticles on the cell surface. ROS generation by P. aeruginosa PAO1 cells 
after exposure to sub-lethal concentration of TeO3

2− , SeO3
2− and SeO4

2− (d). Relative intracellular c-di-GMP 
content of PAO1 cultures in ABTGC medium with and without 10 μg/ml TeO3

2− was quantified by HPLC 
(e). Means and standard deviations of three replicates are shown. Student’s t-test was performed for testing 
differences between groups. * P < 0.05.
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contains a PBBRMCS-2 plasmid with a constitutively expressed phosphodiesterase gene yhjH fused to 
and expressed by the lac promoter and thus has a low intracellular of c-di-GMP content12, was also more 
sensitive to TeO3

2− (Fig.  4). These results showed that intracellular c-di-GMP content determines the 
tolerance of P. aeruginosa to TeO3

2− exposure during planktonic cultures.

Low intracellular c-di-GMP mutants lose fitness under stress during both planktonic and bio-
film modes of growth.  When cfp-tagged PAO1 and yfp-tagged Δ sadCΔ siaD mutant strains were 
combined 1:1 (vol/vol) for planktonic co-cultivation experiments, the wild-type showed higher survival 
rates and gained a higher level of relative fitness than the Δ sadCΔ siaD mutant in the presence of TeO3

2− 
than without TeO3

2− (Fig. 5a). Since diverse phenotypic and genotypic variants coexist in bacterial bio-
films37,38, we tested whether TeO3

2− exposure-induced biofilm formation by high c-di-GMP containing 
cells would lead to protection of mutants with low intracellular c-di-GMP content in co-cultures. Here, 
PAO1 displayed a higher relative fitness than the Δ sadCΔ siaD mutant in biofilm co-cultures with and 
without the presence of TeO3

2− (Fig. 5b). However, the relative fitness of Δ sadCΔ siaD compared to PAO1 
in biofilm co-cultures was slightly higher with the presence of TeO3

2− than in its absence (Fig. 5b). This 
suggests TeO3

2− could potentially induce expression of other DGC harboring proteins in the Δ sadCΔ siaD 
mutant and partly restore the intracellular c-di-GMP levels and biofilm formation.

Figure 2.  Expression of biosensor PcdrA-gfp (a) and Ppel-lacZ (b) by P. aeruginosa strains in ABTGC 
medium with and without the presence of 10 μg/ml TeO3

2−. The PcdrA-gfp expression was shown as relative 
fluorescence units (RFU) per OD600. The Ppel-lacZ expression was shown as Miller Unit. Means and standard 
deviations of three replicates are shown. Student’s t-test was performed for testing differences between 
groups. * P < 0.05.
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When we mixed cfp-tagged PAO1 and yfp-tagged PAO1/plac-yhjH strains 1:1 (vol:vol) for planktonic 
co-cultivation experiments, the wild-type PAO1 strain gained a higher level of relative fitness than the 
c-di-GMP depleted PAO1/plac-yhjH strain with and without exposure to TeO3

2− (Fig.  6a). Moreover, 
PAO1/plac-yhjH was fully outcompeted by PAO1 in biofilm co-cultures supplemented with TeO3

2− 
(Fig. 6b). These results suggest that variants with low intracellular c-di-GMP content are unlikely to be 
protected and maintained by both P. aeruginosa planktonic and biofilm communities when c-di-GMP is 
required for stress response.

Discussion
Bacterial cells face various types of stress during the colonization of natural environments and hosts. A 
series of stress response mechanisms has evolved in bacteria to cope with these harmful conditions. One 
well characterized stringent stress response mechanism is SpoT-mediated ppGpp accumulation, which 
can be provoked by nutritional stress caused by harmful conditions such as antibiotic treatment and 
UV irradiation39. ppGpp is able to bind directly to the bacterial RNA polymerase and further regulate 
transcriptional activity of many genes.

In addition to the stringent stress response, bacteria employ a wide range of social behaviors for 
surviving under unfavorable environmental conditions and these responses also contribute to bacterial 
pathogenesis40. For example, the Staphylococcus aureus agr quorum-sensing system is involved in the 
oxidative stress response41. Biofilm formation is evoked as a stress response mechanism by a wide range 
of bacteria42. It involves encasing bacterial cells inside the densely packed EPS matrix components and 
attaching firmly to biotic and abiotic surfaces. Biofilms are up to 1,000 times more resistant to antimi-
crobial agents compared to their planktonic counterparts43.

Recently, bacteria were found to form floating biofilm-resembling aggregates that are resistant to anti-
microbials and phagocytosis28. Our work here showed that TeO3

2− exposure can elevate the c-di-GMP 
level in P. aeruginosa and lead to the formation of floating aggregates. TeO3

2−-induced floating aggregate 
formation requires Pel and Psl polysaccharides as well as extracellular DNA (eDNA) (Fig. S1), in accord-
ance with the Psl polysaccharide-eDNA interaction enabling the formation of skeleton of P. aeruginosa 

Figure 3.  Biofilm formation by P. aeruginosa PAO1, Δ pelA, Δ pslBCD and Δ pelAΔ pslBCD in medium 
containing 0, 10, 25 and 50 μg/ml TeO3

2− under static conditions after 1 d incubation. Biofilms were firstly 
stained with 0.01% (w/v) crystal violet (a) and then quantified by dissolving in 96% ethanol and measuring 
absorbance at 590 nm (b). Means and standard deviations of three replicates are shown. Student’s t-test was 
performed for testing differences between groups. * P < 0.05.
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biofilms44. In addition to serving as matrix scaffolds, the polysaccharides could also induce synthesis of 
iron siderophore pyoverdine via the Gac/Rsm pathway in the floating aggregates, as we had previously 
demonstrated45. The formation of stress-induced biofilm-resembling aggregates might contribute to the 
dissemination of infection in the host.

The results presented here demonstrate that P. aeruginosa mutants with low c-di-GMP content were 
more sensitive to TeO3

2− exposure in planktonic cultures and thus their growth was negatively affected 
by TeO3

2− exposure, as compared to c-di-GMP containing wild-type strain (Fig.  4). Consistent with 
this finding, a recent study on biodegradation of 3-chloroaniline by Comamonas testosteroni reported 
that, compared with the wild type, the strain with an elevated c-di-GMP level exhibited a better growth 
on the toxic substrate at high concentrations46. In addition to TeO3

2−, the detergent Na-dodecylsulfate 
(SDS)35 also raised the c-di-GMP levels and caused aggregation of P. aeruginosa. In accordance with the 
TeO3

2− findings, the Δ siaD mutant with low intracellular c-di-GMP content was more sensitive to SDS 
during planktonic growth35. Together, these studies highlight that c-di-GMP signaling is involved in 
multiple stress response mechanisms, which might due to multiple DGCs and PDEs being encoded by 
many bacterial species.

Finally, we found that wild-type PAO1 strain biofilms prevented the attachment of mutants with 
low intracellular c-di-GMP content in both normal and TeO3

2− stress co-cultures. Our previous study 
revealed that the polysaccharides in P. aeruginosa biofilms could not be shared, for structural or func-
tional benefits, by mutants that are defective in their synthesis38. These latter findings corroborate with 
the results presented here, and c-di-GMP mediated synthesis of polysaccharides may form another strat-
egy to repress the proliferation and maintenance of c-di-GMP defective variants in biofilms. Considering 

Figure 4.  Growth curve (a) and TeO3
2− tolerance assay (b). P. aeruginosa PAO1, Δ sadC, Δ siaD, 

Δ sadCΔ siaD, and PAO1/plac-yhjH strains were cultivated in ABTGC medium at 37 °C with shaking for 
growth measurement. For TeO3

2− tolerance assay, P. aeruginosa PAO1, Δ sadC, Δ siaD, Δ sadCΔ siaD, and 
PAO1/plac-yhjH strains were cultivated in ABTGC medium with the presence of 20 μg/ml TeO3

2− overnight 
followed by CFU determination. Means and standard deviations of three replicates are shown.
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that polysaccharides with similar structure to the P. aeruginosa polysaccharides are widely distributed in 
natural bacterial species, our results might reflect a conserved strategy employed by a range of bacterial 
species to repress the spreading of variants which cannot respond to environmental conditions by mod-
erating their own c-di-GMP levels.

Methods
Bacterial strains and growth medium.  The bacterial strains, plasmids, and primers used in this 
study are listed in Table 1. Escherichia coli DH5α strain was used for standard DNA manipulations. LB 
medium47 was used to cultivate E. coli strains. Batch cultivation of P. aeruginosa was carried out at 37 °C 
in ABT minimal medium7 supplemented with 5 g glucose l–1 (ABTG) or 2 g glucose l–1 and 2 g casamino 
acids l–1 (ABTGC). For plasmid maintenance in E. coli, the medium was supplemented with 100 μg ampi-
cillin (Ap) ml−1, 15 μg gentamicin (Gm) ml−1, 15 μg tetracycline (Tc) ml−1, or 8 μg chloramphenicol (Cm) 
ml−1. For marker selection in P. aeruginosa, 30 μg Gm ml−1, 50 μg Tc ml−1, and 200 μg carbenicillin (Cb) 
ml−1 were used, when appropriate. Antibiotics were not added to P. aeruginosa cultures for c-di-GMP, 

Figure 5.  Relative fitness of Δ sadCΔ siaD mutant to PAO1 in planktonic co-cultures and biofilm co-cultures 
in ABTGC medium with and without the presence of 10 μg/ml TeO3

2− (a). Means and standard deviations of 
three replicates are shown. Student’s t-test was performed for testing differences between groups. * P < 0.05. 
CLSM images of biofilm co-cultures formed by cfp-tagged P. aeruginosa PAO1 and yfp-tagged Δ sadCΔ siaD 
mutant in ABTGC medium with and without the presence of 10 μg/ml TeO3

2− (b). Representative image 
from triplicate experiments was shown for each condition. Bars, 50 μm.
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stress response and biofilm assays as the plasmids we used were highly stable for these short-term exper-
iments.

Construction of P. aeruginosa mutants.  The Δ pelA, Δ pslBCD and Δ pelAΔ pslBCD mutants defec-
tive for Pel and/or Psl polysaccharide biogenesis were constructed by allelic displacement as previously 
described48. The Δ sadC, Δ siaD and Δ sadCΔ siaD mutants defective for SadC and/or SiaD diguanylate 
cyclase were constructed by allelic displacement as previously described34.

Quantification of static biofilms.  The microtitre tray biofilm formation assay was performed as 
described by O’Toole & Kolter49. Briefly, overnight cultures grown in ABTG medium were diluted to 
OD600 = ~0.001 with fresh ABTG medium and transferred to the wells of polystyrene 96-well microtitre 
trays (200 μl per well) and incubated for 24 h at 37 °C. Liquid culture was removed from each well and 
the wells were washed twice with 0.9% NaCl followed by staining with 0.1% crystal violet and washing 
twice with 0.9% NaCl. The crystal violet-stained biofilms were then resuspended in 96% ethanol, and the 
absorbance of biofilm-associated dye was measured at 600 nm. Experiments were performed in triplicate, 
and the results are shown as the mean ± sd.

Figure 6.  Relative fitness of PAO1/plac-yhjH mutant to PAO1 in planktonic co-cultures and biofilm co-
cultures in ABTGC medium with and without the presence of 10 μg/ml TeO3

2− (a). Means and standard 
deviations of three replicates are shown. Student’s t-test was performed for testing differences between 
groups. * P < 0.05. CLSM images of biofilm co-cultures formed by cfp-tagged P. aeruginosa PAO1 and yfp-
tagged PAO1/plac-yhjH mutant in ABTGC medium with and without the presence of 10 μg/ml TeO3

2− (b). 
Representative image from triplicate experiments was shown for each condition. Bars, 50 μm.
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Field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectros-
copy (EDX).  The aggregates were dried and coated with platinum (Pt) using a vacuum electric sputter 
coater (JEOL JFC-1300, JEOL Asia Pte Ltd, Singapore). SEM images were taken using a field emission 
scanning electron microscope (FE-SEM, JSM-7600, JEOL Asia Pte Ltd, Singapore) at a voltage of 2.0-5.0 
kV and EDX spectra were obtained using an energy-dispersive X-ray spectroscope (AZtecEnergy, Oxford 
Instruments, Oxfordshire, UK) as previously described50. Experiments were performed in triplicate, and 
representative images were shown.

Strain(s) or plasmid Relevant characteristic(s) Source or reference

P. aeruginosa strains

  PAO1 Prototypic wild-type strain 55

  Δ pelA Gmr; pelA derivative of PAO1 constructed 
by allelic exchange

38

  Δ pslBCD Gmr; pslBCD derivative of PAO1 
constructed by allelic exchange

38

  Δ pelAΔ pslBCD Gmr; pelA/pslBCD derivative of PAO1 
constructed by allelic exchange

38

  Δ sadC Gmr; sadC derivative of PAO1 constructed 
by allelic exchange This study

  Δ siaD Gmr; siaD derivative of PAO1 constructed 
by allelic exchange This study

  Δ sadCΔ siaD Gmr; sadC/siaD derivative of PAO1 
constructed by allelic exchange This study

  PAO1/pcdrA-gfp Gmr; PAO1 carrying the pcdrA-gfp report 30

  Δ sadC/pcdrA-gfp Gmr; Δ sadC carrying the pcdrA-gfp report This study

  Δ siaD/pcdrA-gfp Gmr; Δ siaD carrying the pcdrA-gfp report This study

  Δ sadCΔ siaD/pcdrA-gfp Gmr; Δ sadCΔ siaD carrying the pcdrA-gfp 
report This study

  PAO1/plac-yhjH Tcr; PAO1 containing the plac-yhjH vector 12

  PAO1/ppel-lacZ Tcr; PAO1 carrying the mini-CTX-pelA-
lacZ report This study

  Δ sadC/ppel-lacZ Tcr; Δ sadC carrying the mini-CTX-pelA-
lacZ report This study

  Δ siaD/ppel-lacZ Tcr; Δ siaD carrying the mini-CTX-pelA-
lacZ report This study

  Δ sadCΔ siaD/ppel-lacZ Tcr; Δ sadCΔ siaD carrying mini-CTX-pelA-
lacZ report This study

E. coli strain

  DH5α
F–, ø80dlacZΔ M15, Δ (lacZYA-argF)U169, 

deoR, recA1, endA1, hsdR17(rK−, mK+), 
phoA, supE44, λ–, thi-1, gyrA96, relA1

Labotorary collection

Plasmids

  pUCP22 Apr; Gmr; Broad-host-range cloning vector 56

  pMPELA Apr; Gmr; pelA allelic replacement vector 57

  pMPSL-KO1 Apr; Gmr; pslBCD allelic replacement vector 58

  pEX18Gm::Δ sadC Gmr; sadC allelic replacement vector 34

  pEX18Gm::Δ siaD Gmr; siaD allelic replacement vector 34

  pFLP2 Apr; Source of FLP recombinase 59

  pcdrA-gfp Apr; Gmr; pUCP22 carrying the pcdrA-gfp 
fusion

30

  pRK600 Cmr; ori ColE1 RK2-Mob+ RK2-Tra+; helper 
vector for conjugation

60

  plac-yhjH Tcr; pBBR1MCS3 carrying the yhjH gene 12

  Mini-CTX-pel-lacZ Tcr; mini-CTX vector carrying the pel-lacZ 
fusion

36

Table 1.  Strains and plasmids used in this study.
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Reactive oxygen species (ROS) assay.  PAO1 cultures were grown in ABTGC or LB medium con-
trols and media with 10 μg ml−1 TeO3

2−, SeO3
2− and SeO4

2−, respectively. The ROS content of 1 ml station-
ary phase bacterial cells were then measured by using the OxiSelect™ in vitro ROS/RNS assay kit (Green 
Fluorescence), accordingly to manufacturer’s instructions. 2’, 7’-dichlorodihydrofluorescein (DCF) was 
used as a standard and the concentrations of ROS from PAO1 cultures were estimated according to the 
DCF standard curve. The fluorescence of the samples was read by the Tecan Infinite 2000 Microplate 
Reader at 480 nm excitation/530 nm emission. Experiments were performed in triplicate, and the results 
are shown as the mean ± sd. Student’s t-test was performed for testing differences between groups.

iTRAQ-based proteomics analyses.  P. aeruginosa PAO1 was grown in ABTG medium with and 
without 10 μg/ml TeO3

2− at 37 °C with shaking until stationary phase was reached. Cells were harvested 
and iTRAQ-based proteomics analyses were carried out as previously described12.

Determination of minimal inhibitory concentration (MIC).  The MIC assays employed a microti-
ter broth dilution method as previously described in the NCSLA guidelines51. Briefly, fresh ~16 h cultures 
of P. aeruginosa were diluted in ABTG medium. For determination of MIC, potassium tellurite was 
dissolved in water at a concentration 10 times higher than the required range by serial dilutions from a 
stock solution. 10 μl of each concentration were added to each corresponding well of a 96-well microtiter 
plate (polypropylene, Costar Corp.) and 90 μl of bacterial culture (~1 × 105 cells) in ABTG medium were 
added. The plate was incubated at 37 °C for 16-18 h. MIC was taken as the lowest concentration where 
no visual growth (based on OD600) of bacteria was detected. Experiments were performed in triplicate 
and representative results were shown.

TeO3
2− tolerance assay.  Overnight cultures of different P. aeruginosa strains were inoculated into 

ABTGC medium containing 20 μg/ml TeO3
2− and cultivated overnight (24 h). Overnight cultures were 

serially diluted and plated onto LB agar media. LB plates were incubated at 37 °C overnight before CFU 
calculation. Experiments were performed in triplicate, and the results are shown as the mean ± sd.

Beta-galactosidase activity assay.  A classical β-galactosidase assay52 was used to measure expres-
sion of the Ppel-lacZ fusion in P. aeruginosa strains transformed with the mini-CTX-pel-lacZ fusion36, 
which carries the pel promoter fused to the E. coli lacZ gene. Experiments were performed in triplicate, 
and the results are shown as the mean ± sd. Student’s t-test was performed for testing differences between 
groups.

Gfp reporter fusion assay.  The expression of the c-di-GMP PcdrA-gfp biosensor30 in P. aeruginosa 
strains in the presence and absence of TeO3

2− was monitored by using a Tecan Infinite 2000 Microplate 
Reader. Monitoring strains were cultivated in 24-well microtiter plate with ABTGC medium with differ-
ent concentrations of TeO3

2− at 37 °C with shaking. OD600 and GFP fluorescence (in relative fluorescence 
units, rfu) were measured every hour until the culture reach stationary growth phase. Experiments were 
performed in triplicate, and the results are shown as the mean ± sd. Student’s t-test was performed for 
testing differences between groups.

Quantification of c-di-GMP concentration.  Extraction of c-di-GMP was conducted as previously 
described45. 10 ml of P. aeruginosa cells in the early stationary phase from the ABTGC medium with 
and without 10 μg/ml TeO3

2− were washed twice with 1 mM ammonium acetate. Cells were lysed with 
0.6 M HClO4 on ice for 30 min. Cell debris was removed by centrifugation and supernatant was neu-
tralized to pH 6.0 with the addition of 2.5 M KHCO3. The precipitated KClO4 was removed by centrif-
ugation and the supernatant was used for relative quantification of c-di-GMP. The concentration was 
measured by High Performance Liquid Chromatography (HPLC), the injection volume is 20 µl with 254 
nm as detection wavelength. Reverse-phase C18 Targa column (2.1 x 40 mm, 5 μm) (catalog number: 
TR-0421-C185) was used with solvent A (10 mM ammonium acetate in water) and solvent B (10 mM 
ammonium acetate in methanol) at a flow rate of 0.2 ml min-1. Eluent gradient is as follows: 0 to 8 min, 
1% B; 8 to 14 min, 15% B; 14 to 16 min, 19% B; 16 to 24 min, 100% B; 24 to 32 min, 100% B; 32 to 
40 min, 1% B; 40 to 42 min, 1% B. The retention time of c-di-GMP is around 14.0 min. The c-di-GMP 
concentration was normalized by total protein concentration. The relative c-di-GMP concentrations of 
cells treated with 10 μg ml−1 tellurite against cells in ABTGC only were shown. Experiments were per-
formed in triplicate, and the results are shown as the mean ± sd. Student’s t-test was performed for testing 
differences between groups.

Competition assay.  Competition assays were performed in both planktonic and biofilm co-cultures. 
In planktonic co-cultures, cfp-tagged wild-type PAO1 was mixed 1:1 (vol/vol) with yfp-tagged PAO1/
plac-yhjH (or yfp-tagged Δ sadCΔ siaD) and the mixtures inoculated into fresh ABTGC medium with and 
without the presence of 10 μg/ml TeO3

2−. For relative fitness calculation, co-cultures were plated in LB 
agar plates after 24 h cultivation at 37 °C with shaking. Colony-forming units (CFUs) Ni were determined 
from three individual experiments and the number of PAO1 and PAO1/plac-yhjH (or Δ sadCΔ siaD) col-
onies were determined based on their specific fluorescence at times t = 0 and at t = T. Relative fitness was 
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determined as rij = [Ni(T)-Ni(0)]/[Nj(T)-Nj(0)] as previously described with modification53, resulting in a 
fitness of ‘1’ when competing organisms are equally fit. Experiments were performed in triplicate, and the 
results are shown as the mean ± sd. Student’s t-test was performed for testing differences between groups.

In biofilm co-cultures, cfp-tagged wild-type PAO1 cells were mixed with yfp-tagged PAO1/plac-yhjH 
(or yfp-tagged Δ sadCΔ siaD) cells at 1:1 (vol/vol) and the mixtures were inoculated into fresh ABTGC 
medium with and without the presence of 10 μg/ml TeO3

2−. Static biofilms were cultivated on cover 
slides at 37 °C for 24 h as previously described54. Biofilms were imaged with a Zeiss LSM780 confocal 
laser scanning microscope (CLSM) equipped with detectors and filter sets for monitoring of Cfp and 
Yfp fluorescence. Images were obtained using a 40 × /1.4 objective. Simulated three-dimensional images 
and sections as well as biovolumes were generated using the Imaris software package (Bitplane AG)8. 
The biovolume Vi of each strain in the biofilm mode was determined from three individual experiments 
based on their fluorescence at times t = 0 and at t = T. Relative fitness was determined as rij = [Vi(T)-Vi(0)]/
[Vj(T)-Vj(0)] as previously described with modification53, resulting in a fitness of ‘1’ when competing 
organisms are equally fit. Experiments were performed in triplicate, and the results are shown as the 
mean ± sd. Student’s t-test was performed for testing differences between groups.
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