Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Inhibition of Akt pathways in the treatment of prostate cancer

Abstract

Akt is a serine/threonine kinase mediating multiple intracellular pathways involved in prostate cancer (CaP) biology. Increased understanding of the molecular mechanisms of Akt activation and signaling have led to the development of an increasing number of Akt inhibitors. These biologic agents demonstrate activity against a wide range of cancers in preclinical studies. Clinical studies of Akt inhibition in CaP are in progress, including agents such as celecoxib, perifosine and genistein. How best to integrate Akt inhibitors with standard CaP therapy or select patients most likely to benefit is the subject of ongoing research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–130.

    Article  PubMed  Google Scholar 

  2. Huggins C, Hodges C . Studies on prostate cancer: I. The effect of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941; 1: 293–297.

    CAS  Google Scholar 

  3. Nelson EC, Cambio AJ, Yang JC, Lara Jr PN, Evans CP . Biologic agents as adjunctive therapy prostate cancer: a rationale for use with androgen deprivation. Nat Clin Pract Urol 2007; 4: 82–94.

    CAS  PubMed  Google Scholar 

  4. Staal SP, Hartley JW, Rowe WP . Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci USA 1977; 74: 3065–3067.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li L, Ittmann MM, Ayala G, Tsai MJ, Amato RJ, Wheeler TM et al. The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis 2005; 8: 108–118.

    CAS  PubMed  Google Scholar 

  6. Coffer PJ, Jin J, Woodgett JR . Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 1998; 335 (Part 1): 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicholson KM, Anderson NG . The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14: 381–395.

    CAS  PubMed  Google Scholar 

  8. Mulholland DJ, Dedhar S, Wu H, Nelson CC . PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene 2006; 25: 329–337.

    CAS  PubMed  Google Scholar 

  9. Sato S, Fujita N, Tsuruo T . Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 2000; 97: 10832–10837.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    CAS  PubMed  Google Scholar 

  11. Yamaguchi H, Wang HG . The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 2001; 20: 7779–7786.

    CAS  PubMed  Google Scholar 

  12. Majewski N, Nogueira V, Robey RB, Hay N . Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 2004; 24: 730–740.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999; 399: 597–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM . Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399: 601–605.

    CAS  PubMed  Google Scholar 

  15. Papandreou CN, Logothetis CJ . Bortezomib as a potential treatment for prostate cancer. Cancer Res 2004; 64: 5036–5043.

    CAS  PubMed  Google Scholar 

  16. Mayo LD, Donner DB . A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of MDM2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001; 98: 11598–11603.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wen Y, Hu MC, Makino K, Spohn B, Bartholomeusz G, Yan DH et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 2000; 60: 6841–6845.

    CAS  PubMed  Google Scholar 

  18. Lin HK, Yeh S, Kang HY, Chang C . Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 2001; 98: 7200–7205.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin HK, Hu YC, Yang L, Altuwaijri S, Chen YT, Kang HY et al. Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J Biol Chem 2003; 278: 50902–50907.

    CAS  PubMed  Google Scholar 

  20. Edwards J, Krishna NS, Witton CJ, Bartlett JM . Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res 2003; 9: 5271–5281.

    CAS  PubMed  Google Scholar 

  21. Rubin MA, Gerstein A, Reid K, Bostwick DG, Cheng L, Parsons R et al. 10q23.3 loss of heterozygosity is higher in lymph node-positive (pT2-3,N+) versus lymph node-negative (pT2-3,N0) prostate cancer. Hum Pathol 2000; 31: 504–508.

    CAS  PubMed  Google Scholar 

  22. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al. Prostate-specific deletion of the murine PTEN tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003; 4: 209–221.

    CAS  PubMed  Google Scholar 

  23. Majumder PK, Sellers WR . Akt-regulated pathways in prostate cancer. Oncogene 2005; 24: 7465–7474.

    CAS  PubMed  Google Scholar 

  24. Murillo H, Huang H, Schmidt LJ, Smith DI, Tindall DJ . Role of PI3K signaling in survival and progression of LNCaP prostate cancer cells to the androgen refractory state. Endocrinology 2001; 142: 4795–4805.

    CAS  PubMed  Google Scholar 

  25. Kreisberg JI, Malik SN, Prihoda TJ, Bedolla RG, Troyer DA, Kreisberg S et al. Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res 2004; 64: 5232–5236.

    CAS  PubMed  Google Scholar 

  26. Nelson EC, Cambio AJ, Yang JC, Ok J-H, Lara Jr PN, Evans CP . Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis 2007; 10: 6–14.

    CAS  PubMed  Google Scholar 

  27. Granville CA, Memmott RM, Gills JJ, Dennis PA . Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res 2006; 12: 679–689.

    CAS  PubMed  Google Scholar 

  28. Kim D, Cheng GZ, Lindsley CW, Yang H, Cheng JQ . Targeting the phosphatidylinositol-3 kinase/Akt pathway for the treatment of cancer. Curr Opin Investig Drugs 2005; 6: 1250–1258.

    CAS  PubMed  Google Scholar 

  29. Chen YL, Law PY, Loh HH . Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr Med Chem Anticancer Agents 2005; 5: 575–589.

    CAS  PubMed  Google Scholar 

  30. Barnett SF, Bilodeau MT, Lindsley CW . The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation. Curr Top Med Chem 2005; 5: 109–125.

    CAS  PubMed  Google Scholar 

  31. Stauffer F, Holzer P, Garcia-Echeverria C . Blocking the PI3K/PKB pathway in tumor cells. Curr Med Chem Anticancer Agents 2005; 5: 449–462.

    CAS  PubMed  Google Scholar 

  32. Kim YH, Lee YJ . TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation. J Cell Biochem 2007; 100: 998–1009.

    CAS  PubMed  Google Scholar 

  33. Xiao D, Li M, Herman-Antosiewicz A, Antosiewicz J, Xiao H, Lew KL et al. Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2. Nutr Cancer 2006; 55: 94–107.

    CAS  PubMed  Google Scholar 

  34. Deeb D, Jiang H, Gao X, Al-Holou S, Danyluk AL, Dulchavsky SA et al. Curcumin (diferuloyl-methane) sensitizes human prostate cancer cells to TRAIL/Apo2L-induced apoptosis by suppressing NF-{kappa}B via inhibition of pro-survival Akt signaling pathway. J Pharmacol Exp Ther 2007 [E-pub ahead of print].

  35. Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB et al. Anticancer potential of silymarin: from bench to bed side. Anticancer Res 2006; 26: 4457–4498.

    CAS  PubMed  Google Scholar 

  36. Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS . The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000; 275: 11397–11403.

    CAS  PubMed  Google Scholar 

  37. Zhu J, Huang JW, Tseng PH, Yang YT, Fowble J, Shiau CW et al. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 2004; 64: 4309–4318.

    CAS  PubMed  Google Scholar 

  38. Ding H, Han C, Zhu J, Chen CS, D'Ambrosio SM . Celecoxib derivatives induce apoptosis via the disruption of mitochondrial membrane potential and activation of caspase 9. Int J Cancer 2005; 113: 803–810.

    CAS  PubMed  Google Scholar 

  39. Zha S, Gage WR, Sauvageot J, Saria EA, Putzi MJ, Ewing CM et al. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 2001; 61: 8617–8623.

    CAS  PubMed  Google Scholar 

  40. O'Neill GP, Ford-Hutchinson AW . Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett 1993; 330: 156–160.

    CAS  PubMed  Google Scholar 

  41. Kune GA, Kune S, Watson LF . Colorectal cancer risk, chronic illnesses, operations, and medications: case–control results from the Melbourne Colorectal Cancer Study. Cancer Res 1988; 48: 4399–4404.

    CAS  PubMed  Google Scholar 

  42. Kismet K, Akay MT, Abbasoglu O, Ercan A . Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention. Cancer Detect Prev 2004; 28: 127–142.

    CAS  PubMed  Google Scholar 

  43. Basler JW, Piazza GA . Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 selective inhibitors for prostate cancer chemoprevention. J Urol 2004; 171: S59–S62; discussion S53–S62.

    CAS  PubMed  Google Scholar 

  44. Pruthi RS, Derksen JE, Moore D, Carson CC, Grigson G, Watkins C et al. Phase II trial of celecoxib in prostate-specific antigen recurrent prostate cancer after definitive radiation therapy or radical prostatectomy. Clin Cancer Res 2006; 12: 2172–2177.

    CAS  PubMed  Google Scholar 

  45. Smith MR, Manola J, Kaufman DS, Oh WK, Bubley GJ, Kantoff PW . Celecoxib versus placebo for men with prostate cancer and a rising serum prostate-specific antigen after radical prostatectomy and/or radiation therapy. J Clin Oncol 2006; 24: 2723–2728.

    CAS  PubMed  Google Scholar 

  46. Kasimis B, Cogswell J, Hwang S, Chang VT, Srinivas S, Zhong F et al. High dose celecoxib(C) and docetaxel(D) in patients(pts)with hormone resistant prostate cancer(HRPC). Results of an ongoing phase II trial. J Clin Oncol 2005; 23S, Abstract 4704.

    Google Scholar 

  47. Kattan JG, Bachour M, Farhat F, El Seoudi M, Younes F, Ghosn M et al. Phase II trial of weekly docetaxel, zoledronate and celecoxib for androgen-independent prostate cancer patients. Proc Prostate Cancer Symp 2006; Abstract 362.

  48. Sooriakumaran P, Macanas-Pirard P, Fox S, Coley H, Bucca G, Lovell D et al. A blinded, randomized controlled trial of neo-adjuvant celecoxib in patients with early prostate cancer. J Clin Oncol 2006; 24S, Abstract 4563.

  49. Patel V, Lahusen T, Sy T, Sausville EA, Gutkind JS, Senderowicz AM . Perifosine, a novel alkylphospholipid, induces p21(WAF1) expression in squamous carcinoma cells through a p53-independent pathway, leading to loss in cyclin-dependent kinase activity and cell cycle arrest. Cancer Res 2002; 62: 1401–1409.

    CAS  PubMed  Google Scholar 

  50. Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK . Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2003; 2: 1093–1103.

    CAS  PubMed  Google Scholar 

  51. Crul M, Rosing H, de Klerk GJ, Dubbelman R, Traiser M, Reichert S et al. Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer 2002; 38: 1615–1621.

    CAS  PubMed  Google Scholar 

  52. Van Ummersen L, Binger K, Volkman J, Marnocha R, Tutsch K, Kolesar J et al. A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin Cancer Res 2004; 10: 7450–7456.

    CAS  PubMed  Google Scholar 

  53. Chee KG, Lara PN, Longmate J, Twardowski P, Quinn DI, Chatta G et al. The AKT inhibitor perifosine in biochemically recurrent, hormone-sensitive prostate cancer (HSPC): a phase II California Cancer Consortium Trial. J Clin Oncol 2005; 23S, Abstract 4563.

    Google Scholar 

  54. Posadas EM, Gulley J, Arlen PM, Trout A, Parnes HL, Wright J et al. A phase II study of perifosine in androgen independent prostate cancer. Cancer Biol Ther 2005; 4: 1133–1137.

    CAS  PubMed  Google Scholar 

  55. Dasmahapatra GP, Didolkar P, Alley MC, Ghosh S, Sausville EA, Roy KK . In vitro combination treatment with perifosine and UCN-01 demonstrates synergism against prostate (PC-3) and lung (A549) epithelial adenocarcinoma cell lines. Clin Cancer Res 2004; 10: 5242–5252.

    CAS  PubMed  Google Scholar 

  56. Sarkar FH, Adsule S, Padhye S, Kulkarni S, Li Y . The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev Med Chem 2006; 6: 401–407.

    CAS  PubMed  Google Scholar 

  57. Sarkar FH, Li Y . Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 2002; 21: 265–280.

    CAS  PubMed  Google Scholar 

  58. Bemis DL, Capodice JL, Desai M, Buttyan R, Katz AE . A concentrated aglycone isoflavone preparation (GCP) that demonstrates potent anti-prostate cancer activity in vitro and in vivo. Clin Cancer Res 2004; 10: 5282–5292.

    CAS  PubMed  Google Scholar 

  59. Bektic J, Guggenberger R, Eder IE, Pelzer AE, Berger AP, Bartsch G et al. Molecular effects of the isoflavonoid genistein in prostate cancer. Clin Prostate Cancer 2005; 4: 124–129.

    CAS  PubMed  Google Scholar 

  60. Skogseth H, Follestad T, Larsson E, Halgunset J . Transcription levels of invasion-related genes in prostate cancer cells are modified by inhibitors of tyrosine kinase. APMIS 2006; 114: 364–371.

    PubMed  Google Scholar 

  61. Chen HL, Holland WS, Lara PN, Gandara D, White RD, Gumerlock P . Preclinical study of genistein combined polysaccharide (GCP) and docetaxel (Doc) treatment of prostate cancer (CaP) cells. J Clin Oncol 2005; 23S, Abstract 4711.

    Google Scholar 

  62. Holland WS, Shih D, Harse R, Vijaykumar S, Hackman R, Gandara D et al. Inhibition of the AKT pathway with genistein combined polysaccharide (GCP) plus external beam radiation therapy (EBRT) in prostate cancer (CaP) xenograft. J Clin Oncol 2005; 23S, Abstract 3135.

    Google Scholar 

  63. Li Y, Sarkar FH . Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res 2002; 8: 2369–2377.

    CAS  PubMed  Google Scholar 

  64. Tepper CG, Vinall RL, Wee CB, Xue L, Shi XB, Burich R et al. GCP-mediated growth inhibition and apoptosis of prostate cancer cells via androgen receptor-dependent and -independent mechanisms. Prostate 2007; 67: 521–535.

    CAS  PubMed  Google Scholar 

  65. Rannikko A, Petas A, Rannikko S, Adlercreutz H . Plasma and prostate phytoestrogen concentrations in prostate cancer patients after oral phytoestogen supplementation. Prostate 2006; 66: 82–87.

    CAS  PubMed  Google Scholar 

  66. Poisson BA, Takimoto C, Shapiro A, Gallot L, Nabhan C, Lieberman R et al. Pharmacokinetic analysis of the putative prostate cancer chemopreventive agent, genistein. Proc Am Soc Clin Oncol 2001; 20, Abstract 334.

  67. deVere White RW, Hackman RM, Soares SE, Beckett LA, Li Y, Sun B . Effects of a genistein-rich extract on PSA levels in men with a history of prostate cancer. Urology 2004; 63: 259–263.

    PubMed  Google Scholar 

  68. Chuang SE, Yeh PY, Lu YS, Lai GM, Liao CM, Gao M et al. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 2002; 63: 1709–1716.

    CAS  PubMed  Google Scholar 

  69. Brognard J, Clark AS, Ni Y, Dennis PA . Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 2001; 61: 3986–3997.

    CAS  PubMed  Google Scholar 

  70. Kennedy S . Proteomic profiling from human samples: the body fluid alternative. Toxicol Lett 2001; 120: 379–384.

    CAS  PubMed  Google Scholar 

  71. Rabilloud T . Detecting proteins separated by 2-D gel electrophoresis. Anal Chem 2000; 72: 48A–55A.

    CAS  PubMed  Google Scholar 

  72. Patel MI, Subbaramaiah K, Du B, Chang M, Yang P, Newman RA et al. Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res 2005; 11: 1999–2007.

    CAS  PubMed  Google Scholar 

  73. Kulp SK, Yang YT, Hung CC, Chen KF, Lai JP, Tseng PH et al. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 2004; 64: 1444–1451.

    CAS  PubMed  Google Scholar 

  74. Sato S, Fujita N, Tsuruo T . Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 2002; 21: 1727–1738.

    CAS  PubMed  Google Scholar 

  75. Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D et al. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem 2005; 280: 19867–19874.

    CAS  PubMed  Google Scholar 

  76. Breitenlechner CB, Wegge T, Berillon L, Graul K, Marzenell K, Friebe WG et al. Structure-based optimization of novel azepane derivatives as PKB inhibitors. J Med Chem 2004; 47: 1375–1390.

    CAS  PubMed  Google Scholar 

  77. Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T et al. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 1990; 265: 5267–5272.

    CAS  PubMed  Google Scholar 

  78. Reuveni H, Livnah N, Geiger T, Klein S, Ohne O, Cohen I et al. Toward a PKB inhibitor: modification of a selective PKA inhibitor by rational design. Biochemistry 2002; 41: 10304–10314.

    CAS  PubMed  Google Scholar 

  79. Hu Y, Qiao L, Wang S, Rong SB, Meuillet EJ, Berggren M et al. 3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block PI3-K, Akt, and cancer cell growth. J Med Chem 2000; 43: 3045–3051.

    CAS  PubMed  Google Scholar 

  80. Castillo SS, Brognard J, Petukhov PA, Zhang C, Tsurutani J, Granville CA et al. Preferential inhibition of Akt and killing of Akt-dependent cancer cells by rationally designed phosphatidylinositol ether lipid analogues. Cancer Res 2004; 64: 2782–2792.

    CAS  PubMed  Google Scholar 

  81. Gills JJ, Holbeck S, Hollingshead M, Hewitt SM, Kozikowski AP, Dennis PA . Spectrum of activity and molecular correlates of response to phosphatidylinositol ether lipid analogues, novel lipid-based inhibitors of Akt. Mol Cancer Ther 2006; 5: 713–722.

    CAS  PubMed  Google Scholar 

  82. Meuillet EJ, Ihle N, Baker AF, Gard JM, Stamper C, Williams R et al. In vivo molecular pharmacology and antitumor activity of the targeted Akt inhibitor PX-316. Oncol Res 2004; 14: 513–527.

    CAS  PubMed  Google Scholar 

  83. Luo Y, Smith RA, Guan R, Liu X, Klinghofer V, Shen J et al. Pseudosubstrate peptides inhibit Akt and induce cell growth inhibition. Biochemistry 2004; 43: 1254–1263.

    CAS  PubMed  Google Scholar 

  84. Hiromura M, Okada F, Obata T, Auguin D, Shibata T, Roumestand C et al. Inhibition of Akt kinase activity by a peptide spanning the betaA strand of the proto-oncogene TCL1. J Biol Chem 2004; 279: 53407–53418.

    CAS  PubMed  Google Scholar 

  85. Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE et al. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 2005; 385: 399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lindsley CW, Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D et al. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett 2005; 15: 761–764.

    CAS  PubMed  Google Scholar 

  87. Shin I, Edl J, Biswas S, Lin PC, Mernaugh R, Arteaga CL . Proapoptotic activity of cell-permeable anti-Akt single-chain antibodies. Cancer Res 2005; 65: 2815–2824.

    CAS  PubMed  Google Scholar 

  88. Hoffman K, Holmes FA, Fraschini G, Esparza L, Frye D, Raber MN et al. Phase I-II study: triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother Pharmacol 1996; 37: 254–258.

    CAS  PubMed  Google Scholar 

  89. Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI et al. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 2004; 64: 4394–4399.

    CAS  PubMed  Google Scholar 

  90. Feun LG, Blessing JA, Barrett RJ, Hanjani P . A phase II trial of tricyclic nucleoside phosphate in patients with advanced squamous cell carcinoma of the cervix. A Gynecologic Oncology Group Study. Am J Clin Oncol 1993; 16: 506–508.

    CAS  PubMed  Google Scholar 

  91. Mandal M, Kim S, Younes MN, Jasser SA, El-Naggar AK, Mills GB et al. The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells. Br J Cancer 2005; 92: 1899–1905.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Thimmaiah KN, Easton JB, Germain GS, Morton CL, Kamath S, Buolamwini JK et al. Identification of N10-substituted phenoxazines as potent and specific inhibitors of Akt signaling. J Biol Chem 2005; 280: 31924–31935.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PNL is supported in part by the Tom and Melissa Egan Cancer Research Fund, Veterans' Administration of Northern California, RO1-CA120469 and NIH NO1 CM17101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P N Lara Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, E., Evans, C., Mack, P. et al. Inhibition of Akt pathways in the treatment of prostate cancer. Prostate Cancer Prostatic Dis 10, 331–339 (2007). https://doi.org/10.1038/sj.pcan.4500974

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500974

Keywords

This article is cited by

Search

Quick links