Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Lack of thyroid hormone receptor α1 is associated with selective alterations in behavior and hippocampal circuits

Abstract

Brain development and function are dependent on thyroid hormone (T3), which acts through nuclear hormone receptors. T3 receptors (TRs) are transcription factors that activate or suppress target gene expression in a hormone-dependent or -independent fashion. Two distinct genes, TRα and TRβ, encode several receptor isoforms with specific functions defined in many tissues but not in the brain. Mutations in the TRβ gene cause the syndrome of peripheral resistance to thyroid hormone; however, no alterations of the TRα gene have been described in humans. Here we demonstrate that mice lacking the TRα1 isoform display behavioral abnormalities of hippocampal origin, as shown by the open field and fear conditioning tests. In the open field test mutant mice revealed less exploratory behavior than wild-type mice. In the contextual fear conditioning test mutant mice showed a significantly higher freezing response than wild-type controls when tested 1 week after training. These findings correlated with fewer GABAergic terminals on the CA1 pyramidal neurons in the mutant mice. Our results indicate that TRα1 is involved in the regulation of hippocampal structure and function, and raise the possibility that deletions or mutations of this receptor isoform may lead to behavioral changes or even psychiatric syndromes in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Legrand J . Effects of thyroid hormones on central nervous system. In: Yanai J (ed). Neurobehavioral Teratology. Elsevier Science Publishers: Amsterdam, 1984, pp 331–363.

    Google Scholar 

  2. Porterfield SP, Hendrich CE . The role of thyroid hormones in prenatal and neonatal neurological development—current perspectives. Endocr Rev 1993; 14: 94–106.

    CAS  PubMed  Google Scholar 

  3. Bernal J, Guadaño-Ferraz A . Thyroid hormone and the development of the brain. Curr Opin Endocrinol Diab 1998; 5: 296–302.

    Article  CAS  Google Scholar 

  4. Joffe RT, Sokolov STH . Thyroid hormones, the brain, and affective disorders. Crit Rev Neurobiol 1994; 8: 45–63.

    CAS  PubMed  Google Scholar 

  5. Ribeiro RCJ, Appriletti JW, Wagner RL, West BL, Feng W, Huber R et al. Mechanisms of thyroid hormone action: insights from X-ray crystallographic and functional studies. Rec Prog Horm Res 1998; 53: 351–394.

    CAS  PubMed  Google Scholar 

  6. Macchia PE, Takeuchi Y, Kawai T, Cua K, Gauthier K, Chassande O et al. Increased sensitivity to thyroid hormone in mice with complete deficiency of thyroid hormone receptor α. Proc Natl Acad Sci USA 2001; 98: 349–354.

    CAS  PubMed  Google Scholar 

  7. Izumo S, Mahdavi V . Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature (Lond) 1988; 334: 539–542.

    Article  CAS  Google Scholar 

  8. Koening RJ, Lazar MA, Holdin RA, Brent GA, Larsen PR, Chin WW et al. Inhibition of thyroid hormone receptor action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature (Lond) 1989; 337: 659–661.

    Article  Google Scholar 

  9. Liu RT, Suzuki S, Miyamoto T, Takeda T, Ozata M, DeGroot LJ . The dominant negative effect of thyroid hormone receptor splicing variant α2 does not require binding to a thyroid response element. Mol Endocrinol 1995; 9: 86–95.

    CAS  PubMed  Google Scholar 

  10. Salto C, Kindblom JM, Johansson C, Wang Z, Gullberg H, Nordstrom K et al. Ablation of TRα2 and a concomitant overexpression of α1 yields a mixed hypo- and hyperthyroid phenotype in mice. Mol Endocrinol 2001; 15: 2115–2128.

    CAS  PubMed  Google Scholar 

  11. Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P et al. Identification of transcripts initiated from an internal promoter in the c-erbA α locus that encode inhibitors of retinoic acid receptor-α and triiodothyronine receptor activities. Mol Endocrinol 1997; 11: 1278–1290.

    CAS  PubMed  Google Scholar 

  12. Williams GR . Cloning and characterization of two novel thyroid hormone receptor β isoforms. Mol Cell Biol 2000; 20: 8329–8342.

    Article  CAS  Google Scholar 

  13. Hsu J-H, Brent GA . Thyroid hormone receptor gene knockouts. Trends Endocrinol Metabol 1998; 9: 103–112.

    Article  CAS  Google Scholar 

  14. Forrest D, Vennström B . Functions of thyroid hormone receptors in mice. Thyroid 2000; 10: 41–52.

    Article  CAS  Google Scholar 

  15. Forrest D, Hanebuth E, Smeyne RJ, Everds N, Stewart CL, Wehner JM, Curran T . Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor β: evidence for tissue- specific modulation of receptor function. EMBO J 1996; 15: 3006–3015.

    Article  CAS  Google Scholar 

  16. Forrest D, Erway LC, Ng L, Altschuler R, Curran T . Thyroid hormone receptor β is essential for development of auditory function. Nat Genet 1996; 13: 354–357.

    Article  CAS  Google Scholar 

  17. Ng L, Hurley JB, Dierks B, Srinivas M, Salto C, Vennstrom B et al. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 2001; 27: 94–98.

    Article  CAS  Google Scholar 

  18. Wikström L, Johansson C, Salto C, Barlow C, Campos Barros A, Baas F et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor α1. EMBO J 1998; 17: 455–461.

    Article  Google Scholar 

  19. Gauthier K, Chassande O, Plateroti M, Roux JP, Legrand C, Pain B et al. Different functions for the thyroid hormone receptors TRα and TRβ in the control of thyroid hormone production and post-natal development. EMBO J 1999; 18: 623–631.

    Article  CAS  Google Scholar 

  20. Dellovade TL, Chan J, Vennstrom B, Forrest D, Pfaff DW . The two thyroid hormone receptor genes have opposite effects on estrogen-stimulated sex behaviors. Nat Neurosci 2000; 3: 472–475.

    Article  CAS  Google Scholar 

  21. Schwartz HL, Strait KA, Ling NC, Oppenheimer JH . Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J Biol Chem 1992; 267: 11 794–11 799.

    Google Scholar 

  22. Forrest D, Reh TA, Rusch A . Neurodevelopmental control by thyroid hormone receptors. Curr Opin Neurobiol 2002; 12: 49–56.

    Article  CAS  Google Scholar 

  23. Morte B, Manzano J, Scanlan T, Vennström B, Bernal J . Deletion of the thyroid hormone receptor α1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 2002; 99: 3985–3989.

    Article  CAS  Google Scholar 

  24. Flamant F, Poguet AL, Plateroti M, Chassande O, Gauthier K, Streichenberger N et al. Congenital hypothyroid Pax8(−/−) mutant mice can be rescued by inactivating the TRα gene. Mol Endocrinol 2002; 16: 24–32.

    CAS  PubMed  Google Scholar 

  25. Itoh Y, Esaki T, Kaneshige M, Suzuki H, Cook M, Sokoloff L et al. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone α or β receptor gene. Proc Natl Acad Sci USA 2001; 98: 9913–9918.

    Article  CAS  Google Scholar 

  26. Hashimoto K, Curty FH, Borges PP, Lee CE, Abel ED, Elmquist JK et al. An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci USA 2001; 98: 3998–4003.

    Article  CAS  Google Scholar 

  27. Escobar-Morreale HF, Escobar del Rey FE, Obregon MJ, Morreale de Escobar G . Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology 1996; 137: 2490–2502.

    Article  CAS  Google Scholar 

  28. Guadaño-Ferraz A, Escámez MJ, Morte B, Vargiu P, Bernal J . Transcriptional induction of RC3/neurogranin by thyroid hormone: differential neuronal sensitivity is not correlated with thyroid hormone receptor distribution in the brain. Mol Brain Res 1997; 49: 37–44.

    Article  Google Scholar 

  29. Fanselow MS, Bolles RC . Naloxone and shock-elicited freezing in the rat. J Comp Physiol Psychol 1979; 93: 736–744.

    Article  CAS  Google Scholar 

  30. Phillips RG, LeDoux JE . Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992; 106: 274–285.

    Article  CAS  Google Scholar 

  31. Kim JJ, Fanselow MS . Modality-specific retrograde amnesia of fear. Science 1992; 256: 675–677.

    Article  CAS  Google Scholar 

  32. Maren S, Holt W . The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res 2000; 110: 97–108.

    Article  CAS  Google Scholar 

  33. Celio MR . Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 1986; 231: 995–997.

    Article  CAS  Google Scholar 

  34. DeFelipe J . Chandelier cells and epilepsy. Brain 1999; 122: 1807–1822.

    Article  Google Scholar 

  35. Freund TF, Buzsáki G . Interneurons of the hippocampus. Hippocampus 1996; 6: 347–470.

    Article  CAS  Google Scholar 

  36. Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC et al. Cloning and expression of a rat brain GABA transporter. Science 1990; 249: 1303–1306.

    Article  CAS  Google Scholar 

  37. Minelli A, Brecha NC, Karschin C, DeBiasi S, Conti F . GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci 1995; 15: 7734–7746.

    Article  CAS  Google Scholar 

  38. Ribak CE, Tong WM, Brecha NC . GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 1996; 367: 595–606.

    Article  CAS  Google Scholar 

  39. DeFelipe J, Gonzalez-Albo MC . Chandelier cell axons are immunoreactive for GAT-1 in the human neocortex. Neuroreport 1998; 9: 467–470.

    Article  CAS  Google Scholar 

  40. Mellström B, Naranjo JR, Santos A, González AM, Bernal J . Independent expression of the α and β c-erbA genes in developing rat brain. Mol Endocrinol 1991; 5: 1339–1350.

    Article  Google Scholar 

  41. Bradley DJ, Towle HC, Young WS . Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β2-subtype, in the developing mammalian nervous system. J Neurosci 1992; 12: 2288–2302.

    Article  CAS  Google Scholar 

  42. Katsumaru H, Kosaka T, Heizmann CW, Hama K . Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Exp Brain Res 1988; 72: 347–362.

    CAS  PubMed  Google Scholar 

  43. Sik A, Penttonen M, Ylinen A, Buzsaki G . Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 1995; 15: 6651–6665.

    Article  CAS  Google Scholar 

  44. Miles R, Toth K, Gulyas AI, Hajos N, Freund TF . Differences between somatic and dendritic inhibition in the hippocampus. Neuron 1996; 16: 815–823.

    Article  CAS  Google Scholar 

  45. Choi DW . Excitotoxic cell death. J Neurobiol 1992; 23: 1261–1276.

    Article  CAS  Google Scholar 

  46. Sacaan AI, Schoepp DD . Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage. Neurosci Lett 1992; 139: 77–82.

    Article  CAS  Google Scholar 

  47. Feng J, Yan J, Michaud S, Craddock N, Jones IR, Cook Jr EH et al. Scanning of estrogen receptor α (ERalpha) and thyroid hormone receptor α (TRα) genes in patients with psychiatric diseases: four missense mutations identified in ERα gene. Am J Med Genet 2001; 105: 369–374.

    Article  CAS  Google Scholar 

  48. Johansson C, Vennstrom B, Thoren P . Evidence that decreased heart rate in thyroid hormone receptor-α1-deficient mice is an intrinsic defect. Am J Physiol 1998; 275: R640–R646.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants PM98-0011, PM99-0027 and PM99-0105 from the DGICYT. BV was supported by the Swedish Cancer Society. AG-F is the recipient of a contract from the Ramon y Cajal Program of the Ministry of Science and Technology of Spain. CV and RB-P are supported by fellowships from the Community of Madrid (0177 and 01/0782/2000). We thank Prof. Gabriella Morreale de Escobar for T4 and T3 determinations, Javier Pérez for the art work, and Fernando Núñez, Pablo Señor and Miguel Marsa for the care of animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Bernal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guadaño-Ferraz, A., Benavides-Piccione, R., Venero, C. et al. Lack of thyroid hormone receptor α1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 8, 30–38 (2003). https://doi.org/10.1038/sj.mp.4001196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001196

Keywords

This article is cited by

Search

Quick links