Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Upregulation of asparagine synthetase fails to avert cell cycle arrest induced by L-asparaginase in TEL/AML1-positive leukaemic cells

Abstract

L-Asparaginase is a standard component in chemotherapy of childhood acute lymphoblastic leukaemia (ALL). Leukaemic cells carrying TEL/AML1 fusion gene are more sensitive to treatment with L-asparaginase compared to other subtypes of ALL. We demonstrate in vitro the prolonged growth suppression of TEL/AML1[+] cells compared to TEL/AML1[−] leukaemic cells after L-asparaginase treatment simulating treatment protocol. Cell cycle analysis revealed TEL/AML1[+] cells to accumulate in G1/G0 phase (81–98%) compared to TEL/AML1[−] cells (47–60%). Quantitative analysis of asparagine synthetase (AsnS) expression showed the ability of TEL/AML1[+] cells to increase AsnS mRNA levels after L-asparaginase treatment to the same extent as TEL/AML1[−] leukaemic and nonleukaemic lymphoid cells. We hypothesise that TEL/AML1[+] cells are unable to progress into the S phase of cell cycle under nutrition stress caused by L-asparaginase, despite the ability of AsnS upregulation. Significantly higher expression of AsnS was found in untreated leukaemic cells from children with TEL/AML1[+] ALL (n=20) in comparison with the group of age-matched children with ALL bearing no known fusion gene (n=25; P=0.0043). Interestingly, none of the TEL/AML1[+] patients with high AsnS level relapsed, whereas 10/15 patients with AsnS below median relapsed (P=0.00028). Therefore, high AsnS levels in TEL/AML1[+] patients correlate with better prognosis, possibly reflecting the stretched metabolic demand of the lymphoblast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Oettgen HF, Old LJ, Boyse EA, Campbell HA, Philips FS, Clarkson BD et al. Inhibition of leukemias in man by L-asparaginase. Cancer Res 1967; 27: 2619–2631.

    CAS  PubMed  Google Scholar 

  2. Jaffe N, Traggis D, Das L, Moloney WC, Hann HW, Kim BS et al. L-asparaginase in the treatment of neoplastic diseases in children. Cancer Res 1971; 31: 942–949.

    CAS  PubMed  Google Scholar 

  3. Sutow WW, Garcia F, Starling KA, Williams TE, Lane DM, Gehan EA . L-asparaginase therapy in children with advanced leukemia. The Southwest Cancer Chemotherapy Study Group. Cancer 1971; 28: 819–824.

    Article  CAS  PubMed  Google Scholar 

  4. Tallal L, Tan C, Oettgen H, Wollner N, McCarthy M, Helson L et al. E. coli L-asparaginase in the treatment of leukemia and solid tumors in 131 children. Cancer 1970; 25: 306–320.

    Article  CAS  PubMed  Google Scholar 

  5. Zwaan CM, Kaspers GJ, Pieters R, Ramakers-Van Woerden NL, den Boer ML, Wunsche R et al. Cellular drug resistance profiles in childhood acute myeloid leukemia: differences between FAB types and comparison with acute lymphoblastic leukemia. Blood 2000; 96: 2879–2886.

    CAS  PubMed  Google Scholar 

  6. Dubbers A, Wurthwein G, Muller HJ, Schulze-Westhoff P, Winkelhorst M, Kurzknabe E et al. Asparagine synthetase activity in paediatric acute leukaemias: AML-M5 subtype shows lowest activity. Br J Haematol 2000; 109: 427–429.

    Article  CAS  PubMed  Google Scholar 

  7. Codegoni AM, Biondi A, Conter V, Masera G, Rambaldi A, D'Incalci M . Human monocytic leukemia expresses low levels of asparagine synthase and is potentially sensitive to L-asparaginase. Leukemia 1995; 9: 360–361.

    CAS  PubMed  Google Scholar 

  8. Pui C-H . Childhood Leukemias. First edn. Cambridge: Cambridge University Press, 1999.

  9. Colletta G, Cirafici AM . TSH is able to induce cell cycle-related gene expression in rat thyroid cell. Biochem Biophys Res Commun 1992; 183: 265–272.

    Article  CAS  PubMed  Google Scholar 

  10. Greco A, Gong SS, Ittmann M, Basilico C . Organization and expression of the cell cycle gene, ts11, that encodes asparagine synthetase. Mol Cell Biol 1989; 9: 2350–2359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barbosa-Tessmann IP, Chen C, Zhong C, Siu F, Schuster SM, Nick HS et al. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem 2000; 275: 26976–26985.

    CAS  PubMed  Google Scholar 

  12. Hutson RG, Kitoh T, Moraga Amador DA, Cosic S, Schuster SM, Kilberg MS . Amino acid control of asparagine synthetase: relation to asparaginase resistance in human leukemia cells. Am J Physiol 1997; 272: C1691–C1699.

    Article  CAS  PubMed  Google Scholar 

  13. Barbosa-Tessmann IP, Chen C, Zhong C, Schuster SM, Nick HS, Kilberg MS . Activation of the unfolded protein response pathway induces human asparagine synthetase gene expression. J Biol Chem 1999; 274: 31139–31144.

    Article  CAS  PubMed  Google Scholar 

  14. Siu F, Chen C, Zhong C, Kilberg MS . CCAAT/enhancer-binding protein-beta is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem 2001; 276: 48100–48107.

    Article  CAS  PubMed  Google Scholar 

  15. Aslanian AM, Fletcher BS, Kilberg MS . Asparagine synthetase expression alone is sufficient to induce l-asparaginase resistance in MOLT-4 human leukaemia cells. Biochem J 2001; 357: 321–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramakers-van Woerden NL, Pieters R, Loonen AH, Hubeek I, van Drunen E, Beverloo HB et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood 2000; 96: 1094–1099.

    CAS  PubMed  Google Scholar 

  17. Wang L, Hiebert SW . TEL contacts multiple co-repressors and specifically associates with histone deacetylase-3. Oncogene 2001; 20: 3716–3725.

    Article  CAS  PubMed  Google Scholar 

  18. Zuna J . The role of TEL and AML1 genes in the pathogenesis of hematologic malignancies. Cas Lek Cesk 2001; 140: 131–137.

    CAS  PubMed  Google Scholar 

  19. Fenrick R, Amann JM, Lutterbach B, Wang L, Westendorf JJ, Downing JR et al. Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol Cell Biol 1999; 19: 6566–6574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hiebert SW, Lutterbach B, Amann J . Role of co-repressors in transcriptional repression mediated by the t(8;21), t(16;21), t(12;21), and inv(16) fusion proteins. Curr Opin Hematol 2001; 8: 197–200.

    Article  CAS  PubMed  Google Scholar 

  21. Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J . TEL/AML1 positivity in childhood ALL: average or better prognosis? Czech Paediatric Haematology Working Group. Leukemia 1999; 13: 22–24.

    Article  CAS  PubMed  Google Scholar 

  22. Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J . Significantly lower relapse rate for TEL/AML1-positive ALL. Leukemia 1999; 13: 1633.

    Article  CAS  PubMed  Google Scholar 

  23. Loh ML, Silverman LB, Young ML, Neuberg D, Golub TR, Sallan SE et al. Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood 1998; 92: 4792–4797.

    CAS  PubMed  Google Scholar 

  24. Stams WA, den Boer ML, Beverloo HB, Meijerink JP, Stigter RL, van Wering ER et al. Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL. Blood 2003; 101: 2743–2747.

    Article  CAS  PubMed  Google Scholar 

  25. Hrusak O, Trka J, Zuna J, Houskova J, Bartunkova J, Stary J . Aberrant expression of KOR-SA3544 antigen in childhood acute lymphoblastic leukemia predicts TEL-AML1 negativity. The Pediatric Hematology Working Group in the Czech Republic. Leukemia 1998; 12: 1064–1070.

    Article  CAS  PubMed  Google Scholar 

  26. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 concerted action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  PubMed  Google Scholar 

  27. Trka J, Zuna J, Hrusak O, Michalova K, Muzikova K, Kalinova M et al. No evidence for MLL/AF4 expression in normal cord blood samples. Blood 1999; 93: 1106–1107, discussion 1108-10.

    CAS  PubMed  Google Scholar 

  28. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  29. Zuna J, Muzikova K, Madzo J, Krejci O, Trka J . Temperature non-homogeneity in rapid airflow-based cycler significantly affects real-time PCR. Biotechniques 2002; 33: 508 510, 512.

    Article  CAS  PubMed  Google Scholar 

  30. Muller HJ, Beier R, Loning L, Blutters-Sawatzki R, Dorffel W, Maass E et al. Pharmacokinetics of native Escherichia coli asparaginase (Asparaginase medac) and hypersensitivity reactions in ALL-BFM 95 reinduction treatment. Br J Haematol 2001; 114: 794–799.

    Article  CAS  PubMed  Google Scholar 

  31. Aslanian AM, Kilberg MS . Multiple adaptive mechanisms affect asparagine synthetase substrate availability in asparaginase-resistant MOLT-4 human leukaemia cells. Biochem J 2001; 358: 59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muller HJ, Boos J . Use of L-asparaginase in childhood ALL. Crit Rev Oncol Hematol 1998; 28: 97–113.

    Article  CAS  PubMed  Google Scholar 

  33. Horig H, Spagnoli GC, Filgueira L, Babst R, Gallati H, Harder F et al. Exogenous glutamine requirement is confined to late events of T cell activation. J Cell Biochem 1993; 53: 343–351.

    Article  CAS  PubMed  Google Scholar 

  34. Chang WK, Yang KD, Shaio MF . Lymphocyte proliferation modulated by glutamine: involved in the endogenous redox reaction. Clin Exp Immunol 1999; 117: 482–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roth E, Oehler R, Manhart N, Exner R, Wessner B, Strasser E et al. Regulative potential of glutamine – relation to glutathione metabolism. Nutrition 2002; 18: 217–221.

    Article  CAS  PubMed  Google Scholar 

  36. Madzo J, Zuna J, Muzikova K, Kalinova M, Krejci O, Hrusak O et al. Slower molecular response to treatment predicts poor outcome in patients with TEL/AML1 positive acute lymphoblastic leukemia: prospective real-time quantitative reverse transcriptase-polymerase chain reaction study. Cancer 2003; 97: 105–113.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of Charles University #57, Internal Grant Agency of Ministry of Health #7433, Ministry of Education: #111100004, #111300003, #111300001; JS was supported by Ministry of Education FRVS #1011 and work of OH by Ministry of Health #00000064203. The collaboration of all Czech Paediatric Haematology (CPH) centres (leaders: B Blazek (Ostrava), Z Cerna (Plzen), Y Jabali (Ceske Budejovice), V Mihal (Olomouc), D Prochazkova (Usti nad Labem), J Stary (Praha), J Sterba (Brno), K Tousovska (Hradec Kralove)) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Krejci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krejci, O., Starkova, J., Otova, B. et al. Upregulation of asparagine synthetase fails to avert cell cycle arrest induced by L-asparaginase in TEL/AML1-positive leukaemic cells. Leukemia 18, 434–441 (2004). https://doi.org/10.1038/sj.leu.2403259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403259

Keywords

This article is cited by

Search

Quick links