Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Conference Paper
  • Published:

Real-time quantitative PCR for the design of lentiviral vector analytical assays

Abstract

From the recent and emerging concerns for approving lentiviral vector-mediated gene transfer in human clinical applications, several analytical methods have been applied in preclinical models to address the lentiviral vector load in batches, cells or tissues. This review points out the oldest generation methods (blots, RT activity, standard PCR) as well as a full description of the newest real-time quantitative PCR (qPCR) applications. Combinations of primer and probe sequences, which have worked in the lentiviral amplification context, have been included in the effort to dress an exhaustive list. Also, great variations have been observed from interlaboratory results, we have tempted to compare between them the different analytical methods that have been used to consider (i) the titration of lentiviral vector batches, (ii) the absence of the susceptible emerging replicative lentiviruses or (iii) the lentiviral vector biodistribution in the organism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Zufferey R et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    CAS  PubMed  Google Scholar 

  2. Miyoshi H et al. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999; 283: 682–686.

    Article  CAS  PubMed  Google Scholar 

  3. Metharom P et al. Novel bovine lentiviral vectors based on Jembrana disease virus. J Gene Med 2000; 2: 176–185.

    CAS  PubMed  Google Scholar 

  4. An DS et al. Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum Gene Ther 2003; 14: 1207–1212.

    CAS  PubMed  Google Scholar 

  5. De A, Lewis XZ, Gambhir SS . Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol Ther 2003; 7: 681–691.

    CAS  PubMed  Google Scholar 

  6. Ray P et al. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 2004; 64: 1323–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D’Costa J et al. HIV-2 derived lentiviral vectors: gene transfer in Parkinson's and Fabry disease models in vitro. J Med Virol 2003; 71: 173–182.

    PubMed  Google Scholar 

  8. Sirin O, Park F . Regulating gene expression using self-inactivating lentiviral vectors containing the mifepristone-inducible system. Gene 2003; 323: 67–77.

    CAS  PubMed  Google Scholar 

  9. Tonini T, Claudio PP, Giordano A, Romano G . Determination of functional viral titer by drug-resistance colony assay, expression of green fluorescent protein, and beta-galactoside staining. Methods Mol Biol 2004; 285: 149–153.

    CAS  PubMed  Google Scholar 

  10. Grutzkau A et al. Detection of intracellular interleukin-8 in human mast cells: flow cytometry as a guide for immunoelectron microscopy. J Histochem Cytochem 1997; 45: 935–945.

    CAS  PubMed  Google Scholar 

  11. Ghosh C, Iversen PL . Intracellular delivery strategies for antisense phosphorodiamidate morpholino oligomers. Antisense Nucleic Acid Drug Dev 2000; 10: 263–274.

    CAS  PubMed  Google Scholar 

  12. Anson DS, Limberis M . An improved beta-galactosidase reporter gene. J Biotechnol 2004; 108: 17–30.

    CAS  PubMed  Google Scholar 

  13. Duisit G et al. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol Ther 2002; 6: 446–454.

    Article  CAS  PubMed  Google Scholar 

  14. Loewen N et al. Long-term, targeted genetic modification of the aqueous humor outflow tract coupled with noninvasive imaging of gene expression in vivo. Invest Ophthalmol Vis Sci 2004; 45: 3091–3098.

    PubMed  Google Scholar 

  15. Doi K et al. Lentiviral transduction of green fluorescent protein in retinal epithelium: evidence of rejection. Vision Res 2002; 42: 551–558.

    CAS  PubMed  Google Scholar 

  16. Roy-Burman P et al. Assay for type C virus in mouse sera based on particulate reverse transcriptase activity. J Virol 1976; 19: 1107–1110.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tonini T, Claudio PP, Giordano A, Romano G . Retroviral and lentiviral vector titration by the analysis of the activity of viral reverse transcriptase. Methods Mol Biol 2004; 285: 155–157.

    CAS  PubMed  Google Scholar 

  18. Heneine W et al. Detection of reverse transcriptase by a highly sensitive assay in sera from persons infected with human immunodeficiency virus type 1. J Infect Dis 1995; 171: 1210–1216.

    CAS  PubMed  Google Scholar 

  19. Eberle J, Seibl R . A new method for measuring reverse transcriptase activity by ELISA. J Virol Methods 1992; 40: 347–356.

    CAS  PubMed  Google Scholar 

  20. Silver J, Maudru T, Fujita K, Repaske R . An RT-PCR assay for the enzyme activity of reverse transcriptase capable of detecting single virions. Nucl Acids Res 1993; 21: 3593–3594.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pyra H, Boni J, Schupbach J . Ultrasensitive retrovirus detection by a reverse transcriptase assay based on product enhancement. Proc Natl Acad Sci USA 1994; 91: 1544–1548.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Busso M, Resnick L . Development of an assay that detects transcriptionally competent human immunodeficiency virus type one particles. J Virol Methods 1994; 47: 129–139.

    CAS  PubMed  Google Scholar 

  23. Sano K et al. Comparable sensitivities for detection of HIV-1 reverse transcriptase (RT) and other polymerases by RT assays requiring no radioisotopic materials. J Virol Methods 1995; 53: 235–244.

    CAS  PubMed  Google Scholar 

  24. Arnold BA, Hepler RW, Keller PM . One-step fluorescent probe product-enhanced reverse transcriptase assay. Biotechniques 1998; 25: 98–106.

    CAS  PubMed  Google Scholar 

  25. Lovatt A et al. High throughput detection of retrovirus-associated reverse transcriptase using an improved fluorescent product enhanced reverse transcriptase assay and its comparison to conventional detection methods. J Virol Methods 1999; 82: 185–200.

    CAS  PubMed  Google Scholar 

  26. Sears JF, Khan AS . Single-tube fluorescent product-enhanced reverse transcriptase assay with Ampliwax (STF-PERT) for retrovirus quantitation. J Virol Methods 2003; 108: 139–142.

    CAS  PubMed  Google Scholar 

  27. Sears JF, Repaske R, Khan AS . Improved Mg2+-based reverse transcriptase assay for detection of primate retroviruses. J Clin Microbiol 1999; 37: 1704–1708.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Andre M, Morgeaux S, Fuchs F . Quantitative detection of RT activity by PERT assay: feasibility and limits to a standardized screening assay for human vaccines. Biologicals 2000; 28: 67–80.

    CAS  PubMed  Google Scholar 

  29. Schupbach J . Induction/activation and detection of occult viral agents present in mammalian cells. Dev Biol (Basel) 2001; 106: 425–437; discussion 465–475.

    CAS  Google Scholar 

  30. Kuate S, Wagner R, Uberla K . Development and characterization of a minimal inducible packaging cell line for simian immunodeficiency virus-based lentiviral vectors. J Gene Med 2002; 4: 347–355.

    CAS  PubMed  Google Scholar 

  31. Martin-Rendon E et al. New methods to titrate EIAV-based lentiviral vectors. Mol Ther 2002; 5: 566–570.

    CAS  PubMed  Google Scholar 

  32. Farson D et al. A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 2001; 12: 981–997.

    CAS  PubMed  Google Scholar 

  33. Kirkwood TB, Bangham CR . Cycles, chaos, and evolution in virus cultures: a model of defective interfering particles. Proc Natl Acad Sci USA 1994; 91: 8685–8689.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Higashikawa F, Chang L . Kinetic analyses of stability of simple and complex retroviral vectors. Virology 2001; 280: 124–131.

    CAS  PubMed  Google Scholar 

  35. Murdoch B et al. A rapid screening procedure for the identification of high-titer retrovirus packaging clones. Gene Therapy 1997; 4: 744–749.

    CAS  PubMed  Google Scholar 

  36. Onodera M et al. A simple and reliable method for screening retroviral producer clones without selectable markers. Hum Gene Ther 1997; 8: 1189–1194.

    CAS  PubMed  Google Scholar 

  37. Forghani B, Hurst JW, Shell GR . Detection of the human immunodeficiency virus genome with a biotinylated DNA probe generated by polymerase chain reaction. Mol Cell Probes 1991; 5: 221–228.

    CAS  PubMed  Google Scholar 

  38. Woo JC et al. Investigation of recombinant human insulin-like growth factor type I in thymus regeneration in the acute stage of experimental FIV infection in juvenile cats. AIDS Res Hum Retroviruses 1999; 15: 1377–1388.

    CAS  PubMed  Google Scholar 

  39. Watson A et al. Plasma viremia in macaques infected with simian immunodeficiency virus: plasma viral load early in infection predicts survival. J Virol 1997; 71: 284–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dyer JR et al. Comparison of NucliSens and Roche Monitor assays for quantitation of levels of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 1999; 37: 447–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao Y et al. Clinical evaluation of branched DNA signal amplification for quantifying HIV type 1 in human plasma. AIDS Res Hum Retroviruses 1995; 11: 353–361.

    CAS  PubMed  Google Scholar 

  42. Elbeik T et al. Comparative analysis of HIV-1 viral load assays on subtype quantification: Bayer Versant HIV-1 RNA 3.0 versus Roche Amplicor HIV-1 Monitor version 1.5. J Acquir Immun Defic Syndr 2002; 29: 330–339.

    CAS  Google Scholar 

  43. Linnen JM et al. Sensitive detection of genetic variants of HIV-1 and HCV with an HIV-1/HCV assay based on transcription-mediated amplification. J Virol Methods 2002; 102: 139–155.

    CAS  PubMed  Google Scholar 

  44. Scherr M et al. Quantitative determination of lentiviral vector particle numbers by real-time PCR. Biotechniques 2001; 31: 520, 522, 524, passim.

    CAS  PubMed  Google Scholar 

  45. Sastry L et al. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Therapy 2002; 9: 1155–1162.

    CAS  PubMed  Google Scholar 

  46. Ikeda Y et al. Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Therapy 2002; 9: 932–938.

    CAS  PubMed  Google Scholar 

  47. Lizée G et al. Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Hum Gene Ther 2003; 14: 497–507.

    PubMed  Google Scholar 

  48. Towers GJ et al. One step screening of retroviral producer clones by real time quantitative PCR. J Gene Med 1999; 1: 352–359.

    CAS  PubMed  Google Scholar 

  49. Butler SL, Hansen MS, Bushman FD . A quantitative assay for HIV DNA integration in vivo. Nat Med 2001; 7: 631–634.

    CAS  PubMed  Google Scholar 

  50. Charrier S et al. A lentiviral vector encoding the human Wiskott–Aldrich syndrome protein corrects immune and cytoskeletal defects in WASP knockout mice. Gene Therapy 2005; 12: 597–606.

    CAS  PubMed  Google Scholar 

  51. Scherr M et al. Stable RNA interference (RNAi) as an option for anti-bcr-abl therapy. Gene Therapy 2005; 12: 12–21.

    CAS  PubMed  Google Scholar 

  52. Zhang B et al. The significance of controlled conditions in lentiviral vector titration and in the use of multiplicity of infection (MOI) for predicting gene transfer events. Genet Vaccines Ther 2004; 2: 6.

    PubMed  PubMed Central  Google Scholar 

  53. Sastry L et al. Evaluation of plasmid DNA removal from lentiviral vectors by benzonase treatment. Hum Gene Ther 2004; 15: 221–226.

    CAS  PubMed  Google Scholar 

  54. Trono D . Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J Virol 1992; 66: 4893–4900.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Klarmann GJ, Schauber CA, Preston BD . Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro. J Biol Chem 1993; 268: 9793–9802.

    CAS  PubMed  Google Scholar 

  56. Saenz DT et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol 2004; 78: 2906–2920.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Van Maele B, De Rijck J, De Clercq E, Debyser Z . Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction. J Virol 2003; 77: 4685–4694.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector (see comments). Science 1996; 272: 263–267.

    CAS  PubMed  Google Scholar 

  59. Gallichan WS et al. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 1998; 9: 2717–2726.

    CAS  PubMed  Google Scholar 

  60. Kafri T et al. A packaging cell line for lentivirus vectors. J Virol 1999; 73: 576–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dull T et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gasmi M et al. Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J Virol 1999; 73: 1828–1834.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mochizuki H et al. High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 1998; 72: 8873–8883.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Segall HI, Yoo E, Sutton RE . Characterization and detection of artificial replication-competent lentivirus of altered host range. Mol Ther 2003; 8: 118–129.

    CAS  PubMed  Google Scholar 

  65. Sastry L et al. Certification assays for HIV-1-based vectors: frequent passage of gag sequences without evidence of replication-competent viruses. Mol Ther 2003; 8: 830–839.

    CAS  PubMed  Google Scholar 

  66. Waddington SN et al. Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice. Gene Therapy 2003; 10: 1234–1240.

    CAS  PubMed  Google Scholar 

  67. Srinivasakumar N, Schuening FG . A lentivirus packaging system based on alternative RNA transport mechanisms to express helper and gene transfer vector RNAs and its use to study the requirement of accessory proteins for particle formation and gene delivery. J Virol 1999; 73: 9589–9598.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu X et al. Development of a novel trans-lentiviral vector that affords predictable safety. Mol Ther 2000; 2: 47–55.

    CAS  PubMed  Google Scholar 

  69. Mautino MR, Ramsey WJ, Reiser J, Morgan RA . Modified human immunodeficiency virus-based lentiviral vectors display decreased sensitivity to trans-dominant Rev. Hum Gene Ther 2000; 11: 895–908.

    CAS  PubMed  Google Scholar 

  70. Escarpe P et al. Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 2003; 8: 332–341.

    CAS  PubMed  Google Scholar 

  71. Administration FaD. Guidance for industry: guidance for human somatic cell therapy and gene therapy. http://www.fda.gov/cber/gdlns/somgene.pdf 1991.

  72. Pilaro AM, Serabian MA . Preclinical development strategies for novel gene therapeutic products. Toxicol Pathol 1999; 27: 4–7.

    CAS  PubMed  Google Scholar 

  73. Administration FaD. Points to consider in human somatic cell therapy and gene therapy. http://www.fda.gov/cber/gdlns/ptcsomat.pdf 1991.

  74. Gonin P, Gaillard C . Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development. Gene Therapy 2004; 11 (Suppl 1): S98–S108.

    CAS  PubMed  Google Scholar 

  75. Kafri T et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 1997; 17: 314–317.

    CAS  PubMed  Google Scholar 

  76. Johnson LG, Olsen JC, Naldini L, Boucher RC . Pseudotyped human lentiviral vector-mediated gene transfer to airway epithelia in vivo. Gene Therapy 2000; 7: 568–574.

    CAS  PubMed  Google Scholar 

  77. Miyoshi H et al. Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Woods NB et al. Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells (in process citation). Blood 2000; 96: 3725–3733.

    CAS  PubMed  Google Scholar 

  79. Ohashi K, Park F, Kay MA . Role of hepatocyte direct hyperplasia in lentivirus-mediated liver transduction in vivo. Hum Gene Ther 2002; 13: 653–663.

    CAS  PubMed  Google Scholar 

  80. Peng KW et al. Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Therapy 2001; 8: 1456–1463.

    CAS  PubMed  Google Scholar 

  81. VandenDriessche T et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 2002; 100: 813–822.

    CAS  PubMed  Google Scholar 

  82. Vargas Jr J et al. Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther 2004; 15: 361–372.

    CAS  PubMed  Google Scholar 

  83. Pan D et al. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol Ther 2002; 6: 19–29.

    CAS  PubMed  Google Scholar 

  84. MacKenzie TC et al. Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol Ther 2002; 6: 349–358.

    CAS  PubMed  Google Scholar 

  85. Fleury S et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 2003; 107: 2375–2382. Epub 2003 Apr 2314.

    CAS  PubMed  Google Scholar 

  86. Yamada K et al. Phenotype correction of Fanconi anemia group A hematopoietic stem cells using lentiviral vector. Mol Ther 2003; 8: 600–610.

    CAS  PubMed  Google Scholar 

  87. Kurre P et al. Efficient marking of murine long-term repopulating stem cells targeting unseparated marrow cells at low lentiviral vector particle concentration. Mol Ther 2004; 9: 914–922.

    CAS  PubMed  Google Scholar 

  88. Hanawa H et al. Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 2004; 103: 4062–4069. Epub 2004 Feb 4019.

    CAS  PubMed  Google Scholar 

  89. Jimenez DF et al. HIV-1-derived lentiviral vectors and fetal route of administration on transgene biodistribution and expression in rhesus monkeys. Gene Therapy 2005; 7: 7.

    Google Scholar 

  90. Morizono K et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med 2005; 11: 346–352. Epub 2005 Feb 2013.

    CAS  PubMed  Google Scholar 

  91. Lamikanra A et al. In vivo evaluation of an EIAV vector for the systemic genetic delivery of therapeutic antibodies. Gene Therapy 2005; 17: 17.

    Google Scholar 

  92. Di Domenico C et al. Gene therapy for a mucopolysaccharidosis type I murine model with lentiviral-IDUA vector. Hum Gene Ther 2005; 16: 81–90.

    CAS  PubMed  Google Scholar 

  93. Di Natale P et al. Treatment of the mouse model of mucopolysaccharideosis type IIIB with lentiviral-naglu vector. Biochem J 2005; 13: 13.

    Google Scholar 

  94. Indraccolo S et al. Gene transfer in ovarian cancer cells: a comparison between retroviral and lentiviral vectors. Cancer Res 2002; 62: 6099–6107.

    CAS  PubMed  Google Scholar 

  95. Woychik RP et al. An inherited limb deformity created by insertional mutagenesis in a transgenic mouse. Nature 1985; 318: 36–40.

    CAS  PubMed  Google Scholar 

  96. McNeish JD, Scott Jr WJ, Potter SS . Legless, a novel mutation found in PHT1-1 transgenic mice. Science 1988; 241: 837–839.

    CAS  PubMed  Google Scholar 

  97. Follenzi A et al. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000; 25: 217–222.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delenda, C., Gaillard, C. Real-time quantitative PCR for the design of lentiviral vector analytical assays. Gene Ther 12 (Suppl 1), S36–S50 (2005). https://doi.org/10.1038/sj.gt.3302614

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302614

Keywords

This article is cited by

Search

Quick links