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Since the early 1950s, the dominant paradigm in the human

genetics of infectious diseases postulates that rare mono-

genic immunodeficiencies confer vulnerability to multiple

infectious diseases (one gene, multiple infections), whereas

common infections are associated with the polygenic inheri-

tance of multiple susceptibility genes (one infection, multiple

genes). Recent studies, since 1996 in particular, have chal-

lenged this view. A newly recognised group of primary

immunodeficiencies predisposing the individual to a princi-

pal or single type of infection is emerging. In parallel, several

common infections have been shown to reflect the inheri-

tance of one major susceptibility gene, at least in some

populations. This novel causal relationship (one gene, one

infection) blurs the distinction between patient-based

Mendelian genetics and population-based complex genetics,

and provides a unified conceptual frame for exploring the

molecular genetic basis of infectious diseases in humans.
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Introduction

Although sufficient to ensure reproduction at the species

level, the human immune system is weak at the individual

level. Indeed, life expectancy at birth did not exceed 20–25

years of age until the advent of Pasteur’s microbial theory

of disease and the ensuing control of infections by hygiene,

vaccines, and antibiotics (Casanova and Abel, 2005).

Nevertheless, a striking feature of most infections in human

populations world-wide and throughout history is their

considerable inter-individual phenotypic variability, ranging

from asymptomatic to lethal infections. The field of human

genetics of infectious diseases aims to define the genetic

variations accounting for inter-individual variability in the

course of human infections. From a clinical standpoint, this

human genetic view of infectious diseases provides new

means of diagnosis, improves the definition of patient prog-

nosis, and paves the way for innovative preventive and

curative approaches (Casanova and Abel, 2005). The

human model is also important for biological purposes, as

infections and immunity occur in natural, as opposed to

experimental conditions in this model (Casanova and Abel,

2004). Under the theory of natural selection of living species,

the ecologically relevant functions of immune system genes

are subject to natural selective pressure (Allison, 1954, 1968,

2002; Lederberg, 1999). It is therefore essential to define the

function of immune genes within the setting of their natural

ecosystem, within which the organisms and populations

concerned live and are selected (Casanova and Abel, 2004).

According to the dominant paradigm, monogenic immuno-

deficiencies (also known as primary immunodeficiencies,

PIDs) are rare and confer vulnerability to multiple infectious

diseases (one gene, multiple infections)—that vary in nature

and number with the gene affected—(Notarangelo et al, 2006;

Ochs et al, 2006), whereas common infections are favoured

by the polygenic inheritance of multiple susceptibility genes,

most of which if not all making an individually modest

contribution to the phenotype (one infection, multiple

genes) (Figure 1) (Lander and Schork, 1994; Hill, 2001,

2006). For Galtonian biostatisticians, infectious diseases are

seen in populations and reflect polygenic predisposition. In

contrast, for Mendelian physician-scientists, severe infections

do occur in individuals and result from monogenic PIDs.

X-linked recessive agammaglobulinaemia, probably the first

PID to be described as such in the English literature, was

discovered in 1952 by Ogden Bruton in a few American

children with multiple infections (Bruton, 1952, 1962). At

about the same period, in 1954, Anthony Allison discovered

that the sickle cell trait protects against severe forms of

Plasmodium falciparum malaria in African populations

(Allison, 1954, 2002), paving the way for acceptance of the

notion of multiple-gene involvement in disease susceptibility

(Min-Oo and Gros, 2005). Population-based complex genetics

and patient-based Mendelian genetics have evolved in paral-

lel for almost 50 years, even though they study the same

phenomenon from two ends of a spectrum: the patient and

population viewpoints. We argue here that the recent dis-

covery of human genes conferring vulnerability or resistance

to a specific infection at the individual or population level

(one gene, one infection) bridges the two fields, providing

experimental support for a unified theory of the human

genetics of infectious diseases (Figure 1, Table I).

Monogenic traits conferring predisposition
to specific infections

From idiopathic infectious diseases to novel primary

immunodeficiencies

A few idiopathic infections in otherwise healthy patients have

been shown to be familial, suggesting a Mendelian mode of
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inheritance (reviewed by Casanova et al, 2002, 2005; Picard

et al, 2006). Defects of the complement membrane attack

complex (1974) and properdin (1982) were found to result in

selective predisposition to invasive Neisseria disease (re-

viewed by Mathew and Overturf, 2006). The corresponding

germline mutations were identified from 1993 and 1995

onwards. X-linked lymphoproliferative disease (XLP), des-

cribed clinically in 1975 and predisposing to lethal Epstein-

Barr virus (EBV) disease, was found to be heterogeneous at

the molecular level, with a first pathogenic gene identified in

1998 and a second in 2006 (Rigaud et al, 2006 and references

therein). Neisseria and EBV can also affect children with

conventional PIDs, unlike skin-tropic oncogenic papilloma-

viruses (HPVs), which almost exclusively affect patients with

epidermodysplasia verruciformis (EV) (reviewed by Orth,

2006). EV was first described clinically in 1922 as a congenital

dermatosis (Lewandowsky and Lutz, 1922). A recessive

mode of inheritance for this disease was proposed in 1933

(Cockayne, 1933) and the role of papillomaviruses was

established in 1946 (Lutz, 1946). Causal mutations in

EVER1 or EVER2 were described in 2002 (Ramoz et al,

1999, 2002). The EVER genes belong to the transmembrane

channel-like (TMC) family and may exert their anti-HPV

function within keratinocytes. Retrospectively, EV was prob-

ably the first PID to be described, although the lack of a

detectable immunological phenotype and the narrow range

of infections precluded the use of this term at the time.

Mendelian susceptibility to mycobaterial disease

Mendelian susceptibility to mycobacterial disease (MSMD)

was probably first clinically described in 1951 and has

been thoroughly characterised since 1996 (Mimouni, 1951;

Casanova et al, 1996). Patients with MSMD are highly

susceptible to weakly virulent mycobacteria, but are appar-

ently resistant to most other infectious agents, with the

exception of Salmonella (Casanova et al, 1995, 1996; Levin

et al, 1995). Since 1996, disease-causing mutations have been

found in five autosomal (IFNGR1, IFNGR2, STAT1, IL12B and

IL12RB1) and one X-linked (NEMO) gene. These genes are

physiologically related because their products are involved in

IL-12/IL-23-dependent, IFN-g-mediated immunity (Casanova

and Abel, 2002; Filipe-Santos et al, 2006a). Extensive allelic

heterogeneity at the five autosomal loci accounts for the

existence of twelve distinct genetic disorders (Jouanguy

et al, 1996, 1997, 1999, 2000; Newport et al, 1996; Altare

et al, 1998a, b; Dorman and Holland, 1998; de Jong et al,

1998; Döffinger et al, 2000; Dupuis et al, 2001, 2003; Fieschi

et al, 2004; Rosenzweig et al, 2004; Vogt et al, 2005; Chapgier

et al, 2006). X-linked MSMD is caused by NEMO mutations

impairing the CD40-triggered induction of IL-12 production

by monocyte-derived cells upon stimulation by CD40L-

expressing T cells (Filipe-Santos et al, 2006b). Incidentally,

the study of IFNGR2 revealed that gain-of-glycosylation

mutations represent up to 1.4% of disease-causing missense

mutations in humans (Vogt et al, 2005). Altogether, studies of

MSMD have shown that the IL-12/23-IFN-g circuit is crucial

for host defence against mycobacteria and Salmonella but

redundant against most other microorganisms.

Mendelian predisposition to Streptococcus

pneumoniae

Patients with PIDs affecting the splenic phagocytosis of

opsonised bacteria suffer from multiple pyogenic infections,

including invasive pneumococcal disease in particular

(Picard et al, 2003b). Patients with inherited interleukin-1

receptor-associated kinase-4 (IRAK-4) deficiency are more

specifically vulnerable to pneumococcus infections (Picard

et al, 2003a, b). The first patient with IRAK-4 deficiency was

described clinically in 1997 (Kuhns et al, 1997), the diagnosis

of IRAK-4 deficiency being made in 2003 (Medvedev et al,

2003). Almost 30 other patients have since been identified

(Currie et al, 2004; Enders et al, 2004; Chapel et al, 2005; Ku

et al, 2005, 2007; Yang et al, 2005; Cardenes et al, 2006;

Takada et al, 2006). Clinically, IRAK-4-deficient patients pre-

sent recurrent infections caused by pyogenic bacteria, such as

S. pneumoniae and S. aureus in particular. Only three of the

identified patients had invasive disease caused by Gram-

negative bacteria. IRAK-4 deficiency is a life-threatening

disease in childhood, but the global trend shows a clinical

improvement with age. The patients’ blood cells fail to

produce cytokines upon stimulation with Toll-like receptor

(TLR) agonists, IL-1b and IL-18. So far, the only known

exception is the induction of IFN-a/b and IFN-l in response

to TLR3 and TLR4 stimulation (Yang et al, 2005). Overall, the

TLR and IL-1R signalling pathways that depend on IRAK-4 are

critical for protective immunity to a relatively narrow group
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Figure 1 Human genetics of infectious diseases. The spectrum of
genetic predisposition to infectious diseases in human patients is
represented, according to the number of genes involved (x-axis) and
the number of infections (y-axis). The dominant view in human
genetics of infectious diseases postulates that rare, ‘conventional’,
monogenic primary immunodeficiencies (PIDs, in green) predis-
pose the individual to numerous infections (one gene, multiple
infections), whereas common infectious diseases are associated
with polygenic inheritance (in red) of numerous susceptibility
genes (one infection, multiple genes). Novel monogenic PIDs (in
yellow/green) predispose the individual to a principal or single type
of infection. Major genes (in yellow/red) exert a nearly Mendelian
impact at the population level and largely account for common
infectious diseases in some individuals. The recent discovery of
such human genes conferring vulnerability or resistance to a
specific infection at the individual level (one gene, one infection)
bridges the gap between the two classical fields of conventional
PIDs and polygenic inheritance, as defined in the 50 s. As an
example, genetic predisposition to tuberculosis, which was consid-
ered to be purely polygenic, was recently shown to reflect both new
PID and major gene effects, at least in some patients (see text for
details). Overall, these observations provide experimental support
for a continuous spectrum of predisposition and a unified theory of
the human genetics of infectious diseases.
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of pathogens, including pneumococci, but redundant for

protective immunity to many other pathogens.

Mendelian predisposition to herpes simplex

encephalitis

Herpes simplex encephalitis (HSE) provides the best illustra-

tion that susceptibility to a single infectious disease may be

associated with single-gene lesions (Casrouge et al, 2006).

HSE, which was first described in 1941 (Smith et al, 1941), is

the most common form of sporadic encephalitis in Western

countries. Its occurrence in only a small fraction of indivi-

duals infected with the almost ubiquitous HSV-1 and in

otherwise healthy individuals remained unexplained until

the identification of two children with HSE who produced

only low levels of IFN-a/b and -l in response to viruses and

TLR3, TLR7, TLR8, and TLR9 agonists (Casrouge et al, 2006).

These children carry homozygous null mutations in

UNC93B1. HSV-1 did not trigger the production of optimal

amounts of IFN-b and -l in fibroblasts from these patients,

increasing levels of viral replication and cell death. Based on

our previous finding that IRAK-4-deficient children did not

suffer from severe viral diseases, we concluded that the

induction of IFN production via TLR7, TLR8, and TLR9 is

redundant for protective immunity to viruses (Yang et al,

2005). The results obtained for these UNC-93B-deficient

patients indicate that HSE is caused by the impairment of

TLR3-dependent pathways, TLR-independent pathways, or

both. The UNC-93B-IFN pathway is critical for primary

immunity to HSV-1 in the central nervous system. HSE thus

provides the first example of a devastating and sporadic

infectious disease, hitherto idiopathic, that is now known to

result from a monogenic PID (Casanova et al, 2005).

Major genes predisposing populations to
infectious diseases

The concept of major genes in human genetics

Between 1910 and 1930, the studies of Fisher, Haldane, and

Wright founded population genetics by developing a mathe-

matical framework that modelled the behaviour of genes in

populations (Khoury et al, 1993). Bridging the gap between

the Galtonian and the Mendelian approaches, Fisher devel-

oped a polygenic model in which familial correlations for

quantitative traits resulted from the combined and indepen-

dent action of a large number of genes, each exerting a small

effect (Fisher, 1918). With the development of statistical

genetics in the 1960s, models that could explicitly specify

the effect of single genes in the expression of common

diseases were developed (Edwards, 1969; Lalouel et al,

1983). This led to the concept of ‘major genes/loci’, the

phenotypic expression of which is influenced by other

genes and by the environment, and which was first forma-

lised in the context of complex segregation analysis (Khoury

et al, 1993). Several major genes identified by segregation

analyses have been reported since the 1970s, for a number of

infectious disease-related phenotypes (Abel and Demenais,

1988; Abel et al, 1991, 1992, 1995; Alcais et al, 1997;

Plancoulaine et al, 2000, 2003). In the 1990s, with the

development of highly polymorphic genetic markers (Dib

et al, 1996), the concept of ‘major genes’ was applied to

loci detected in genome-wide linkage studies. Such loci,

including those detected in affected sib-pairs studies, are

predicted to have a considerable influence on the phenotype

studied (Risch, 1990; Risch and Merikangas, 1996). The first

major susceptibility locus for infectious diseases was mapped

in 1996, for schistosomiasis (Marquet et al, 1996).

Major genes for parasitic diseases

Schistosomiasis is the second most important parasitic

disease world-wide after malaria (Campino et al, 2006).

Segregation analysis (Abel et al, 1991) led to the mapping

of a major locus controlling levels of gastro-intestinal infec-

tion with the nematode Schistosoma mansoni (SM1) to

chromosome 5q31–q33 in a Brazilian population (Marquet

et al, 1996). This mapping was replicated in a Senegalese

population (Muller-Myhsok et al, 1997). In another study

combining segregation and linkage analysis, a second major

locus predisposing subjects infected with S. mansoni to

severe hepatic fibrosis (the SM2 locus) was mapped to

chromosome 6q23 in a Sudanese population (Dessein

et al, 1999a). This result was subsequently replicated in an

Egyptian population (Blanton et al, 2005). Gene variants at

these two major loci have yet to be discovered. These studies

provide proof-of-principle that major loci may control com-

mon infectious phenotypes. They also demonstrate that

levels of infection and hepatic disease owing to S. mansoni

are under distinct genetic control (Dessein et al, 1999b).

A major gene associated with visceral leishamiasis (or kala

azar), caused by the protozoa Leishmania donovani, has also

recently been identified (Campino et al, 2006). A genome-

wide scan conducted in a Sudanese village led to the

mapping of a major susceptibility locus to chromosome

22q12 (Bucheton et al, 2003). Interestingly, the effect of this

locus was stronger in subjects affected at the start of the

outbreak. This suggests that, for a given disease, major genes

are more commonly expressed in patients with an early onset

of disease.

Major genes for leprosy

Leprosy is a chronic infectious disease that still affects more

than 300 000 subjects per year (WHO, 2006). In an effort to

combat social stigma, the belief that leprosy was inherited

was discredited when Armauer Hansen demonstrated that

leprosy was caused by Mycobacterium leprae (Pallamary,

1955). Ironically, we know today that both the development

of the disease upon exposure to M. leprae and the pattern of

clinical manifestations displayed by leprosy patients (pauci-

bacillary versus multibacillary) are highly dependent on

human genes (Casanova and Abel, 2002; Alcais et al,

2005b). Twin studies in the 1960s indicated that leprosy

was largely genetic (Beiguelman, 1968), and segregation

studies in the 1980s provided strong evidence for the pre-

sence of a major gene, particularly in the study carried out on

Desirade Island (Abel and Demenais, 1988). Two major

regions were recently mapped by genome-wide linkage

studies. A major locus was found on chromosome 10p13 in

Indians with paucibacillary leprosy (Siddiqui et al, 2001).

Another major locus for susceptibility to leprosy per se (i.e.

leprosy regardless of its clinical subtype) was mapped to

chromosome 6q25 in Vietnamese patients (Mira et al, 2003).

Linkage disequilibrium studies in this region identified

leprosy susceptibility variants of the regulatory region shared

by PARK2, which encodes an E3-ubiquitin ligase called

Parkin, and PACRG (Parkin coregulated gene) (Mira et al,
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2004). These studies resulted in the first successful positional

cloning of a major gene in a common infectious disease, and

identified a new pathway of immunity to M. leprae (Schurr

et al, 2006).

Major gene for tuberculosis

Tuberculosis, another common mycobacterial disease, is a

leading public health problem world-wide (WHO, 2004). It

was not until the 1930s that rigorous twin studies provided

strong evidence for the contribution of human genetics to

tuberculosis (Puffer, 1944; Dubos and Dubos, 1952). No

complex segregation studies have been conducted in tuber-

culosis and, until the late 1990s, all investigations of host

genes were based on association studies with candidate genes

(Casanova and Abel, 2002; Alcais et al, 2005a). The most

consistent results were obtained with some HLA class II

and natural resistance-associated macrophage protein 1

(NRAMP1, alias SLC11A1) alleles (Alcais et al, 2005a). The

first major locus identified by genome-wide screening was

recently mapped to chromosome 8q12–q13 in adult patients

with pulmonary tuberculosis from Morocco (Baghdadi et al,

2006). The predisposing allele is dominant, possibly account-

ing for the rapid decline in tuberculosis mortality rates in

Europe during the 19th century, before any specific measures

against the disease were taken. Efforts to identify this

major gene more precisely are continuing. The other major

discovery of recent years has been the demonstration that

tuberculosis in children, a distinct disease, may reflect a

Mendelian predisposition (Altare et al, 2001; Caragol et al,

2003; Alcais et al, 2005a; Casanova and Abel, 2005; Özbek

et al, 2005). The proportion of children with disseminated

tuberculosis owing to Mendelian predisposition remains to

be experimentally determined, but has been estimated at

3–30% by Bayesian statistics (Alcais et al, 2005a). Overall,

these recent studies provide the proof-of-concept that

human genetics of common infectious diseases involves

both Mendelian and major gene determinism.

Concluding remarks

The two related forms of genetic predisposition to infectious

diseases reviewed here (one gene, one infection) bridge the

gap between PIDs in individuals (one gene, multiple infec-

tions) and complex genetics in populations (one infection,

multiple genes). Clearly, the concept of pathogen-specific

genes applies to some, but not all individuals and popula-

tions, as the same gene may be associated with other infec-

tions in other individuals or populations. Moreover, pathogen

specificity is unlikely to be strict, and degeneracy is almost

inevitable, as best illustrated by the occurrence of Salmonella

and staphylococcal infections in patients with IL-12Rb1 and

IRAK-4 deficiencies, respectively. One of the major goals of

Table I Genetic predisposition or resistance to specific infections

Infectious agent Clinical phenotype Immunological
phenotype

Gene/locus References

Mendelian predisposition
Neisseria Invasive disease MAC deficiency C5, C6, C7, C8A,

C8B, C8G, C9
Reviewed in (Mathew
and Overturf, 2006)

Invasive disease Properdin deficiency PFC Reviewed in (Mathew
and Overturf, 2006)

Mycobacteria MSMD IL-12/23-IFN-g
deficiency

IFNGR1, IFNGR2, STAT1,
NEMO, IL12B, IL12RB1

Reviewed in (Filipe-
Santos et al, 2006a, b)

Disseminated
tuberculosis

Reviewed in (Alcais
et al, 2005a, b)

Streptococcus pneumoniae Invasive disease IRAK-4 deficiency IRAK4 (Picard et al, 2003)
Epstein-Barr virus X-linked lympho-

proliferative disease
SAP deficiency SH2D1A Reviewed in (Picard

et al, 2006)
XIAP deficiency XIAP (Rigaud et al, 2006)

Human papillomavirus Epidermodysplasia
verruciformis

EVER1/EVER2
deficiency

EVER1, EVER2 (Ramoz et al, 1999, 2002)

Mendelian resistance
Plasmodium vivax Natural resistance Lack of receptor

for pathogen
DARC (Miller et al, 1975, 1976;

Tournamille et al, 1995)
Human immunodeficiency
virus-1

Natural resistance Lack of receptor
for pathogen

CCR5 Reviewed in (Picard et al,
2006)

Norovirus Natural resistance Lack of receptor
for pathogen

FUT2 Reviewed in (Picard
et al, 2006)

Major genea

Mycobacterium tuberculosis Pulmonary tuberculosis To be determined To be identified
(8q12–q13)

(Baghdadi et al, 2006)

Mycobacterium leprae Leprosy per se To be determined PARK2/PACRG (Mira et al, 2003, 2004)
Paucibacillary leprosy To be identified (10p13) (Siddiqui et al, 2001)

Schistosoma mansoni Infection levels To be determined To be identified
(5q31–q33)

(Marquet et al, 1996;
Muller-Myhsok et al,
1997)

Hepatic fibrosis To be identified
(6q22–q23)

(Dessein et al, 1999;
Blanton et al, 2005)

Leishmania donovani Kala-azar To be determined To be identified (22q12) (Bucheton et al, 2003)

aMajor genes presented in this table are those that have been identified by means of a genome-wide linkage analysis.
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the human genetics of infectious diseases is now to define the

relative contributions of conventional PIDs, pathogen-specific

monogenic traits, major genes, and purely multigenic inheri-

tance, at both individual and population levels. An important

factor to be considered is the virulence of the pathogen.

A substantial proportion of predisposing Mendelian defects

is expected in infectious diseases that affect only a small

proportion of infected individuals (e.g. HSE). Conversely,

more common polygenic predisposition is probably involved

in diseases caused by more virulent microbes (e.g. HIV). The

age of infection may also be a crucial factor to take in

consideration, with more Mendelian traits being involved

before puberty, when most primary infections do occur and

when the impact of infection death on population genetics is

expected to be greater (Wright et al, 2003). Future studies in

the field should tackle these important questions.

It is often assumed that the contribution of PIDs and

Mendelian traits in general, is modest at the population

level. However, the emergence of pathogen-specific mono-

genic susceptibility traits (reviewed here) and pathogen-

specific monogenic resistance traits, including defects in

genes encoding chemokine receptors such as DARC and

CCR5 (reviewed elsewhere (Picard et al, 2006) (Table I)),

suggests that there may be more Mendelian disorders than

initially thought (Pritchard, 2001; Pritchard and Cox, 2002;

Antonarakis and Beckmann, 2006). In recent years, forward

genetic studies in the mouse model have revealed a number

of pathogen-specific genes, including Mx, Nramp1, Ly49h,

and Tlr4 (reviewed in Casanova et al, 2002; Buer and Balling,

2003; Haller and Kochs, 2003; Lam-Yuk-Tseung and Gros,

2003; Papathanasiou and Goodnow, 2005; Yokoyama, 2005;

Beutler et al, 2006). These seminal studies paved the way for

studies of the utmost importance in immunology. They also

provided candidate genes for human infectious diseases and

patients bearing mutations in their orthologs are expected

to be discovered. Conversely, the impact of polygenic inheri-

tance is often thought to be modest at the individual level. In

fact, the demonstration that polygenic inheritance in indivi-

duals does confer actual predisposition to infectious diseases

has not yet been shown in humans. Its demonstration in mice

nonetheless suggests that this may occur in humans too

(Buer and Balling, 2003; Lam-Yuk-Tseung and Gros, 2003;

Papathanasiou and Goodnow, 2005; Beutler et al, 2006). The

ongoing identification of human major genes raises hopes

that a simpler, more potent form of causal determinism can

be deciphered.

The clinical implications of novel PIDs are already con-

siderable, and prospects for patient care are as promising as

for conventional PIDs. Patients with impaired IFN-g produc-

tion are susceptible to severe tuberculosis and should be

treated with recombinant IFN-g (Alcais et al, 2005a).

Similarly, patients with impaired IFN-a/b production are

prone to herpes simplex encephalitis and should be treated

with IFN-a (Casrouge et al, 2006). Major genes also hold

great promise in terms of public health. The human genetics

of infectious diseases also has important biological implica-

tions in the fields of immunity to infection and evolutionary

immunology. The spread of the deleterious haemoglobin S

(Allison, 1954; Lederberg, 1999; Allison, 2002) and DARC

(Miller et al, 1975, 1976; Tournamille et al, 1995) alleles

within human populations in regions endemic for P. falcipar-

um and Plasmodium vivax, respectively, indicated that

microbe-driven natural selection operates on the human

genome. Major genes are expected to have important evolu-

tionary implications, as illustrated by the dominant predis-

position to tuberculosis, which might account for the rapid

selection of resistant individuals (Baghdadi et al, 2006).

Finally, studies of the novel PIDs have indicated that certain

human genes exert an almost pathogen-specific effect in

protective immunity, raising the exciting possibility of coevo-

lution between animal and microbial species, as previously

shown between plants and pathogens (Woolhouse et al,

2002; Chisholm et al, 2006).
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