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SHORT COMMUNICATION

Mortalin imaging in normal and cancer cells with quantum dot immuno-
conjugates
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3058562, Japan E-mail: renu-wadhwa@aist.go.jp

ABSTRACT

Quantum dots are the nanoparticles that are recently emerging as an alternative to organic fluorescence probes
in cell biology and biomedicine, and have several predictive advantages. These include their i) broad absorption
spectra allowing visualization with single light source, ii) exceptional photo-stability allowing long term studies and iii)
narrow and symmetrical emission spectrum that is controlled by their size and material composition. These unique
properties allow simultaneous excitation of different size of quantum dots with a single excitation light source, their
simultaneous resolution and visualization as different colors. At present there are only a few studies that have tested
quantum dots in cellular imaging. We describe here the use of quantum dots in mortalin imaging of normal and
cancer cells. Mortalin staining pattern with quantum dots in both normal and cancer cells mimicked those obtained

with organic florescence probes and were considerably stable.
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INTRODUCTION

Nano is a Greek prefix that defines the smallest (1000
times smaller than micrometer) natural structures and
nanotechnology, a most recent and highly energized
discipline of science and technology that deals with
manipulation and use of these structures with superior
electrical, chemical, mechanical or optical properties.
Applications of nanostructures (quantum dots) have
recently been extended to biology (nanobiology), biotech-
nology (nanobiotechnology) and biomedicine (nano-
medicine). Their speculated use extends from disease
diagnosis to therapy. For example, presence of a molecule
or disease causing organisms can be detected by nano-
tagged antibodies. In this approach, antibodies specific
to a disease causing protein labeled with magnetic nano-
particles are subjected to brief magnetic field. Bound
antibodies give off a strong magnetic signal whereas
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unbound antibodies stumble in all directions and produce
no net signal[1,2], thus the presence of a disease specific
protein can be easily detected. At DNA level, short DNA
segments with disease specific sequences can be tagged
with gold nanoparticles and can possibly be further used
for easy detection of complementary sequences in speci-
mens[3-5]. A more dramatic potential application of
nanotechnology is the use of nanoshells in cancer therapy,
in which tumor cell specific antibodies can be linked to
nano-gold plated spheres (nanoshells, extremely small
beads of glass coated with gold)[6]. Nanoshells can be
used to deliver drug molecules at specific times by
attaching it to capsule made of a heat sensitive polymer.
The capsule would release its contents only when gentle
heating of the attached nanoshells cause it to deform.
Such heating of nanoshells in the body should destroy
the cancer cells, while leaving nearby tissue unharmed
[7-9]. Other types of nanostructures possessing high sur-
face area may prove useful for delivering drugs and
DNA for gene therapy[10-12]. They might be safer
than other leading method including genetically modified
viruses. Similarly, biologically compatible nanoparticles
if engineered successfully may serve as more stronger and
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durable tissue implants[ 13, 14]. A recent exciting appli-
cation of nanobiology has emerged as the use of quantum
dots in cellular imaging[15-17]. Quantum dots are the
latex beads. As their name suggests, they owe their
special properties to the rules of quantum mechanics that
restrict the electrons in atoms to certain discrete energy
levels. Like bulk semiconductors, they absorb photons
of all energies above the threshold of the band gap.
However, the wavelength of the light quantum dot emits
(in other words, its color) depends largely on its size.
Hence a simple semi-conducting material can yield an
entire family of distinctly colored labels.

Recently, these luminescent quantum dots have been
developed as an alternative to organic dyes for fluores-
cence based application in biology and medicine[15-17].
Biological systems are very complex, and at most cases
different components must be observed simultaneously.
Such tracking is difficult to achieve, because each organic
dye must be excited with different wavelength. With
quantum dots, it is possible to tag a variety of biological
molecules, each with a crystal of different size (hence a
different color) and because all of these crystals can be
energized with a single light source, they can all be moni-
tored at once. These inorganic crystals have several
advantages over conventional organic dye molecules. For
example they are very stable. They can withstand much
more cycles of excitation and light emission than typical
organic molecules, which soon get bleached. Furthermore,
these quantum dots depending on their sizes can emit a
wide range of colors with a single excitation light source
(Fig 1). These features make it possible that not only
multiple cells could be imaged at the same time but could
be followed for longer intervals. Thus these nanoscale
semiconductors can potentially serve as unique labels
for biomolecules. Quantum dot bioconjugates are made
from a nanometer scale crystal of semiconductor
material, cadmium selenide, which is coated with an addi-
tional semiconductor shell (ZnS) to improve the optical
properties of the material[16]. This core shell material
is further coated with polymer shell or other ligands
that allows these materials to be conjugated to the
biomolecules and to retain their optical properties. The
polymer shell can be directly coupled to streptavidin or
other biomolecules. In the present study, we compared
the immunofluore-scent images of a heat shock 70 family
protein, mortalin, using conventional organic fluorescence
dye with quantum dot conjugates.
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Fig1 Diagrammatic presentation of quantum dot size and their
emission spectrum yielding colors. Nanocrystals absorb light and
then re-emit the light in a different color. The different colors are
determined by the size of the nanocrystals.

MATERIAL AND METHODS

Normal human foetal fibroblasts (WI-38) and osteogenic sarcoma
(U20S) cells were cultured in Dulbecco’s modified Eagle’s minimal
essential medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), penicillin, streptomycin and fungizone (Life
Technologies, Inc.). For indirect immunofluorescence studies, cells
were plated on glass coverslips placed in 12-well culture dish at
densities ranging from 10° to 10* cells per coverslip. After 24 h,
when cells had attached to the surface and spread well, they were
washed with cold phosphate buffered saline (PBS), and then fixed
with pre-chilled methanol/acetone (1/1, v/v) mixture for 5 mins on
ice. Fixed cells were washed with PBS, permeabilized with 0.5%
Triton X-100 in PBS for 15 mins, and blocked with blocking reagent
(Sigma) for 1 h. They were incubated with anti-mortalin antibodies
(monoclonal anti-mthsp70; Affinity Bioreagents, and polyclonal anti-
mortalin antibody[18]) for 1 h at room temperature, washed thrice
with 0.2% Triton X-100 in PBS, and then incubated with secondary
antibodies (rabbit Alexa 488)(Molecular Probes); Alexa Fluor® 488
goat anti-rabbit IgG (H+L) and mouse biotin (goat anti-mouse IgG-
B) for 30 mins, followed by washings with 0.2% Triton X-100 in
PBS. For quantum dots staining, cells were incubated with QD
(Qdot™ 605 Streptavidin Conjugate; Qantum Dot Corporation, USA)
in QD incubation Buffer (1:2000). After three washings of 10 mins
each with 0.2% Triton X-100 in PBS and a final wash with PBS, the
coverslips were mounted on glass slides with Fluoromount (Difco).

RESULTS AND DISCUSSION

Mortalin is a member of hsp70 family of proteins. It
locates at multiple subcellular sites and shows differential
staining pattern in human normal and transformed cells.
Whereas normal human cells show uniform pancytoplasmic
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staining, transformed human cells exhibit peri-
nuclear staining pattern[19]. Such diffe-
rential subcellular staining of mortalin has
been suggested as a reliable marker for nor-
mal and transformed cells[20, 21]. Another
important aspect of mortalin is its functional
properties in normal and transformed cells.
It has been shown to interact with many other
proteins[22, 23]. The functional significance
of its interactions to the binding partners in
different cellular phenotypes and in response
to stress conditions has not been well studied.
Such studies on subcellular distribution of
mortalin and its functional aspects in normal
and transformed cells require visualization
tools such as specific antibodies. Conventional
immunofluorescence techniques involve the
staining with the first antibody and visualiza-
tion by secondary staining with either fluo-
rescein isothiocyanate (FITC) or Texas Red
or Alexa-conjugated IgG etc. These organic
fluorescent dyes require UV light source,
undergo photobleaching and have wide emis-
sion range so that multiple protein staining
images cannot be observed simultaneously.
Thus quantum dots (Qdots) offer a practical
alternative to the conventional organic fluo-
rescent dyes[15, 16]. We used Qdot™ 605
Streptavidin conjugate for mortalin staining
in normal and transformed cells. As shown
in Fig 2, we obtained mortalin-staining patterns
that have been reported previously by using fluorescent
dyes[19]. Whereas normal human cells showed uniform
staining in the cytoplasm, the transformed (U20S) cells
showed a perinuclear pattern. Mortalin has been shown
to occur in multiple subcellular sites[24]. The above results

Fig 3B).
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Fig2 Quantum dot mortalin staining patterns in normal

(embryonic fibroblasts, WI-38) (A) and cancer (osteocarcinoma,
U20S) (B) human cells.
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Fig 3A Immunofluorescence images of mortalin to compare the photosta-
bility between Alexa 488 and quantum dots in normal cells (Details as in

suggested that the quantum dots could be used for multi-
color visualization of proteins at any subcellular site.

We next analyzed the stability of quantum dot staining
versus fluorescence staining. Normal (WI-38) and cancer
derived (U20S) human cells were stained for mortalin
and visuali-zed by Alexa and Qdots. This allowed simul-
taneous evaluation of their signal patterns and stabilities
under same conditions. Stained cells were illuminated
with light form low mercury lamp and were photographed.
As shown in Figs 3A and 3B, fluorescence staining with
Alexa probe started to fade away after 3-4 mins of
exposure both in normal and transformed cells and was
completely abolished after 8 mins. Such limitations of
fluorescent dyes can lead to errors in the visualization
studies related to subcellular localization and their func-
tional relevance in terms of interactions with other pro-
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teins. On the contrary, Qdots-mortalin stain- g

ing did not fade away with time (Figs 3A and
3B). Such stable staining of proteins is of practi-
cal value for structural, temporal, interactive
and functional studies.
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