Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Wild-type p53 induced sensitization of mutant p53 TNF-resistant cells: Role of caspase-8 and mitochondria

Abstract

In the present study, we have investigated the mechanisms by which the restoration of wild-type (wt) p53 functions in p53 mutant cells increases their susceptibility to the cytotoxic action of tumor necrosis factor (TNF). Our data indicate that the resistance of p53-mutated cl.1001 cells to TNF-induced cell death was not due to a defect in the expression of TRADD and FADD, yet correlated with a reduced caspase-8 activation as well as a deficient mitochondrial membrane permeabilization. Moreover, cl.1001 cells failed to translocate the mitochondrial AIF and cytochrome c to the nucleus and to the cytosol, respectively, in response to TNF. Sensitization of these cells, following infection with a recombinant adenovirus encoding wtp53, to TNF-induced cytotoxicity resulted in the restoration of caspase-8 cleavage and the reestablishment of mitochondrial signs of apoptosis. These findings suggest that the cross-talk between p53 and TNF-induced cell death depends on mitochondria and that the combination of TNF and Adwtp53 may be a potential strategy to sensitize mutant p53 TNF-resistant tumors to the cytotoxic action of this cytokine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wallach D, Varfolomeev EE, Malinin NL et al. Tumor necrosis factor receptor and Fas signaling mechanisms Annu Rev Immunol 1999 17: 331–367

    Article  CAS  Google Scholar 

  2. Lejeune FJ, Ruegg C, Lienard D . Clinical applications of TNF-alpha in cancer Curr Opin Immunol 1998 10: 573–580

    Article  CAS  Google Scholar 

  3. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors Curr Opin Cell Biol 1999 11: 255–260

    Article  CAS  Google Scholar 

  4. Wallach D, Kovalenko AV, Varfolomeev EE et al. Death-inducing functions of ligands of the tumor necrosis factor family: a Sanhedrin verdict Curr Opin Immunol 1998 10: 279–288

    Article  CAS  Google Scholar 

  5. Hsu H, Xiong J, Goeddel DV . The TNF receptor 1–associated protein TRADD signals cell death and NF-kappa B activation Cell 1995 81: 495–504

    Article  CAS  Google Scholar 

  6. Hsu H, Shu HB, Pan MG et al. TRADD–TRAF2 and TRADD–FADD interactions define two distinct TNF receptor 1 signal transduction pathways Cell 1996 84: 299–308

    Article  CAS  Google Scholar 

  7. Hsu H, Huang J, Shu HB et al. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex Immunity 1996 4: 387–396

    Article  CAS  Google Scholar 

  8. Muzio M, Chinnaiyan AM, Kischkel FC et al. FLICE, a novel FADD-homologous ICE/CED-3–like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex Cell 1996 85: 817–827

    Article  CAS  Google Scholar 

  9. Fernandes-Alnemri T, Armstrong RC, Krebs J et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains Proc Natl Acad Sci USA 1996 93: 7464–7469

    Article  CAS  Google Scholar 

  10. Boldin MP, Varfolomeev EE, Pancer Z et al. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain J Biol Chem 1995 270: 7795–7798

    Article  CAS  Google Scholar 

  11. Scaffidi C, Fulda S, Srinivasan A et al. Two CD95 (APO-1/Fas) signaling pathways EMBO J 1998 17: 1675–1687

    Article  CAS  Google Scholar 

  12. Kroemer G, Dallaporta B, Resche-Rigon M . The mitochondrial death/life regulator in apoptosis and necrosis Annu Rev Physiol 1998 60: 619–642

    Article  CAS  Google Scholar 

  13. Kroemer G, Reed JC . Mitochondrial control of cell death Nat Med 2000 6: 513–519

    Article  CAS  Google Scholar 

  14. Fiers W, Beyaert R, Boone E et al. TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis J Inflammation 1995 47: 67–75

    CAS  Google Scholar 

  15. Li J, Bombeck CA, Yang S et al. Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes J Biol Chem 1999 274: 17325–17333

    Article  CAS  Google Scholar 

  16. Luo X, Budihardjo I, Zou H et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors Cell 1998 94: 481–490

    Article  CAS  Google Scholar 

  17. Wong GH, Elwell JH, Oberley LW et al. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor Cell 1989 58: 923–931

    Article  CAS  Google Scholar 

  18. Goossens V, Grooten J, De Vos K et al. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity Proc Natl Acad Sci USA 1995 92: 8115–8119

    Article  CAS  Google Scholar 

  19. Schulze-Osthoff K, Beyaert R, Vandevoorde V et al. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF EMBO J 1993 12: 3095–3104

    Article  CAS  Google Scholar 

  20. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation J Biol Chem 1992 267: 5317–5323

    CAS  Google Scholar 

  21. Jia L, Kelsey SM, Grahn MF et al. Increased activity and sensitivity of mitochondrial respiratory enzymes to tumor necrosis factor alpha-mediated inhibition is associated with increased cytotoxicity in drug-resistant leukemic cell lines Blood 1996 87: 2401–2410

    CAS  PubMed  Google Scholar 

  22. Susin SA, Lorenzo HK, Zamzami N et al. Molecular characterization of mitochondrial apoptosis-inducing factor Nature 1999 397: 441–446 See comments

    Article  CAS  Google Scholar 

  23. Susin SA, Daugas E, Ravagnan L et al. Two distinct pathways leading to nuclear apoptosis J Exp Med 2000 192: 571–580

    Article  CAS  Google Scholar 

  24. Daugas E, Nochy D, Ravagnan L et al. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis FEBS Lett 2000 476: 118–123

    Article  CAS  Google Scholar 

  25. Daugas E, Susin SA, Zamzami N et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis FASEB J 2000 14: 729–739

    Article  CAS  Google Scholar 

  26. Amundson SA, Myers TG, Fornace AJ Jr . Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress Oncogene 1998 17: 3287–3299

    Article  Google Scholar 

  27. Bates S, Vousden KH . Mechanisms of p53-mediated apoptosis Cell Mol Life Sci 1999 55: 28–37

    Article  CAS  Google Scholar 

  28. El-Deiry WS . Regulation of p53 downstream genes Semin Cancer Biol 1998 8: 345–357

    Article  CAS  Google Scholar 

  29. Levine AJ . p53, the cellular gatekeeper for growth and division Cell 1997 88: 323–331

    Article  CAS  Google Scholar 

  30. Cai Z, Capoulade C, Moyret-Lalle C et al. Resistance of MCF7 human breast carcinoma cells to TNF-induced cell death is associated with loss of p53 function Oncogene 1997 15: 2817–2826

    Article  CAS  Google Scholar 

  31. Ameyar M, Shatrov V, Bouquet C et al. Adenovirus-mediated transfer of wild-type p53 gene sensitizes TNF resistant MCF7 derivatives to the cytotoxic effect of this cytokine: relationship with c-myc and Rb Oncogene 1999 18: 5464–5472

    Article  CAS  Google Scholar 

  32. Cai Z, Bettaieb A, El-Mahdani N et al. Alteration of the sphingomyelin/ceramide pathway is associated with resistance of human breast carcinoma MCF7 cells to TNF alpha mediated cytotoxicity J Biol Chem 1997 272: 6918–6926

    Article  CAS  Google Scholar 

  33. Flaman JM, Frebourg T, Moreau V et al. A simple p53 functional assay for screening cell lines, blood, and tumors Proc Natl Acad Sci USA 1995 92: 3963–3967

    Article  CAS  Google Scholar 

  34. Zyad A, Benard J, Tursz T et al. Resistance to TNF-alpha and adriamycin in the human breast cancer MCF-7 cell line: relationship to MDR1, MnSOD, and TNF gene expression Cancer Res 1994 54: 825–831

    CAS  PubMed  Google Scholar 

  35. Scaffidi C, Medema JP, Krammer PH et al. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b J Biol Chem 1997 272: 26953–26958

    Article  CAS  Google Scholar 

  36. Li H, Zhu H, Xu CJ et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis Cell 1998 94: 491–501

    Article  CAS  Google Scholar 

  37. Zamzami N, Marchetti P, Castedo M et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo J Exp Med 1995 181: 1661–1672

    Article  CAS  Google Scholar 

  38. Fulda S, Scaffidi C, Susin SA et al. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid J Biol Chem 1998 273: 33942–33948

    Article  CAS  Google Scholar 

  39. Fulda S, Susin SA, Kroemer G et al. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells Cancer Res 1998 58: 4453–4460

    CAS  Google Scholar 

  40. Medema JP, Scaffidi C, Krammer PH et al. Bcl-xL acts downstream of caspase-8 activation by the CD95 death-inducing signaling complex J Biol Chem 1998 273: 3388–3393

    Article  CAS  Google Scholar 

  41. Chouaib S, Branellec D, Buurman WA . More insights into the complex physiology of TNF Immunol Today 1991 12: 141–142

    Article  CAS  Google Scholar 

  42. Chouaib S, Asselin-Paturel C, Mami-Chouaib F et al. The host-tumor immune conflict: from immunosuppression to resistance and destruction Immunol Today 1997 18: 493–497

    Article  CAS  Google Scholar 

  43. Shatrov VA, Ameyar M, Bouquet C et al. Adenovirus-mediated wild-type p53 gene expression sensitizes TNF-resistant tumor cells to TNF-induced cytotoxicity by altering the cellular redox state Int J Cancer 2000 85: 93–97

    Article  CAS  Google Scholar 

  44. Chinnaiyan AM, K OR, Tewari M et al. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis Cell 1995 81: 505–512

    Article  CAS  Google Scholar 

  45. Oda K, Arakawa H, Tanaka T et al. p53aip1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46–phosphorylated p53 Cell 2000 102: 849–62

    Article  CAS  Google Scholar 

  46. Oda E, Ohki R, Murasawa H et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis Science 2000 288: 1053–1058

    Article  CAS  Google Scholar 

  47. Polyak K, Xia Y, Zweier JL et al. A model for p53-induced apoptosis Nature 1997 389: 300–305

    Article  CAS  Google Scholar 

  48. Caelles C, Helmberg A, Karin M . p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes Nature 1994 370: 220–223

    Article  CAS  Google Scholar 

  49. Prives C, Hall PA . The p53 pathway J Pathol 1999 187: 112–126

    Article  CAS  Google Scholar 

  50. Marchenko ND, Zaika A, Moll UM . Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling J Biol Chem 2000 275: 16202–16212

    Article  CAS  Google Scholar 

  51. Cregan SP, MacLaurin JG, Craig CG et al. Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons J Neurosci 1999 19: 7860–7869

    Article  CAS  Google Scholar 

  52. Soengas MS, Alarcon RM, Yoshida H et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition Science 1999 284: 156–159

    Article  CAS  Google Scholar 

  53. Janicke RU, Sprengart ML, Wati MR et al. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis J Biol Chem 1998 273: 9357–9360

    Article  CAS  Google Scholar 

  54. Wang CY, Mayo MW, Baldwin AS Jr . TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB Science 1996 274: 784–787

    Article  CAS  Google Scholar 

  55. Van Antwerp DJ, Martin SJ, Kafri T et al. Suppression of TNF-alpha–induced apoptosis by NF-kappaB Science 1996 274: 787–789

    Article  Google Scholar 

  56. Beg AA, Baltimore D . An essential role for NF-kappaB in preventing TNF-alpha–induced cell death Science 1996 274: 782–784

    Article  CAS  Google Scholar 

  57. Webster GA, Perkins ND . Transcriptional cross talk between NF-kappaB and p53 Mol Cell Biol 1999 19: 3485–3495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs V Dixit and ME Peter for providing us MCF7/FADD DN cells and C15 monoclonal antibodies, respectively. This work has been supported by a special grant of the Ligue Nationale Contre le Cancer (to SC and GK), Association pour la Recherche sur le Cancer (Grants 5253 and 5129 to SC), and the European Commission (to GK). Ameyar Maya is the recipient of a fellowship from Association pour la Recherche sur le Cancer (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Chouaib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameyar-Zazoua, M., Larochette, N., Dorothée, G. et al. Wild-type p53 induced sensitization of mutant p53 TNF-resistant cells: Role of caspase-8 and mitochondria. Cancer Gene Ther 9, 219–227 (2002). https://doi.org/10.1038/sj.cgt.7700434

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700434

Keywords

Search

Quick links