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Abstract
Infection with the human immunodeficiency virus-1 (HIV-1)
can induce severe and debilitating neurological problems that
include behavioral abnormalities, motor dysfunction and
frank dementia. After infiltrating peripheral immune compe-
tent cells, in particular macrophages, HIV-1 provokes a
neuropathological response involving all cell types in the
brain. HIV-1 also incites activation of chemokine receptors,
inflammatory mediators, extracellular matrix-degrading en-
zymes and glutamate receptor-mediated excitotoxicity, all of
which can trigger numerous downstream signaling pathways
and disrupt neuronal and glial function. This review will
discuss recently uncovered pathologic neuroimmune and
degenerative mechanisms contributing to neuronal damage
induced by HIV-1 and potential approaches for development
of future therapeutic intervention.
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Introduction

Human immunodeficiency virus-1 (HIV-1) can not only
destroy the immune system and lead to acquired immuno-
deficiency syndrome (AIDS), but the virus can also induce
neurological disease that culminates in frank dementia. The
worldwide development of HIV-related disease is alarming,
with more than 36 million existing infections, and about 20
million deaths.1 AIDS opportunistic infections may affect the
central nervous system (CNS), but HIV infection itself can also
induce a number of neurological syndromes.2 Interestingly,
anemia in HIV-1 infection seems to be an early predictor for a
high risk of neuropsychological impairment.3 Neuropatholo-
gical conditions directly triggered by HIV-1 include peripheral
neuropathies, vacuolar myelopathy and a syndrome of
cognitive and motor dysfunction that has been designated
HIV-associated dementia (HAD).2,4–6 A mild form of HAD is
termed minor cognitive/motor disorder (MCMD).2,4,6,7

The mechanism of HAD and MCMD remains poorly
understood, but the discovery in the brain of cellular binding
sites for HIV-1, the chemokine receptors, and recent progress
in neural stem cell biology are providing new and hitherto
unexpected insights. It is widely believed that HIV entry into
the CNS occurs via infected monocytes.8–10 Interestingly, in
the brain, HIV-1 productively infects only macrophages and
microglia, but injury and apoptotic death occur in neurons.11,12

Activation of monocytic cells (macrophages and microglia)
through infection, viral proteins or inflammatorymediators and
their subsequent release of toxins apparently lead to neuronal
and astrocytic dysfunction and thus seem to drive the
pathogenesis of HAD.4,13–15 However, viral proteins might
also directly contribute to neuronal injury. Some of the
neurotoxic factors excessively stimulate neurons, thus lead-
ing to excitotoxicity with subsequent breakdown in neurons
of vital cellular functions in a manner shared with other
neurodegenerative diseases.4,15 Advances in understanding
the molecular mechanisms of the disease-defining events
provide hope for improved therapeutic intervention.16,17

Epidemiology of HAD before and in the
Era of HAART

In the early 1990s, the prevalence of HADwas estimated to be
as high as 20–30% of those individuals with advanced HIV
disease and low CD4 cell counts (o200ml�1).3 The introduc-
tion of highly active antiretroviral therapy (HAART) has
increased the life expectancy of people infected with HIV-1
and resulted in an at least temporary decrease in the
incidence of HAD to as low as 10.5%.18–20 In fact, a case
studied by our group demonstrated near-complete reversal of
clinical signs and symptoms of HAD that has been sustained
for more than 7 years.21 However, while improvements in
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control of peripheral viral replication and the treatment of
opportunistic infections continue to extend survival times,
HAART failed to provide complete protection from HAD or to
reverse the disease in most cases.22,23 This might at least in
part be due to poor penetration into the CNS of HIV protease
inhibitors and several of the nucleoside analogs.24 Therefore,
an early CNS infection might evolve independently over time
into a protected brain reservoir. In fact, distinct viral drug
resistance patterns in the plasma and cerebrospinal fluid
(CSF) compartments have recently been reported.25 Conse-
quently, as people live longer with HIV-1 and AIDS, the
prevalence of dementia might be rising and in recent years the
incidence of HAD as an AIDS-defining illness has actually
increased.22,26,27 Furthermore, the proportion of new cases of
HAD displaying a CD4 cell count greater than 200ml�1 is
growing,18 and MCMD may be more prevalent than frank
dementia in the HAART era.7 However, HAD might currently
be the most common cause of dementia worldwide among
people aged 40 or less, and it remains a significant
independent risk factor for death due to AIDS.7 Thus, a better
understanding of the pathogenesis of HAD, including viral and
host factors, is needed in order to identify additional
therapeutic targets for the prevention and treatment of this
neurodegenerative disease.

From HIV Entry into the Brain to
Development of MCMD/HAD

Soon after infection in the periphery HIV penetrates into the
CNS where the virus primarily resides in microglia and
macrophages.8,9 Viral load in brain can be measured by
quantitative PCR, and the highest concentrations of virus are
detected in those subcortical structures most often affected in
patients with HAD.28,29 However, infection of macrophages
and microglia alone does not seem to initiate neurodegenera-
tion, and it has therefore been proposed that additional factors
associated with advanced HIV infection in the periphery, thus
outside the CNS, provide important triggers for events leading
to dementia.9 An elevated number of circulating monocytes
that express CD16 and CD69 could constitute one such
factor. These activated cells tend to adhere to and transmi-
grate through the normal endothelium of the brain micro-
vasculature and might then initiate processes deleterious to
neurons.9

The blood–brain barrier (BBB) also plays a crucial role in
HIV infection of the CNS.30–32 Microglia and astrocytes
produce chemokines – cell migration/chemotaxis-inducing
cytokines – such as monocyte chemoattractant protein
(MCP)-1, which appear to regulate migration of peripheral
blood mononuclear cells through the BBB.32 In fact, a mutant
MCP-1 allele that causes increased infiltration of mononuclear
phagocytes into tissues has recently been implicated in an
increased risk of HAD.33 Histological studies in specimens
from HIV-1-infected humans and SIV-infected rhesus maca-
ques found that lymphocytes and monocytes enter the
brain.34,35 The pathophysiological relevance of CNS-invading
lymphocytes in HAD is not clearly established.35,36 However,
infiltrating lymphocytes and activated microglia in brains with
HIV-1 encephalitis showed strong immunoreactivity for inter-

leukin (IL)-16, a natural ligand of CD4. Since this cytokine
inhibits HIV-1 propagation, lymphocytes might contribute to
an innate antiviral immune response in the CNS in addition to
microglia.37 Cell migration also engages adhesion molecules,
and increased expression of vascular cell adhesion molecule-
1 (VCAM-1) has been implicated in mononuclear cell
migration into the brain during HIV and SIV infection.30,31,38

As an alternative to entry via infected macrophages, it has
been suggested that the inflammatory cytokine, tumor
necrosis factor-alpha (TNF-a), promotes a paracellular route
for HIV-1 across the BBB.39 Interestingly, alterations in the
BBB occur even in the absence of intact virus in transgenic
mice expressing theHIV envelope protein gp120 in a form that
circulates in plasma.40 This finding suggests that circulating
virus or envelope proteins may provoke BBB dysfunction
during the viremic phase of primary infection. On the part of
the host, a vicious cycle of immune dysregulation and BBB
dysfunction might be required to achieve sufficient entry of
infected or activated immune cells into the brain to cause
neuronal injury.4,41 On the side of the virus, variations of the
envelope protein gp120 might also influence the timing and
extent of events allowing viral entry into the CNS and leading
to neuronal injury.42

Potential Links between Neuropathology
of HIV Infection and Pathogenesis of HAD

The neuropathological hallmarks of HIV infection in the brain
are termed HIV encephalitis and include widespread reactive
astrocytosis, myelin pallor, microglial nodules, activated
resident microglia, multinucleated giant cells, and infiltration
predominantly by monocytoid cells, including blood-derived
macrophages.43 Surprisingly, measures of cognitive function
do not correlate well with numbers of HIV-infected cells,
multinucleated giant cells or viral antigens in CNS tissue.44,45

In contrast, increased numbers of microglia,44 elevated TNF-a
mRNA in microglia and astrocytes,46 evidence of excito-
toxins,47–49 decreased synaptic and dendritic density,45,50 and
selective neuronal loss51,52 constitute the pathologic features
most closely associated with the clinical signs of HAD.
Furthermore, signs of neuronal apoptosis have been linked to
HAD,53–55 although this finding is not clearly associated with
viral burden53 or a history of dementia.56 The localization of
apoptotic neurons is correlated with evidence of structural
atrophy and closely associated with signs of microglial
activation, especially within subcortical deep gray structures,56

which may show a predilection for atrophy in HAD.
The neuropathology observed in post-mortem specimens

from HAD patients in combination with extensive studies
using both in vitro and animal models of HIV-induced
neurodegeneration has led to a fairly complex model for the
pathogenesis of HAD. The available information strongly
suggests that the pathogenesis of HAD might be most
effectively explained when viewed as similar to the multihit
model of oncogenesis. Figure 1 shows a model of potential
intercellular interactions and alterations of normal cell func-
tions that can lead to neuronal injury and death in the setting of
HIV infection.4 Macrophages and microglia can be infected by
HIV-1, but they can also be activated by factors released from
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infected cells. These factors include cytokines and shed viral
proteins such as gp120. Variations of the HIV-1 envelope
protein gp120, in particular in its V1, V2 and V3 loop
sequences, have been implicated in modulating the activation
of macrophages and microglia.42 Factors released by
activated microglia affect all cell types in the CNS, resulting
in upregulation of cytokines, chemokines and endothelial
adhesion molecules.4,9,15 Some of these factors may directly
or indirectly contribute to neuronal damage and apoptosis.
Directly neurotoxic factors released from activated microglia
include excitatory amino acids (EAAs) and related sub-
stances, such as quinolinate, cysteine and a not completely
characterized amine compound named ‘Ntox’.13,49,57–61

EAAs induce neuronal apoptosis through a process known
as excitotoxicity. This detrimental process engenders exces-
sive Ca2þ influx and free radical (nitric oxide (NO) and
superoxide anion) formation by overstimulation of glutamate
receptors.58,62 Certain HIV proteins, such as gp120 and Tat,
have also been reported to be directly neurotoxic, although
high concentrations of viral protein may be needed, or
neurons may have to be cultured in isolation to see these

direct effects.63,64 It is important to note that toxic viral proteins
among factors released frommicroglia and glutamate set free
by astrocytes may act in concert to promote neurodegenera-
tion, even in the absence of extensive viral invasion of the
CNS.

Chemokine Receptors in HIV-1 Infection
and HAD

Chemokine receptors are seven transmembrane-spanning
domain, G-protein-coupled receptors, and as such trigger
intracellular signaling events. While chemokines and their
receptors were originally shown to mediate leukocyte traffic-
king and to contribute intimately to the organization of
inflammatory responses of the immune system, they are
now known to contribute to far more physiological and
pathological processes.41,65,66 The additional functions in-
clude the intricate control of organogenesis, including
hematopoiesis, angiogenesis and development of heart and
brain.67–70 Furthermore, chemokines and their receptors are

Figure 1 Current model of neuronal injury and death induced by HIV-1 infection. Immune-activated and HIV-infected brain macrophages (MF)/microglia release
potentially neurotoxic substances. These substances include quinolinic acid and other excitatory amino acids (EAAs) such as glutamate and L-cysteine, arachidonic acid,
platelet-activating factor (PAF), NTox, free radicals, TNF-a, and probably others. These factors from macrophages and also possibly from reactive astrocytes contribute
to neuronal injury, dendritic and synaptic damage, and apoptosis as well as to astrocytosis. Entry of HIV-1 into monocytoid cells occurs via gp120 binding, and therefore it
is not surprising that gp120 (or a fragment thereof) is capable of activating uninfected macrophages to release similar factors to those secreted in response to productive
HIV infection. Macrophages express CCR5 and CXCR4 chemokine receptors on their surface in addition to CD4, and gp120 binds via these receptors. Some
populations of neurons and astrocytes have been reported to also possess CXCR4 and CCR5 receptors on their surface, raising the possibility of direct interaction with
gp120. Macrophages/microglia and astrocytes have mutual feedback loops (bidirectional arrow). Cytokines participate in this cellular network in several ways. For
example, HIV infection or gp120 stimulation of macrophages enhances their production of TNF-a and IL-1b (arrow). The TNF-a and IL-1b produced by macrophages
stimulate astrocytosis. Arachidonate released from macrophages impairs astrocyte clearing of the neurotransmitter glutamate and thus contributes to excitotoxicity. In
conjunction with cytokines, the a-chemokine stromal cell-derived factor (SDF)-1 stimulates reactive astrocytes to release glutamate in addition to the free radical nitric
oxide [NOK], which in turn may react with superoxide (O2

K�) to form the neurotoxic molecule peroxynitrite (ONOO�). NO might also activate extracellular matrix
metalloproteinases (MMPs), which can then proteolytically affect neurons, and also cleave membrane-anchored fractalkine.131,198 Neuronal injury is primarily mediated
by overactivation of NMDARs with resultant excessive influx of Ca2þ . This in turn leads to overactivation of a variety of potentially harmful signaling systems, the
formation of free radicals and release of additional neurotransmitter glutamate. Glutamate subsequently overstimulates NMDARs on neighboring neurons, resulting in
further injury. This final common pathway of neurotoxic action can be blocked by NMDAR antagonists. For certain neurons, depending on their exact repertoire of ionic
channels, this form of damage can also be ameliorated to some degree by calcium channel antagonists or non-NMDAR antagonists. Additionally, agonists of b-
chemokine receptors, which are present in the CNS on neurons, astrocytes and microglia, can confer partial protection against neuronal apoptosis induced by HIV/gp120
or NMDA. The figure is modified from Kaul et al.4
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essential for maintenance, maturation and migration of
hematopoietic and neural stem cells.66,71 However, the most
prominent pathological function of certain chemokine recep-
tors seems to be the mediation of HIV-1 infection.70,72,73

Infection of macrophages and lymphocytes by HIV-1 can
occur after binding of the viral envelope protein gp120 to one
of several possible chemokine receptors in conjunction with
CD4. Generally, T cells are infected via the a-chemokine
receptor CXCR4 and/or the b-chemokine receptor CCR5. In
contrast, macrophages and microglia are primarily infected
via the b-chemokine receptor CCR5 or CCR3, but the a-
chemokine receptor CXCR4 may also be involved.74–77 The
HIV coreceptors CCR5 and CXCR4, among other chemokine
receptors, are also present on neurons and astrocytes,78,79

although these cells are not thought to harbor productive
infection. Several in vitro studies strongly suggest that CXCR4
is directly involved in HIV-associated neuronal damage while
CCR5 may additionally serve a protective role.63,80,81

In cerebrocortical neurons and neuronal cell lines from
humans and rodents, picomolar concentrations of HIV-1
gp120, as well as intact virus, can induce neuronal death via
CXCR4 receptors.76,77,80–82 In mixed neuronal/glial cerebro-
cortical cultures that mimic the cellular composition of the
intact brain, this apoptotic death appears to be mediated
predominantly via the release of microglial toxins rather than
by direct neuronal damage.77,81,82 However, nanomolar
concentrations of SDF-1a/b interacting with CXCR4 can
induce apoptotic death of neurons in the absence of microglia,
suggesting a possible direct interaction with neurons while
interaction with astrocytes can also occur.81,83,84 In contrast to
these findings, it has been reported that somewhat higher
concentrations of SDF-1a provide neuroprotection from X4-
preferring gp120-induced damage of isolated hippocampal
neurons.63

Using mixed neuronal/glial cerebrocortical cultures from rat
and mouse, we have further investigated the role of
chemokine receptors in the neurotoxicity of gp120. We found
that gp120 from CXCR4 (X4)-preferring as well as CCR5
(R5)-preferring and dual tropic HIV-1 strains all were able to
trigger neuronal death. While gp120 from one out of two
X4-preferring HIV-1 strains no longer showed neurotoxicity
in CXCR4-deficient cerebrocortical cultures, dual tropic
gp120SF2 showed, surprisingly, even greater neurotoxicity in
CCR5 knockout cultures compared to wild-type or CXCR4-
deficient cultures.85 These findings are consistent with a
primarily neurotoxic effect of CXCR4 activation by gp120. In
contrast, activation of CCR5 might at least in part be
neuroprotective depending on the HIV-1 strain from which a
given gp120 originated. Furthermore, we observed earlier that
the CCR5 ligands macrophage inflammatory protein (MIP)-1b
and regulated upon activation-normal T-cell expressed and
secreted (RANTES) protect neurons against gp120-induced
toxicity.81

Since in vitro inhibition of microglial activation is sufficient to
prevent neuronal death after gp120 exposure, it seems likely
that stimulation of CXCR4 in macrophages/microglia is a
prerequisite for the neurotoxicity of gp120.76,81 In contrast,
SDF-1 might directly activate CXCR4 in astrocytes and
neurons to trigger neuronal death, for example, by reversing
glutamate uptake in astrocytes.4,80,81,84 SDF-1 is produced by

astrocytes, macrophages, neurons and Schwann cells.83,86–88

An increase in SDF-1 mRNA has been detected in HIV
encephalitis79 and protein expression of SDF-1 also appears
to be elevated in the brains of HIV patients.89 To what degree
the increased expression of SDF-1 aggravates neuronal
damage by HIV-1 remains to be shown. We had reported
previously that intact SDF-1 can be toxic to mature neurons in
a CXCR4-dependent manner, at least in culture.81,83,85

Additionally, it was recently reported that cleavage of SDF-1
byMMPsmay contribute to neuronal injury and thusHAD via a
non-CXCR4-mediated mechanism.90 Importantly, increased
expression and activation of MMPs, including MMP-2 and
MMP-9, were detected in HIV-infected macrophages and also
in post-mortem brain specimens from AIDS patients com-
pared with uninfected controls.91 As elegantly shown by
Power and colleagues, MMP-2 released from HIV-infected
macrophages is able to proteolytically remove four amino
acids from the N-terminus of SDF-1. This truncated form of
SDF-1 no longer binds CXCR4 and is an even more powerful
neurotoxin than full-length SDF-1.90

Effect of Chemokines and HIV/gp120 on Neural
Stem and Progenitor Cells

CXCR4 is expressed on neurons, microglia, astrocytes and
endothelia in the brain.83,92,93 However, this chemokine
receptor and its ligand SDF-1 are also major components in
many physiological processes involving hematopoietic and
neural stem cells.36,66,94 This indicates that HIV-1 could also
directly interfere with biological functions of neural stem and
progenitor cells.
Neural stem cells and later progenitor cells are widely

thought to provide a reservoir to replace neurons or glia under
conditions of brain injury or disease.95 Neurogenesis can be
stimulated by ischemic and excitotoxic brain injuries, physical
exercise, diet, learning or an enriched environment,41,96 and
may decrease with aging.97 Functionally, it is suggested that
this neurogenesis contributes to long-term synaptic plasticity
and cognitive processes and is also involved in pathological
processes such as depression.98,99 Three important steps are
involved in neurogenesis and regulation of neural progenitor
cells (NPCs): directed migration, proliferation and differentia-
tion.100 Chemokines such as SDF-1 and its receptor CXCR4
appear to play an important role in the process. CXCR4 is
highly expressed during development in the cerebellum,
hippocampus and neocortex, and this expression persists
into adulthood.67,69,101–103 SDF-1 transcripts are predomi-
nantly expressed by oligodendrocytes, astrocytes and neu-
rons in the neocortex, hippocampus and cerebellum87,103 and
by meningeal cells.102 In vitro, the production of SDF-1 by
purified astrocyte cultures is associated with a macrophage–
astrocyte interaction.83 Whether or not SDF-1/CXCR4 inter-
action is involved in all of the above-mentioned three steps of
neurogenesis is not known; however, it has been documented
that SDF-1/CXCR4 signaling regulates migration of NPCs in
the cerebellum, dentate gyrus and cortex.67,69,102,103 Further-
more, it has recently been reported that the recruitment of
CXCR4-positive progenitor cells into regenerating tissue is
mediated by a hypoxic gradient and expression of SDF-1 that
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is induced by the transcription factor hypoxia-inducible factor-
1 (HIF-1).104 Thus, several lines of evidence indicate a
significant involvement of the SDF-1/CXCR4 interaction in
tissue damage and repair.
In order to investigate this possibility, we utilized cultures of

primary mouse and human neural progenitor cells obtained
during the fetal period. These cells stain positively for the
neural stem cell marker nestin and readily undergo cell
division. After several rounds of proliferation, the progenitors
exit the cell cycle and express neuronal markers such as bIII-
tubulin (TuJ1). Our immunocytochemical studies showed that
the progenitors are positive for CXCR4 and CCR5. Treatment
with HIV-1/gp120 reduced the number of progenitors and
differentiating neurons. Accounting for these observations, we
found that gp120 inhibited proliferation of neural progenitor
cells without producing apoptosis. The resulting decrease in
neural stem cell proliferation engendered by gp120 also
means that there are fewer progenitor cells present to
differentiate in neurons, thus impairing neurogenesis (S
Okamoto, S McKercher, M Kaul and SA Lipton, unpublished).
Recently, these findings were complemented and extended
by others using commercially generated human neural
progenitor cells.105,106 In those experiments, chemokines
promoted the quiescence and survival of human neural
progenitor cells via stimulation of CXCR4 and CCR3 via a
mechanism that involves downregulation of extracellularly
regulated kinase-1 and -2 (ERK-1/2) and simultaneous
upregulation of Reelin.105 Exposure to HIV-1 appeared to
induce quiescence of neural progenitors, also through
engagement of CXCR4 and CCR3. The coat protein HIV-1/
gp120 reportedly downregulated ERK-1/2 but had no effect on
the neuronal glycoprotein Reelin.106 The effects of both the
chemokines and HIV-1/gp120 were reversible and could be
inhibited with recombinant apolipoprotein E3 (ApoE3), but not
ApoE4. The finding that HIV-1/gp120 could indeed interfere
with the normal function of neural progenitor cells raised the
possibility that the virus contributes to the development of
HAD not only by injuring and killing existing neurons but also
by preventing potential repair mechanisms in the CNS
(Figure 2).

Mechanisms of Neuronal Injury and Death
in HAD

How HIV infection results in neuronal injury as well as
neurocognitive and motor impairment continues to remain a
controversial topic. While there is general agreement that HIV
does not infect neurons, the primary cause of the neuronal
damage remains in question. There is evidence to support
multiple theories for neuronal injury by various viral proteins,
including Tat, Nef, Vpr and the Env proteins gp120 and gp41.4

These findings have led to at least two different theories on
how HIV results in neuronal injury in the brain. The theories
can be described as the ‘direct injury’ hypothesis and the
‘indirect’ or ‘bystander effect’ hypothesis. These two theories
are not mutually exclusive, and the available data support a
role for both, although an indirect form of neurotoxicity seems
to predominate.4,9,107

The theory that HIV proteins can directly injure neurons
without requiring the intermediary function of non-neuronal
cells (microglia and/or astrocytes) is supported by experi-
ments showing that viral envelope proteins are toxic in serum-
free primary neuronal cultures63 and in neuroblastoma cell
lines.108 In these experimental paradigms, the impact of
neurotoxic cytokines and EAAs secreted from non-neuronal
cells is minimized because serum-free neuronal cultures
contain few if any non-neuronal cells, and neuroblastoma
lines do not contain cells of other phenotypes. The HIV coat
protein gp120 interacts with several members of the chemo-
kine receptor family (see above), and the direct form of HIV-
induced neuronal injury may be mediated by chemokine
receptor signaling. Indeed, experiments aimed at blocking
chemokine receptor signaling can in some cases prevent HIV/
gp120-induced neuronal apoptosis.83,109 Additionally, nano-
molar concentrations of gp120 have been reported to interact
with the glycine binding site of the N-methyl-D-aspartate-type
glutamate receptor (NMDAR),110 suggesting another me-
chanism by which HIV/gp120 may have a direct effect on
neuronal cell death. The HIV-protein Tat (HIV/Tat) can be
taken up into PC12 cells by a receptor-mediated mecha-
nism64 and may also have a direct effect on neurons by
potentiating the response to excitotoxic stimuli.111 Experi-
ments using cultured hippocampal neurons revealed that the
HIV-protein Vpr (HIV/Vpr) may be directly neurotoxic through
formation of a cation-permeable channel.112 However, all of
these in vitro findings must be interpreted in the context of the
limitations of the experimental paradigm and concentration of
HIV proteins employed. Most of the experimental results
described above were obtained in the absence of non-
neuronal cells and therefore a predominantly indirect effect
would not be detected. In addition, the concentrations of HIV
proteins employed were frequently well above the picomolar
or lower range thought to be present in the brain or CSF from
patients with HAD.

Figure 2 Interference of HIV-1/gp120 with the function of neural progenitor
cells. Exposure to chemokines, SDF-1 and Eotaxin, or HIV-1/gp120 of mouse or
human NPCs reduces proliferation and promotes quiescence. ApoE3 inhibits
these effects on NPCs. NPCs express nestin and show decreased proliferation
as judged by decreased BrdU incorporation. However, NPCs do not undergo
apoptosis, as evidenced by lack of TUNEL staining and nuclear condensation
under the same conditions105,106 (S Okamoto, S McKercher, M Kaul and SA
Lipton, unpublished)
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Apoptotic neurons do not colocalize with infected microglia
in HAD patients,113 supporting the hypothesis that HIV
infection causes neurodegeneration through the release of
soluble factors. Therefore, the propensity for cell–cell inter-
actions mandates that disease pathogenesis in vitro be
approached in a ’mixed’ neuronal/glial primary culture system
that recapitulates the type and proportion of cells normally
found in the intact brain (Figure 1). Systems designed to study
the effect of soluble factors released from microglia have
included mixed cerebrocortical cultures from human fetal
brain directly infected with HIV,113 severe combined immuno-
deficiency (SCID) mice inoculated with HIV-infected human
monocytes,114 and mixed rodent cerebrocortical cultures
exposed to picomolar concentrations of the envelope protein
HIV/gp120.81,115,116

Using such in vitro models, we and others have found
evidence for a predominantly indirect neurotoxic effect that
occurs due to the response of non-neuronal cells to HIV
infection or shed HIV proteins, as described previously. Much
of the data supporting the theory of indirect neuronal injury
stem from experiments designed to examine the toxicity of
HIV envelope proteins or supernatants of infected macro-
phages.13,117,118 Picomolar concentrations of HIV/gp120
induce injury and apoptosis in primary rodent and human
neurons.83,113,115,117 In our hands, the predominant mode of
HIV/gp120 neurotoxicity to cerebrocortical neurons requires
the presence of macrophages/microglia.15,81 Indeed, HIV-1-
infected or gp120-stimulated mononuclear phagocytes re-
lease neurotoxins that stimulate the NMDAR, as described
earlier. NMDAR antagonists can ameliorate neuronal cell
death in vitro due to HIV-infected macrophages or purified
recombinant gp120,77,119,120 and in vivo in gp120 transgenic
mice.121

Excessive stimulation of the NMDAR induces several
detrimental intracellular signals that contribute to neuronal
cell injury and subsequent death by apoptosis or necrosis,
depending on the intensity of the initial insult (Figure 3).62 If the
initial excitotoxic insult is fulminant, for example, in the
ischemic core of a stroke, the cells die early from loss of ionic
homeostasis, resulting in acute swelling and lysis (necrosis). If
the insult is more mild, as seen in several neurodegenerative
disorders including HAD, neurons enter a delayed death
pathway known as apoptosis.62 Neuronal apoptosis after
excitotoxic insult involves Ca2þ overload, activation of p38
MAP kinase and p53, release of cytochrome c and other
molecules such as apoptosis-inducing factor (AIF) from
mitochondria, activation of caspases, free radical formation,
lipid peroxidation and chromatin condensation.36,82,122–124

Activated caspase-3 and p53 are prominently detected in
neurons of brains from HAD patients, and, in vitro, p53 is
indispensable in neurons (and microglia) for HIV-1/gp120 to
cause neurotoxicity.82,125

The scaffolding protein PSD-95 (postsynaptic density-95)
links the principal subunit of the NMDAR (NR1) with nNOS, a
Ca2þ -activated enzyme, and thus brings nNOS into close
proximity to Ca2þ via the NMDAR-operated ion channel.126

Excessive intracellular Ca2þ overstimulates nNOS and
protein kinase cascades with consequent generation of
deleterious levels of free radicals, including reactive oxygen
species (ROS) and NO.127 NO can react with ROS to form

cytotoxic peroxynitrite (ONOO�).127 However, in alternative
redox states, NO can activate p21ras128 and inhibit cas-
pases129 via S-nitrosylation (transfer of the NO group to
critical cysteine thiols), thereby attenuating apoptosis in
cerebrocortical neurons. Oxidative processes and cell stress
are also reflected by changes to the cellular lipid metabolism,
and an increase in ceramide, sphingomyelin and hydroxy-
nonenal has been implicated in the neurotoxic pathways
associated with HAD.130

In addition to the intracellular effects of NO and oxidative
stress, we have recently identified an extracellular proteolytic
pathway to neuronal injury mediated by these effectors. In this
pathway, S-nitrosylation (transfer of NO to a critical cysteine
thiol group) and subsequent oxidation serve to activate
MMP-9 and possibly other MMPs.131 Proteolytically active
MMP-9 induces and promotes neuronal death presumably
by disrupting the cellular mechanism(s) that allow essential
attachment to the extracellular matrix and neighboring
neurons.
Furthermore, we have found that neurons exposed to HIV/

gp120 and grown in mixed cerebrocortical cultures containing
astrocytes and microglia demonstrate release of mitochon-
drial cytochrome c, caspase activation, chromatin condensa-
tion and apoptosis, which is blocked by inhibition of the p38
MAP kinase.81,125

In addition to chemokines and EAAs, HIV-infected or
gp120-activated microglia also release inflammatory cyto-
kines, including TNF-a and IL-1b.46,132 Among other actions,
both of these cytokines stimulate release of L-cysteine from
macrophages, and pharmacologic blockade of IL-1b or
antibody neutralization of TNF-a prevents this release.60

Under physiological or pathophysiological conditions, L-
cysteine can stimulate NMDARs and lead to neuronal
apoptosis.60 TNF-a is capable of stimulating apoptosis in
human neurons,133,134 but an indirect route of injury cannot be
excluded. Expression of TNF-a and its receptor are elevated
in brains from patients with HAD.46 Experiments aimed at
addressing the question of interactions between neurotoxins
associated with HAD have revealed that TNF-a and HIV/Tat
synergize to promote neuronal death, and this effect is
prevented by antioxidants.135 It remains possible that TNF-a
can activate caspases within neurons via TNF-a receptor-1
(TNFR1), since TNFR1 is found on at least some neurons,
and it can trigger caspase-8 activation. Indeed, we have found
that antibody neutralization of TNF-a or inhibition of caspase-8
prevents the neurotoxicity of HIV/gp120 in cultured cerebro-
cortical neurons,125 and caspase-8 activity can directly or
indirectly activate caspase-3, leading to apoptosis. These
findings suggest that inflammatory cytokines, including TNF-a
and IL-1b, may have important synergistic roles in HIV-
associated neuropathology.4,60,134,136

Transgenic (tg) mice expressing HIV-1/gp120 in their CNS
manifest neuropathological features that are similar to the
findings in brains of AIDS patients, including reactive
astrocytosis, increased number and activation of microglia,
reduction of synapto-dendritic complexity, loss of large
pyramidal neurons,137 and induction of MMP-2.138 In addition,
these gp120 tg mice display significant behavioral deficits,
such as extended escape latency, and reduced swimming
velocity and spatial retention.139 In gp120 tg mice,
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neuronal damage is ameliorated by the NMDAR antagonist
memantine.121 Memantine-treated gp120 tg and non-tg
control mice retain a density of presynaptic terminals and
dendrites that is similar to untreated non-tg/wild-type controls
but significantly higher than in untreated gp120 tg animals.121

This finding confirms the hypothesis that the HIV-1 surface
glycoprotein is sufficient to initiate excitotoxic neuronal injury
and death. It also shows that an antagonist of NMDAR
overstimulation can ameliorate HIV-associated neuronal
damage in vivo.140

Macrophages and Neuronal Injury in HAD

Macrophages play a pivotal role, although somewhat para-
doxical, in the pathobiology of HAD.4,141,142 Under steady-
state conditions, mononuclear phagocytes, macrophages and
microglia act as scavengers and sentinel cells, nonspecifi-
cally eliminating foreign material, and secreting trophic
factors critical for maintenance of homeostasis within the
CNS microenvironment.83,143–146 These protective functions,
however, can evolve into destructive ones. A number of

Figure 3 Cellular signaling in HAD – pathways engaged in neuronal injury and apoptosis. (Middle panel) Neuronal signaling in HAD: Overstimulation of the NMDAR is
triggered by neurotoxins released from HIV-infected or immune-stimulated macrophages/microglia and by impaired clearance (or release) of glutamate that under
normal conditions would have been taken up by astrocytes. Consequently, excessive Ca2þ influx into neurons triggers activation of p38 MAPK and p53, mitochondrial
Ca2þ overload and cytochrome c (cyt c) release, free radical generation (nitric oxide [NOK] and reactive oxygen species [ROS]), caspase activation, and ultimately
apoptosis. NMDARs are physically tethered to neuronal nitric oxide synthase (nNOS), facilitating its activation. NO passing out of the cell may activate MMPs and trigger
an extracellular proteolytic pathway to neuronal injury. Inside the cell, the Bcl-2 family members Bad, Bax and Bid promote apoptosis mediated by glutamate, ROS and
TNF-a/TRAIL, respectively. Bcl-2 prevents apoptosis, apparently by attenuating cytochrome c release and ROS production. Activation of the p38 MAPK pathway by a
Ca2þ -mediated mechanism and by oxidative stress may lead to phosphorylation/activation of transcription factors involved in apoptosis, such as p53. Stimulation of the
a-chemokine receptor CXCR4 can also induce several pathways in neurons, including activation of p38 MAPK, which leads to apoptosis. In contrast, activation of the b-
chemokine receptor CCR5 initiates an as yet uncharacterized neuroprotective pathway that interferes with toxicity triggered by HIV/gp120 or excessive stimulation of
NMDARs. The chemokine fractalkine (Fkn) is released from neurons subsequent to excitotoxic injury, and may represent feedback signaling onto non-neuronal cells.
(Left panel) Microglial/macrophage signaling in HAD: HIV/gp120 (gp) interacts with chemokine receptors CXCR4 or CCR5 in conjunction with CD4 to stimulate or infect
(if the entire virus is present) microglia and macrophages. Natural ligands of CXCR4 (i.e., the a-chemokine SDF-1) and CCR5 (i.e., the b-chemokines MIP-1b and
RANTES) interfere with HIV/gp120 binding and signaling. However, only the b-chemokines can prevent the neurotoxic effect of activated microglia and macrophages.
Neurons release the d-chemokine fractalkine (Fkn), which activates microglia. Hence, Fkn may mediate communication between neurons and glia. The HIV envelope
protein gp120 triggers a signaling pathway that involves p38 MAPK, a pivotal factor in immune stimulation of macrophages that in turn activates the transcription factor
MEF2C, and directly or indirectly also p53. HIV/gp120 induces the release of neurotoxic substances, including EAAs, arachidonic acid and related molecules such as
PAF, which engenders neuronal glutamate release. Furthermore, the HIV-1/gp120 also induces production of TRAIL and release of inflammatory cytokines, such as
TNF-a. Inflammatory cytokines can activate adjacent microglia/macrophages and astrocytes, and thus indirectly contribute to brain injury. (Right panel) Astrocyte
signaling in HAD: Astrocytes express the HIV coreceptors CXCR4 and CCR5 in addition to other chemokine receptors, but lack CD4. Therefore, astrocytic reactivity may
be influenced primarily by natural ligands of chemokine receptors. However, via these chemokine receptors, astrocytes may possibly also be stimulated by a CD4-
independent effect of HIV/gp120. Astrocytes are activated by inflammatory cytokines, including TNF-a, IL-1b and interferon-g (IFN-g). Exposure to arachidonic acid
released from macrophages/microglia and cytokine activation results in impaired glutamate uptake, increased glutamate release and induction of iNOS, leading to
release of potentially neurotoxic NO. TNF-a, released from macrophages/microglia, and SDF-1 stimulate astrocytes to release glutamate. TNF-a also promotes
expression of the astrocytic fractalkine (Fkn) receptor CX3CR1. Stimulation of CX3CR1 on astrocytes induces release of a soluble factor that triggers microglial
proliferation. The figure is modified from Kaul and Lipton199
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neurotrophins are secreted by macrophages.97 These factors
include, but are not limited to, brain-derived neurotrophic
factor (BDNF),147 insulin-like growth factor (IGF)-2,148 b-
nerve growth factor (bNGF),149 transforming growth factor
beta (TGF-b),150 neurotrophin-3 (NT3)151 and glial-derived
neurotrophic factor (GDNF).152 Clearly, a dysregulation of
macrophage neurotrophic factors by viral infection and/or
immune activation may occur during disease. This dysregula-
tion may be as important as the production of neurotoxins for
eliciting neuronal damage. Additionally, some neurotrophic
factors are regulated by cytokines. For example, TNF-a (a
candidate HIV-1-induced neurotoxin) produced by immune
competent microglia can play a neurotrophic role by inducing
biologically active TGF-b.150 TGF-b is a protective cytokine for
mammalian neurons, particularly in protection against gluta-
mate neurotoxicity, hypoxia and gp120-mediated neural
injury.153 This cytokine also affects long-term synaptic
facilitation.141

HIV establishes a latent and persistent infection within
macrophages.8 Themajority of HIV within the CNS appears to
be localized within perivascular and blood-derived paren-
chymal brain macrophages and microglia.8 Astrocytes,
oligodendrocytes and brain endothelial cells are rarely
infected, if at all.154 As a result of viral infection and resultant
immune activation, macrophages produce and release a
variety of neurotoxins within the brain.4,155,156 These products
comprise not only viral proteins, such as gp120,115 gp41157

and Tat,158 but also host cell-encoded products including
platelet-activating factor (PAF),159 glutamate,49 arachidonic
acid and its metabolites,160 proinflammatory cytokines, such
as IL-1b, TNF-a, TNF-related apoptosis-inducing ligand
(TRAIL),136,161 quinolinic acid,48,162 NTox47 and NO157

among others. In this manner, macrophages, which were
once pillars of the immune system, are now responsible for
tissue damage, although it is still unclear how macrophages
evolve from producing neurotrophins to producing neurotox-
ins. Perhaps, HIV-1 infection and immune activation induce a
transition between neurotrophic and neurotoxic activities. In
any case, it seems that activation of p53 in microglia plays a
crucial role for neurotoxicity to occur upon exposure of the
cells to HIV-1/gp120.82

TRAIL

Recent data suggest that specific subsets of peripherally
activated monocytes may preferentially enter the brain and
cause disease.9,163 The neurotoxicity of these subsets may
be enhanced not only by changes in functional properties but
also by the upregulation of specific cell-surface factors. One
such factor is TRAIL: in a model using NOD-SCID mice and
HIV-infected human peripheral blood mononuclear cells, it
was shown recently that addition of lipopolysaccharide (LPS)
causes the infected human cells to infiltrate the murine brain
and to cause neuronal apoptosis. This effect was not only
specific for macrophage-tropic HIV-1 but was also prevented
by a neutralizing anti-TRAIL antibody.164 These findings
strongly suggested a role for TRAIL in the induction of
neuronal death by infected human macrophages. However,

even though TRAIL has been reported to induce apoptosis in
brain cells,165 it remains to be shown whether or not killing of
neurons occurs as a consequence of a direct or indirect
interaction.
TRAIL is a type II integral membrane protein. It is a member

of the TNF superfamily and is closely related to FAS ligand.166

TRAIL interacts with at least five unique receptors found on a
variety of cell types. TRAIL receptor 1 and 2 (TRAIL-R1
and TRAIL-R2) have death domains and induce cellular
apoptosis following ligand binding.167 TRAIL-R3 and TRAIL-
R4, however, do not possess these domains and instead act
as decoy receptors.168 The fifth soluble TRAIL receptor is
osteoprotegerin.169

TRAIL and Apoptosis Signaling

TRAIL receptor-mediated signaling events leading to apop-
tosis can be divided into two distinct pathways, involving either
mitochondria (intrinsic) or death receptors (extrinsic)170 (for
review, see Green171). The mitochondrial pathway is initiated
through various stress signals that damagemitochondria. Bcl-
2 family proteins, including antiapoptotic members, that is,
Bcl-2 and Bcl-XL, and proapoptotic members, that is, Bax and
Bak, play a critical role in this pathway.171 The BH3-only Bcl-2
family proteins, such as Bid, Bad, Bim and PUMA, serve as
sentinels to these stress signals. They are activated through
various means, including transcriptional activation, post-
translational modification, proteolytic cleavage, etc., during
apoptosis.172

In the death receptor (extrinsic) pathway, it has been
suggested that during the activation of death receptors DR4
(TRAIL R1) and DR5 (TRAIL R2) by TRAIL, the receptor
undergoes oligomerization upon activation, at which time the
adapter protein Fas-associated death domain (FADD) is
recruited. The receptor–FADD complex then recruits procas-
pase-8, which together form the death-inducing signaling
complex (DISC) where procaspase-8 is activated.173 Depend-
ing on the cell type, active caspase-8 can directly lead to the
activation of downstream effector caspases, including cas-
pase-3, -6 and -7.174

While the death receptor (extrinsic) pathway and mitochon-
drial (intrinsic) pathway for apoptosis are capable of operating
independently, accumulating evidence suggests that cross-
talk between the two pathways exists in cells.171 Recently,
Deng et al.170 demonstrated that mitochondrial events are
required for TRAIL-mediated apoptosis using human colon
cancer cells. They discovered that the reason for this
requirement is the presence of negative regulation of the
caspase cascade by XIAP, a widely expressed inhibitor of
apoptosis protein (IAP) member. Binding of mitochondrially
released Smac (also known as DIABLO) to XIAP antagonizes
the caspase–XIAP interaction, thereby promoting
apoptosis.175 It remains to be shown to what degree these
pathways to cell death are operative in the brains of
AIDS patients, but we observed in vitro that HIV-1/gp120
activated both the extrinsic and intrinsic pathways to neuronal
apoptosis.125
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Potential Strategies for Prevention or
Therapy of HAD

Presently, an effective pharmacotherapy for HAD is not
available. Previous approaches to cope with HAD reflect the
challenging complexity inherent in the treatment of patients
with AIDS (reviewed by Melton et al.176 and Clifford177).
Previous and current therapeutic approaches include various
anti-retroviral compounds, alone or in combination, such as
Zidovudine, Didanosine, Zalcitabine, and Stavudine. Of
these, however, only Zidovudine has been shown to cross
the BBB to some extent. Zidovudine has a beneficial effect on
HAD but the effect is not long lasting. The other antiretroviral
drugs may not penetrate the brain sufficiently to eradicate the
virus in the CNS. Thus, an adjunctive treatment besides
antiretroviral drugs is needed.
Based on the evolving pathogenesis of HAD described

above, several potential therapeutic strategies to attenuate
neuronal damage are worth exploring. Among others, agents
warranting consideration include NMDAR blockers, cyto-
kines, chemokines, chemokine and cytokine receptor antago-
nists, p38 MAPK inhibitors, caspase inhibitors and
antioxidants (free radical scavengers or other inhibitors of
excessive NO or ROS).
NMDAR antagonists have been shown to attenuate

neuronal damage due to either HIV-infected macrophages
or HIV/gp120, both in vitro and in vivo. The open-channel
blocker, memantine, prevents excessive NMDAR activity
while sparing physiological function.119,178 Also, unlike other
NMDAR antagonists tested in clinical trials to date, meman-
tine has proven both safe and effective in a number of phase
III clinical trials for Alzheimer’s disease and vascular
dementia. The results of a large, multicenter NIH-sponsored
clinical trial using this agent in patients with HAD has
suggested some benefit, and improved second-generation
drugs are currently under development. Previous, small
clinical trials of a voltage-activated calcium channel blocker,
nimodipine, and a PAF inhibitor suggested some therapeutic
benefit but were not conclusive.16,179,180 An additional clinical
trial using the antioxidant drug selegiline is aimed at
combating the effects of excitotoxicity by minimizing the
impact of free radicals.181

Mood changes reaching the level of disorders are one of
many problems associated with HIV-1 disease. Sodium
valproate (VPA), which functions as a mood stabilizer, might
be valuable as a part of the therapeutic armamentarium for
HAD. Therapeutic concentrations of VPA (0.6mM) resulted in
(1) significant increases in both nuclear and cytoplasmic b-
catenin protein levels; (2) decreases in the level of protein a-
kinase C and epsilon isozymes182 and (3) downregulation of
myristoylated alanine-rich C-kinase substrate (MARCKS)183

through inositol-independent mechanisms.184 VPA-mediated
neuroprotection involves diminished activity of GSK-3b via the
inhibition of phosphorylation of b-catenin (Ser33,37) and tau
(Ser202 and Thr181),185 as well as the overall increase in total
b-catenin protein levels (Figure 3). Hyperphosphorylation of
b-Catenin and tau directly affects neuronal apoptosis and
dysfunction.186 b-catenin levels are markedly reduced in
some neurodegenerative diseases, and decreased b-catenin
signaling seems to increase neuronal vulnerability to apopto-

sis. Thus, inhibition of GSK-3b may serve to offset the b-
catenin destabilization, thereby reducing the vulnerability of
affected neurons to apoptosis. In our studies using a model of
HIV encephalitis (HIVE) in SCID mice, we found that
hyperphosphorylation of b-catenin occurs in the basal ganglia
concurrently with gliosis and neuronal degeneration.185

Similarly, specific phosphorylated isoforms of tau have been
associated with neurodegenerative disorders, including AD187

and, more recently, also HAD.185,188 In our model, highly
phosphorylated tau at Ser202 and Thr181 is consistently
associated with neuronal injury in SCID mice with the
neuropathologic features of HIVE. Both tau and b-catenin
may represent important physiologic targets of GSK-3b
contributing to neuronal loss and neuronal damage in the
context of HAD.185 The results support the hypothesis that
downstream targets for pathologically activated GSK-3b,
including b-catenin and tau, might be a major event in the
pathogenesis of HIVE or HAD. Furthermore, our data raise the
possibility that VPA inhibits hyperphosphorylation of b-catenin
and tau through the regulation of GSK-3b, thus promoting
neuronal survival. In connection with the same potentially
protective mechanism, lithium has been suggested as a
treatment for HAD because it similarly affects the phospho-
inositol-3 kinase (PI3K)/Akt (protein kinase B)/GSK-3b
pathway.189

Previously, we have shown that the cytokine erythropoietin
(EPO) may not only be effective in treating anemia but also in
protecting neurons, since it prevents NMDAR-mediated and
HIV-1/gp120-induced neuronal death inmixed cerebrocortical
cultures.190 Since EPO is already clinically approved for the
treatment of anemia, human trials of EPO as a neuroprotec-
tant from HIV-associated dementia may be expedited.191

Additionally, EPO plus IGF-1 act synergistically as neuropro-
tectants by activating the PI3K/Akt pathway;192 so the use of
these two cytokines in conjunction has been advocated for
clinical trials.191

Chemokine receptors allow HIV-1 to enter cells and as such
are major potential therapeutic targets in the fight against
AIDS.75,193 Antagonists of CXCR4 and CCR5 inhibit HIV-1
entry and are being assessed in clinical trials.75,193 However,
the benefit of inhibitors of chemokine receptors for HIV-
associated neurological complications, although likely, re-
mains to be shown.9 Interestingly, as alluded to above, certain
chemokines have been shown to protect neurons, even
though the virus does not productively infect neurons. In
particular, b-chemokines (acting on CCR5 receptors) and
fractalkine prevent gp120-induced neuronal apoptosis in
vitro,81,109,194 and, similarly, some b-chemokines can
ameliorate NMDAR-mediated neurotoxicity.194 Additionally,
HIV-infected patients with higher CSF concentrations of the
b-chemokines MIP-1a/b and RANTES performed better on
neuropsychological measures than those with low or unde-
tectable levels.195 These findings support the hypothesis that
selected b-chemokines may represent a potential treatment
modality for HAD.
Neuronal apoptosis appears to be one of the hallmarks of

neurodegenerative diseases including HAD.53 Since cas-
pases carry out the apoptotic program, caspase inhibitors
may be helpful in preventing detrimental neuronal loss.196 As
detailed above, caspases have been implicated in HIV-related
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neuronal damage. However, caspase inhibitors are not
currently available in a form deliverable to the CNS or targeted
to degenerating neurons. With further advances in the
caspase field, such drugs may be developed. Care must be
exerted to avoid inhibitors that promote oncogenic processes
or interrupt physiologic circuits.
Finally, p38 MAPK inhibitors have been shown to reduce or

abrogate neuronal apoptosis due to excitotoxicity, HIV/gp120
exposure or a-chemokine (SDF-1) toxicity.81,197 The pharma-
ceutical industry is currently developing p38 inhibitors for a
variety of inflammatory- and stress-related conditions, such
as arthritis, and this may expedite trials for CNS indications
such as HAD.
The most recent experimental evidence regarding HAD

indicates that synergy between excitatory and inflammatory
pathways to neuronal injury and death may, at least in part, be
common to other CNS disorders including stroke, spinal cord
injury and Alzheimer’s disease. It seems likely therefore that
the development of new therapeutic strategies for HAD will
impact several other neurodegenerative diseases and possi-
bly vice versa.
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