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Abstract
A single mouse click on the topic tumor necrosis factor (TNF)
in PubMed reveals about 50 000 articles providing one or the
other information about this pleiotropic cytokine or its
relatives. This demonstrates the enormous scientific and
clinical interest in elucidating the biology of a molecule (or
rather a large family of molecules), which began now almost
30 years ago with the description of a cytokine able to exert
antitumoral effects in mouse models. Although our under-
standing of the multiple functions of TNF in vivo and of the
respective underlying mechanisms at a cellular and molecular
level has made enormous progress since then, new aspects
are steadily uncovered and it appears that still much needs to
be learned before we can conclude that we have a full
comprehension of TNF biology. This review shortly covers
some general aspects of this fascinating molecule and then
concentrates on the molecular mechanisms of TNF signal
transduction. In particular, the multiple facets of crosstalk
between the various signalling pathways engaged by TNF will
be addressed.
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General aspects of TNF biology

The principle of an antitumoral response of the immune
system in vivo has been recognized already about 100 years
ago by the physician William B Coley. About 30 years ago, a
soluble cytokine termed tumor necrosis factor (TNF) has been
identified that is produced upon activation by the immune
system, able to exert significant cytotoxicity on many tumor
cell lines and to cause tumor necrosis in certain animal model
systems. In 1984, the cDNA of TNF was cloned, the structural
and functional homology to lymphotoxin (LT) a was realized,
and several years later, two membrane receptors, each
capable of binding both cytokines, were identified. Subse-
quently, it was recognized that TNF is the prototypic member
of a large cytokine family, the TNF ligand family.

TNF is primarily produced as a type II transmembrane
protein arranged in stable homotrimers (Figure 1).1,2 From
this membrane-integrated form the soluble homotrimeric
cytokine (sTNF) is released via proteolytic cleavage by the
metalloprotease TNF alpha converting enzyme (TACE).3 The
soluble 51 kDa trimeric sTNF tends to dissociate at concen-
trations below the nanomolar range, thereby losing its
bioactivity. The 17 kDa TNF protomers are composed of two
antiparallel b-pleated sheets with antiparallel b-strands,
forming a ‘jelly roll’ b-structure, typical for the TNF ligand
family, but also found in viral capsid proteins.4

The members of the TNF ligand family exert their biological
functions via interaction with their cognate membrane
receptors, comprising the TNF receptor (TNF-R) family.5

The members of the TNF-R family contain one to six cysteine-
rich repeats in their extracellular domain, typically each with
three cysteine bridges.6 Two receptors, TNF-R1 (TNF
receptor type 1; CD120a; p55/60) and TNF-R2 (TNF receptor
type 2; CD120b; p75/80) bind membrane-integrated TNF
(memTNF) as well as soluble TNF (sTNF), but also the
secreted homotrimeric molecule lymphotoxin-a (LTa). The
functional role of LTa in man is largely undefined and will not
be discussed in this review. TNF-R1 and TNF-R2 each
contain four cysteine-rich repeats in their extracellular
domains and form elongated shapes, which interact with the
lateral grooves of the trimeric ligand formed between each two
of its three protomers.6,7 Ligand-dependent trimerization of
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the receptors was long considered as the key event for signal
initiation. However, initial receptor activation now appears
more complicated, because the distal cysteine-rich domains
of TNF-R1 and TNF-R2 mediate homophilic interaction of
receptor molecules in the absence of ligand. These preligand
binding assembly domains (PLAD)8 may therefore keep
receptors in a silent, homomultimerized status and antagonize
spontaneous autoactivation, the latter being frequently
observed upon overexpression. Accordingly, ligand binding
to the preformed TNF-R complex either induces an activating
conformational change of an a priori signal competent
receptor complex or it allows the formation of higher-order
receptor complexes, which acquire signal competence.

TNF-R1 is constitutively expressed in most tissues,
whereas expression of TNF-R2 is highly regulated and is
typically found in cells of the immune system. In the vast
majority of cells, TNF-R1 appears to be the key mediator of
TNF signalling, whereas in the lymphoid system TNF-R2
seems to play a major role. Generally, the importance of TNF-
R2 is likely to be underestimated, because this receptor can
only be fully activated by memTNF, but not sTNF.9 The cause
for this difference is not fully understood yet, but the different
stabilities, that is half-lifes, of the individual ligand/receptor
complexes may contribute to this.9,10 The extracellular
domains of both receptors can be proteolytically cleaved,
yielding soluble receptor fragments with potential neutralizing
capacity.11 Owing the lack of cooperativity in ligand binding,
however, the affinities of soluble receptors are low compared
to their membrane-integrated forms. TNF neutralizing agents
for clinical use that were constructed on the basis of the
soluble receptors have therefore been engineered as dimeric
IgG fusion proteins.12 Like TNF, TNF-R2 is cleaved by
TACE.13 The processing enzyme(s) responsible for TNF-R1
cleavage is still undefined, but TNF-R1 cleavage is obviously
an important step in the regulation of cellular TNF respon-
siveness, as cleavage-resistant TNF-R1 mutations are linked
with dominantly inherited autoinflammatory syndromes (TNF-
R1-associated periodic syndromes; TRAPS).14

The intracellular domains of TNF-R1 and TNF-R2 that do
not possess any enzymatic activity define them as represen-
tatives of the two main subgroups of the TNF-R family, the
death domain-containing receptors and the TRAF-interacting
receptors, respectively. TNF-R1 contains a protein–protein
interaction domain, called death domain (DD).15 The DD can
recruit other DD-containing proteins and couples the death
receptors to caspase activation and apoptosis.16 In addition,
as described in detail below, TNF-R1 is also a potent activator
of gene expression via indirect recruitment of members of the
TNF receptor-associated factor (TRAF) family. TNF-R2
directly recruits TRAF2, induces gene expression and
intensively crosstalks with TNF-R1.

TNF is mainly produced by macrophages, but also by a
broad variety of other tissues including lymphoid cells, mast
cells, endothelial cells, fibroblasts and neuronal tissue. Large
amounts of sTNF are released in response to lipopolysac-
charide and other bacterial products. In concert with other
cytokines, TNF is considered to be a key player in the
development of septic shock.17 Whereas high concentrations
of TNF induce shock-like symptoms, the prolonged exposure
to low concentrations of TNF can result in a wasting

syndrome, that is, cachexia. This can be found for example
in tumor patients. Indeed, the biological mediator of cachexia,
originally described in an animal model of trypanosoma
infection and thus called cachectin, has been later unravelled
as TNF.18

TNF exerts an extreme spectrum of bioactivities and most
cells show at least some TNF responsiveness. In general,
TNF may be considered to represent a major proinflammatory
mediator, with an optional capacity to induce apoptosis. In
(patho)physiological situations, TNF shows a remarkable
functional duality, being strongly engaged both in tissue
regeneration/expansion and destruction. One important ex-
ample is the role of TNF in neurodegeneration. CNS-specific
overexpression of TNF in transgenic mice revealed infiltrating
CD4+ and CD8+ T cells, astrocytosis, microgliosis and
demyelination.19 Although from these transgenic animal
models, TNF and TNF-R signalling has been implicated as
important for the onset of demyelinating disease, TNF must
also be recognized as a reactive cytokine that is upregulated
in response to traumatic and excitotoxic injury of the brain,
thus potentially exerting protective functions. Of interest, TNF
receptors can have counteracting functions, at least in
neuronal tissues, as recently demonstrated in a murine model
of retinal ischemia, where TNF-R1 apparently aggravated
tissue destruction, whereas TNF-R2 was protective via
activation of PKB/Akt.20 In a different transgenic model, a
targeted AU repeat deletion of 69 bp in the 30untranslated
region of the TNF gene resulted in an enhanced stability of
TNF mRNA and elevated protein level in fibroblasts, but not in
a significant change in TNF responses to LPS challenge.
These animals develop clinical signs of arthritis and colitis.21

However, when this modified TNF transgene is crossed into
TNF-R2-deficient mice, a near to normal phenotype is
observed, pointing to a significant contribution of this receptor
for the development of chronic inflammatory diseases.21 A
further example for the two-edged role of TNF in vivo is liver
regeneration after partial hepatectomy. In TNF-R1-deficient
animals, hepatocyte DNA synthesis is severely impaired,
indicating that TNF signalling through TNF-R1 is involved in
liver regeneration.22 In contrast, in models of acute hepato-
toxicity TNF acting via TNF-R1 appears as a key player in liver
destruction.23 Owing to its strong proinflammatory and
immunostimulatory activities, TNF is, in general, an important
mediator of progression of many autoimmune diseases.
Important examples are rheumatoid arthritis and inflammatory
bowel disease (Crohn’s disease), where significant clinical
improvement can be achieved when patients are treated with
TNF neutralizing agents.24,25 Thus, the question as to
whether TNF contributes to or protects from tissue damage
in acute or chronic diseases is probably wrongly posed. The
accumulating data rather suggest a very differential TNF
action and indicate that tissue type, precise cellular context
and TNF-R composition, timing and duration of TNF action are
important parameters determining the net effect of TNF action
in vivo.

The developmental role of TNF and its receptors has also
been addressed by gene targeting approaches. TNF, LTa and
LTb have been inactivated either alone or in combinations and
the respective receptors (TNF-R1, TNF-R2, LTbR) were
targeted as well. Knockout mice lacking LTbR, the receptor for
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a heterotrimeric ligand consisting of LTa and LTb, are devoid
of all lymph nodes, Peyer’s patches and gut-associated
lymphatic tissue, providing clear evidence for the essential
role of this receptor in secondary lymphoid tissue develop-
ment. Interestingly, TNF�/� and TNF-R1�/� mice share
some features of the LTbR�/� phenotype, but also reveal
unique characteristics, thus defining both redundant and
nonredundant functions for each of these molecules in lymph
node formation.26,27

Further, in full accordance with the important role of TNF as
a mediator of the innate immune system, impaired defense
against certain intracellular pathogens is observed in TNF-R1-
and TNF-deficient animals, whereas parameters of the
adaptive immune system like CD8+ T-cell cytotoxicity, mixed
lymphocyte responses, T-cell-independent B-cell response
and most parameters of T-cell-dependent B-cell response
remain grossly normal.28 TNF- or TNF-R1-deficient mice
show enhanced sensitivity when challenged with, for exam-
ple, Mycobacterium tuberculosis,29 Lysteria monocyto-
genes30 or Leishmannia major.31 In mycobacterial
infections, especially the formation of granuloma is TNF
dependent.32 TNF-R1- and TNF-deficient mice, but not TNF-
R2 knockout animals, die from a fulminant necrotizing
encephalitis when orally infected with a low-virulent strain of
Toxoplasma gondii.33 However, in other infection models,
TNF knockout mice show delayed pathological reactions
when challenged with pathogens. This has been observed for
example in rabies virus infection,34 the acute phase of
infection by Yersinia enterocolitica,35 and a model of cerebral
malaria.36 Independent from its role in host defense, TNF
might also play a role in downregulating the immune system
after a successful response.37 Together, these examples
clearly show that the specific role of TNF in infection is highly
dependent on the type of the pathogen, the general context
and stage of the infection. Very recent data from patients
with inflammatory bowel disease, who have been treated
Qwith the TNF-R2–IgG fusion protein etanercept to
antagonize TNF activity, support a crucial role of TNF in
defense against intracellular pathogens: during treatment an
exacerbation of Mycobacterium tuberculosis enteritis was
observed.38

The first described and thus the name giving action of TNF
was its antitumoral activity in mouse tumor models.39 As a
result of TNFs strong cytotoxic activity on some tumor cells in
vitro,40 TNF was initially considered as a widely applicable,
direct tumoricidal reagent. However, meanwhile it is evident
that TNF-mediated tumor rejection in vivo is dependent on a
functional immune response and most likely independent of
TNF’s capability to induce directly apoptosis in tumor target
cells.41 Moreover, systemic TNF application in humans is
limited by severe side effects, ranging from influenza-like
symptoms to the development of life-threatening symptoms of
shock.17 Nevertheless, more recent data show that TNF can
be successfully applied as a tumor therapeutic under
conditions that prevent systemic TNF action. Thus, high
concentrations of TNF in combination with the chemother-
apeutic drug melphalan, applied under isolated limb perfusion
conditions, yielded superior response rates and limb salvage
in metastatic sarcoma.42 The underlying mechanism involves
destruction of the tumor vasculature leading to a necrotic

destruction of the tumor.43 For a successful application of TNF
in other tumor entities future developments need to accom-
modate these results, aiming at genetically engineered TNF-
based constructs that display site-specific action.

TNF-induced activation of NF-jB

Nuclear factor kappa B (NF-kB) comprises a group of dimeric
transcription factors consisting of various members of the NF-
kB/Rel family. NF-kB proteins are involved in the transcrip-
tional activation of a huge number of inflammatory-related
genes in response to cytokines, for example, TNF and IL-1,
bacterial products and some forms of physical ‘stress’, for
example, UV radiation or reactive oxygen species.44 In the
recent years, it became also evident that NF-kB induces a
variety of antiapoptotic factors, which is of importance for the
regulation of TNF-R1-mediated triggering of the apoptotic
machinery of the cell (see below). In mammalian cells, five
members of the NF-kB/Rel family are known: NF-kB1/p50,
which is constitutively processed from its precursor p105 by
proteolysis, NF-kB2/p52, which is inducibly processed from
its precursor p100, c-Rel, RelA/p65 and RelB.45 The NF-kB/
Rel proteins share the conserved Rel homology domain
(RHD), which mediates dimerization, DNA binding, nuclear
localization and interaction with members of the I-kB protein
family – the inhibitory counterparts of the NF-kB/Rel
proteins.45 The I-kB family is characterized by six or seven
ankyrin repeats and includes I-kBa, I-kBb, I-kBg, I-kBe, Bcl-3
and the precursors of NF-kB1 and NF-kB2, p105 and p100,
respectively, that contain seven carboxy-terminal ankyrin
repeats in addition to their amino-terminal RHD. I-kBa, I-kBb
and I-kBe also contain an amino-terminal regulatory domain
that allows stimulus-induced degradation of these proteins.46

When functions of NF-kB or I-kB are described in the following
paragraphs, in most cases, we refer to data obtained with p65/
p50 heterodimers and the I-kBa isoform.

In an uninduced state, cellular I-kB proteins interact with
NF-kB dimers to mask their nuclear location sequence,
thereby retaining the ternary complex of NF-kB and I-kB in
the cytoplasm. TNF, like a variety of other inducers, can
stimulate proteolytic degradation of I-kB by the proteasome,
thus liberating NF-kB and allowing nuclear translocation.46

For full activation, NF-kB must be further modified by
phosphorylation of its subunits. Several kinases including
mitogen activated protein kinases (MAPK) and protein kinase
C (PKC) isoforms have been implicated in this secondary
modification of NF-kB activity (see below). The level at which
the various I-kB degradation-inducing signalling pathways
converge is the activation of a multicomponent protein kinase
complex, the I-kB kinase (IKK) complex. The activated IKK
complex is able to phosphorylate the regulatory domain of I-
kB and this marks it for recognition by an SKP1-Cullin-Fbox-
type E3 ubiquitin–protein ligase complex. The IKK complex is
believed to comprise a heteromer of two related I-kB kinases,
called IKK1 and IKK2 (IKKa and IKKb),47–49 the regulatory
protein NEMO (Fip-3, IKKg, IKKAP)50–54 and a homodimer of
the heat shock protein-90 (Hsp90), as well as two or three
molecules of the Hsp90-asscociated cdc37 protein.55 NEMO-
deficient cells are completely impaired in NF-kB activation by
all inducers investigated so far56–58 suggesting that this
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noncatalytic component has an essential role in the IKK
complex. Analyses of IKK1- and IKK2-deficient mouse
embryonic fibroblasts revealed that both I-kB kinases are
nonredundant in their function and contribute differently to
TNF-induced NF-kB activation (Table 1). IKK2-deficient mice
are strongly impaired in TNF-induced I-kB phosphorylation,
but nevertheless show residual DNA binding of NF-kB,
significant production of NF-kB-driven genes and almost
unchanged p65 phosphorylation after TNF stimulation.59,60 In
contrast, TNF-induced I-kB phosphorylation and DNA binding
of NF-kB were found to be unaffected in IKK1 deficient mouse
embryonic fibroblasts in two studies,61,62 but another study
reported significant reduction in TNF-induced NF-kB binding
and inhibition of NF-kB target genes.63 There is also evidence
that IKK1, but not IKK2, has a role in a second pathway
leading to the activation of NF-kB2 by promoting its proces-
sing from the p100 precursor. Interestingly, this pathway is
independent of I-kB degradation,64,65 However, there is yet no
evidence that this pathway plays a role in TNF signalling. In
good agreement with an essential role of the IKK complex in
TNF-induced NF-kB activation is that all effects of this
response are completely abrogated in mouse embryonic
fibroblasts (MEFs) of IKK1–IKK2 double-deficient mice.66 In
particular, this indicates that the recently identified IKK-related
kinases TBK/T2K/NAK67–69 and IKKe70 cannot substitute for
IKK1 and IKK2 in TNF-signalling.

The initial event in TNF-induced activation of the IKK
complex is ligand-induced reorganization of preassembled
TNF-R1 complexes (Figure 1). The intrinsic property of the
death domain of TNF-R1 to self-aggregate and therefore to
signal independent of ligand is masked in preassembled TNF-
R1 complexes by binding of the silencer of death domain
(SODD) protein.71 After ligand binding, SODD dissociates
from TNF-R1 complexes and the death domain-containing
adaptor protein TRADD is recruited to the death domain of
TNF-R1 by homophilic interactions of the death domains.72

TNF-R1-bound TRADD then serves as an assembly platform
for binding of TNF receptor-associated factor (TRAF) 2 and
the death domain-containing serine–threonine kinase RIP
(receptor-interacting kinase).73 TRAF2 is a member of the
phylogenetically conserved TRAF protein family.74 The
characteristic feature of the TRAF proteins is a carboxy-
terminal homology domain of about 180 aa, the TRAF domain,
which mediates a wide range of protein–protein interactions
including binding to MAP3 kinases, various regulators, and
non-death domain-containing members of the TNF receptor

family.74 With the exception of TRAF1, all TRAF proteins have
an amino-terminal RING finger, which is followed by five or
seven evenly spaced zinc fingers.74 The association of
TRAF2 to TNF-R1-bound TRADD is mediated by the
interaction of its carboxy-terminal TRAF domain with the
amino-terminal death domain of TRADD.75 In contrast, RIP is
recruited to the DD of TNF-R1-bound TRADD via its carboxy-
terminal death domain.73 RIP is also able to interact with
TRAF2 via its amino-terminal kinase domain and its central
intermediate domain.73 However, studies with TRAF2- and
RIP- deficient mouse embryonic fibroblasts have shown that
both molecules can be independently recruited into the TNF-
R1 signalling complex.76 Moreover, these studies showed that
TRAF2 is sufficient to recruit the IKK complex into the TNF-R1
signalling complex whereas RIP is necessary for the activa-
tion of the IKKs.76 Although RIP is able to interact with
NEMO51,77 in the yeast two-hybrid system, studies with
RIP-deficient cells showed that this interaction is dispensable
for recruitment of the IKK complex to TNF-R1.76 Thus, a
minimal model of a TNF-induced NF-kB activation comprises
TRAF2, acting as a receptor proximal adaptor (via TRADD
binding) that recruits the IKK complex to the TNF-R1
signalling complex, thereby enabling RIP to activate the
kinases of the IKK complex (Figure 2). However, there are
several lines of evidence that the interplay of TRAF2, RIP
and the IKK complex is more complicated. In RIP-deficient
cells, similar amounts of IKK1 and IKK2 are found in the
TNF-R1 signalling complex compared to wt cells, but the
amount of coprecipitated NEMO is significantly reduced.78

These data, together with the finding that increasing amounts
of TRAF2 interfere with the interaction of IKK1 and NEMO,78

suggest that TRAF2 binding weakens the coherence of the
IKK complex. Remarkably, RIP is able to compensate the
TRAF2 inhibitory effect on the IKK1/2–NEMO interaction78

and possibly stabilizes the IKK complex after TRAF2-
mediated recruitment to the TNF-R1 signalling complex. A
puzzling detail in this regard is the observation that in RIP-
deficient cells a significantly increased amount of TRAF2 and
TRADD is recruited to TNF-R1 after TNF treatment76,78

without an effect on the recruitment of IKK1/2.78 Over-
expression studies73 and reconstitution experiments in RIP-
deficient cells76,79 suggest that the kinase activity of RIP is
dispensable for IKK activation. It is conceivable that RIP
activates the IKKs indirectly via mitogen-activated protein
kinase kinase kinase MEKK3, as RIP can interact with
MEKK3, and MEKK3-deficient mouse embryonic fibroblasts
show strongly reduced NF-kB activation in response to TNF
and IL1.80 However, marginal TNF-induced NF-kB activation
has been reported for MEKK3�/� mouse embryonic fibro-
blasts pointing to the possibility that other kinases can
substitute to some extent for MEKK3.80 Indeed, a possible
candidate is MEKK1, which is able to interact with TRAF2 as
well as with RIP after TNF stimulation in human HEK293
cells and is activated by TNF in a RIP-dependent manner
in the human T-cell line Jurkat.81,82 Inconsistent with a role
of MEKK1 in TNF-induced NF-kB activation are findings
showing that this response is normal in MEKK1-deficient
embryonal stem cells as well as in fibroblasts and macro-
phages derived from MEKK1-deficient mice.83,84 However, it
cannot be ruled out that this discrepancy is based on cell- or
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Table 1 Phenotype of knockout mice and/or cells deficient in TNF signalling-related molecules

Knockout Phenotype Reference

A20 Development of severe inflammation and cachexia 121
High sensitivity against TNF and LPS
Prolonged TNF-induced activation of NF-kB and JNK
but no effect on IL1-induced NF-kB activation

aSMase Partly reduced TNF-induced cell death 306

ASK1 Normal overall appearance 144
Strongly reduced TNF-induced apoptosis, but no changes in TNF-induced caspase-8
activation
Rapid (30’) TNF-induced activation of JNK and p38 is normal but prolonged activation is
reduced
Fas-induced activation of JNK and p38 is reduced

Caspase-8 Impaired TNF-induced cell death in caspase-8 deficient Jurkat cells 199,191
Embryonic lethal around 12.5 days postcoitum Impaired apoptosis-induction by TNF-R1-,
Fas and DR3

Cathepsin B Partly reduced TNF-induced cell death in hepatocytes 314

GSK-3 Embryonic lethality around 13.5–14.5 days postcoitum caused by TNF-induced liver
degeneration

114

Reduced TNF- and IL1-dependent NF-kB activation
Increased TNF sensitivity

FADD Embryonic lethal around 10–12 days postcoitum 193,194,198
Strongly reduced TNF-induced apoptosis Impaired TNF-induced activation of acidic
SMase

FAN Normal overall appearance 170
No TNF-dependent activation of neutrale SMase but normal activation ERKs

FLIP Embryonic lethal around 10.5–11.5 days postcoitum Impaired cardiac development 327
MEFs highly sensitive towards TNF-induced apoptosis

JunD MEFs show increased TNF-induced cell death 328

IKKa Abnormalities in limb, skeleton and skin development 61–63,66,92
Reduced TNF-induced NF-kB activation in MEFs

IKKb Embryonic lethal around 13–14 days postcoitum (liver degeneration) 59,66,329,330
Rescued by crossing with TNF-R1 -/-
Strongly reduced TNF and IL1-induced NF-kB activation in MEFs
Increased TNF sensitivity in thymocytes

NEMO/IKKg Impaired TNF-induced NF-kB activation in a IKKg-deficient B-cell line 50,56,57, 58
Embryonic lethality around 13–14 days postcoitum (liver degeneration)
Skin lesions in heterozygous female mice
Impaired TNF-induced NF-kB activation in MEFs

IKK1+IKK2 Impaired TNF-induced NF-kB activation in MEFs 66

MKK3 Normal overall appearance 163
TNF- but not IL1-induced p38 activation was reduced
TNF-induced JNK activation was unchanged

MKK4 Moderate reduction in TNF-induced JNK activation 139

MKK7 Strong reduction in TNF-induced JNK activation 139

MKK4 + MKK7 p38 activation by TNF is largely unaffected 139

MEKK1 Normal TNF- and IL1-induced activation of JNK and NF-kB in fibroblasts and macrophages 84

MEKK3 Embryonic lethal around 10.5 –11 days postcoitum Impaired NF-kB activation by TNF and
IL1

80

NIK Normal TNF signalling 331
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species-specific distinct roles of various MAP3K in TNF
signalling.

Although TRAF2 has been mainly recognized as a physical
link between the TNF-R1 signalling complex and the IKK
complex it seems possible that this molecule has additional
functions in NF-kB activation. Indeed, the TRAF2-related
TRAF6 molecule is able to interact with PKCz, an atypical
protein kinase C,85 which has also been implicated in TNF-
induced NF-kB activation.86 Analyses of cells derived from
PKCz-deficient mice point to a cell type-specific and poten-
tially multi-functional role in TNF-mediated NF-kB activation
(Table 1). While in lung tissue of PKCz-deficient mice IKK
activation by TNF is impaired, embryonal fibroblasts from the
same animals show IKK activation similar to WT cells.86

Nevertheless, DNA binding of NF-kB and transcription of an
NF-kB-driven luciferase reporter gene have been found to be
significantly reduced also in this cell type. A possible
explanation for these observations could be the capability of
PKCz to phosphorylate p65 in its RHD, which is responsible
for DNA binding.86,87 In this regard, PKCz resembles the
catalytic subunit of protein kinase A (cPKA), which can be
released from an I-kB/NF–kB/cPKA complex in response to
LPS and which is involved in NF-kB activation by phosphory-
lation of RHD serine 276.88 In this case, phosphorylation of
serine 276 is necessary to allow recruitment of the transcrip-
tional coactivator CPB/p300. Interaction of CPB/p300 and p65
is mediated by two motifs within p65, one within the RHD
comprising phosphorylated serine 276 and one unphosphory-
lated site in the C-terminal region of p65, which is only
accessible upon phosphorylation of serine 276.88 The role of

PKCz-dependent phosphorylation of p65 would then be
clearly distinct from the action of some other kinases, which
stimulate NF-kB activity by phosphorylation of p65 in its
carboxy-terminal transactivation domain without affecting
DNA binding (see below). The cell type-restricted NF-kB
deficiency in knockout cells could be because of the functional
redundancy of PKCz and the closely related atypical PKCl,
which display different expression patterns. Indeed, PKCz as
well as PKCl interact with the IKK complex after TNF
stimulation89 and both kinases indirectly interact with RIP
via the adaptor protein p62.90 The complex role of PKCz
exemplifies that activation of the IKK complex, degradation of
I-kB, nuclear translocation of p65 and DNA binding may not
suffice for efficient transcription of NF-kB responsive genes.
To obtain full NF-kB function, additional stimulation of the
transactivation potential of p65 by phosphorylation at serines
529 and 536 appears to be required. This can be accomp-
lished by constitutively active kinases like casein kinase II,
which is able to phosphorylate serine 529 of p65 after its
release from I-kB,91 or by the serine–threonine kinase Akt
upon TNF stimulation via an IKK1-dependent pathway.92 TNF
can stimulate Akt in a cell type-specific manner via the
phosphoinositide-3OH kinase (PI3K) pathway.93–101 In agree-
ment with a role of the PI3K/Akt pathway in TNF-induced NF-
kB activation, it has been found that the dual specificity
phosphatase PTEN, which dephosphorylates and inactivates
phosphatidylinositol 3-phosphate, inhibits TNF-induced tran-
scription of NF-kB-driven genes.102,103 However, although
these studies partly used the same experimental models,
there are considerable discrepancies regarding the steps in

Table 1 (continued)

Knockout Phenotype Reference

PARP Normal overall appearance 106,332
Increased TNF sensitivity
Reduced TNF-dependent NF-kB activation

PKC-zeta Normal overall appearance, but reduced number of Peyer’s patches 86
Strongly reduced activation of NF-kB (DNA binding and reporter gene) by TNF and IL1 but
normal IKK activation in some cell types
Enhanced TNF sensitivity of MEFs but no liver apoptosis

RIP Early (3 days) postnatal lethality 162
Massive thymic cell death at 18 days postcoitum
MEFs highly sensitive against TNF-induced apoptosis
Impaired TNF-dependent NF-kB activation but normal NK activation

RelA Embryonic lethal around 15 days postcoitum 333,334
Impaired TNF-induced NF-kB activation in MEFs
MEFs show increased sensitivity against TNF-induced apoptosis

T2K Embryonic lethal around 15 days postcoitum 68
Rescued by crossing with TNF-R1-/-
TNF sensitivity is unchanged in MEFs
Impaired TNF-induced upregulation of NF-kB-dependent genes despite normal NF-kB
translocation

TRAF1 Enhanced TNF-R2 signalling 335

TRAF2 Impaired TNF-induced JNK activation 138

TRAF5 No phenotype in TNF signalling 336

TRAF2+TRAF5 Impaired TNF-induced NF-kB activation 337
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NF-kB activation that are affected by PTEN-dependent
inhibition of Akt. Two recent studies using IKK1- and IKK2-
deficient mouse embryonic fibroblasts reported different
results concerning the role of IKK1 and IKK2 in Akt-mediated
transactivation of the p65 subunit of NF-kB.92,104 In both
studies, IKK2 was necessary for Akt-dependent p65 transac-
tivation, whereby in one study myristoylated and therefore
constitutively active Akt (Myr-Akt) and in the other study TNF
was used to induce transactivation of p65.92,104 However, in
the study of Sizemore et al.104 TNF-induced transactivation
was in addition dependent on IKK1 and the Akt pathway,
whereas overexpressed Myr-Akt was able to transactivate
p65 in IKK1-deficent cells.104 In agreement with an important
role of IKK1 in TNF-induced transactivation of p65, another
report using IKK1-deficient mouse embryonic fibroblasts
shows that TNF-induced upregulation of the endogenous
NF-kB target genes I-kBa, IL6 and M-CSF is impaired in these
cells.63

Another level of complexity in TNF-induced NF-kB activa-
tion became apparent from the analyses of mice deficient for
poly(ADP-ribose) polymerase 1 (PARP-1; see Table 1), a
nuclear DNA repair enzyme activated by DNA strand
breaks.105 Unexpectedly, PARP-1�/� mice were highly
resistant to LPS-induced endotoxic shock because of an
impaired NF-kB response towards the inflammatory media-
tors LPS and TNF.106,107 While degradation of I-kB and
translocation of NF-kB were normal in PARP-1-deficient cells,
DNA-binding and transcriptional activation were found to be
severely reduced.106,107 Subsequent in vitro studies have
then shown that PARP-1 interacts with both p65 and p50 by
two independent domains.108–110 However, there are contra-
dictory data concerning the importance of the PARP-1
enzymatic activity for NF-kB activation.108,109,111–113 TNF is
able to activate PARP-1 via the production of ROS, which in
turn causes PARP-inducing DNA damage. However, it is an
open question whether TNF-induced PARP-1 activation via
ROS is a prerequisite for its role in TNF-induced NF-kB
activation or whether PARP-1 exerts its NF-kB-supporting
capability independent of prior activation. Interestingly, TNF-
induced PARP-1 activation by the production of ROS and
subsequent DNA damage has also been implicated in the

regulation of the balance between apoptosis and necrosis
(see below). It will be interesting to see whether the roles of
PARP-1 in NF-kB activation and in cell death induction are
related in some way.

Remarkably, mouse embryonic fibroblasts from mice
deficient for GSK3b or TBK/T2K/NAK, two kinases previously
not thought to be involved in TNF signalling, also exert
reduced NF-kB-dependent transcription, but normal nuclear
translocation and DNA binding in response to TNF, suggest-
ing a role of these kinases in p65 transactivation, also.68,114

Kinase-inactive mutants of TBK/T2K/NAK failed to interfere
with TNF-induced NF-kB activation, thus the role of TBK/T2K/
NAK in TNF-dependent NF-kB activation might be rather of
structural nature than implying its enzymatic capabilities.67,69

Nevertheless, a more complex, maybe multifunctional, role of
TBK/T2K/NAK in NF-kB activation is possible as this kinase is
able to phosphorylate IKK269 and its kinase activity is
necessary for NF-kB activation by overexpression of TANK.67

However, the molecular mechanisms underlying the effects of
GSK3� and TBK/T2K/NAK on TNF-induced NF-kB activation
are not defined yet.

While the pathways leading from TNF/TNF-R1 interaction
to activation of the IKK complex and NF-kB are comparably
well understood, the mechanisms involved in the termination
of the TNF-induced NF-kB response are rather unclear. There
is evidence that TNF-selective, but also rather globally acting
feedback mechanisms are utilized to terminate TNF-induced
NF-kB activation. Complexes of soluble TNF and TNF-R1 are
rapidly internalized115,116 opening the possibility that degrada-
tion in secondary lysosomes contributes to termination of TNF
responses. By contrast, TNF-induced internalization seems to
be required for efficient stimulation of some (JNK, aSMase,
apoptosis), whereas other signalling pathways (nSMase,
ERK, NF-kB) initiated by TNF-R1 are independent of
internalization.117

NF-kB-dependent upregulation of NF-kB inhibitory
proteins is another powerful mechanism involved in feedback
inhibition of the NF-kB pathway. In particular, I-kBa and A20
have been identified as NF-kB inducible genes that are
required for the postinduction repression of TNF-induced
NF-kB activation.118–120 As I-kBa targets free p65/p50
subunits, it inhibits NF-kB activation by a variety of stimuli.
In contrast, analyses of mouse embryonic fibroblasts of
A20-deficient fibroblasts point to a more selective role.
Mouse embryonic fibroblasts deficient for A20 show
persistent activation of the IKK complex and prolonged
DNA binding of NF-kB in response to TNF, whereas
termination of the IL1-induced NF-kB activation remains
unaffected.121 In contrast to the TNF-selective effects
observed in A20-deficient cells, biochemical and transient
overexpression studies point to a more general regulatory role
of A20 affecting various MAP3K associated with NF-kB
activation.122–124 A20 can interact with TRAF2120 as well as
NEMO.77 In agreement with the IKK inhibitory role of A20
and its recruitment to the TNF-R1–IKK signalling complex
it has been found that the capacity of the IKK complex,
precipitated from whole cell lysates, to phosphorylate I-kB
is greater than that of the TNF-R1-associated IKK complex.77

Interestingly, A20 promotes the phosphorylation of IKK1/2
in the context of the TNF-R1–IKK signalling complex.77
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IKK2 undergoes progressive autophosphorylation at
multiple serine residues in its carboxy-terminal end,
thereby decreasing its kinase activity.125 It is therefore
tempting to speculate that A20 stabilizes or promotes this
autoinhibitory state of IKK2.

Stimulation of TNF-R1 can lead to a strong activation of the
apoptotic pathway, in particular when protein synthesis is
globally reduced or when the NF-kB pathway is compromised.
Therefore, the fact that the NF-kB pathway targets, among
others, a variety of antiapoptotic genes is of special interest.
Indeed, there is growing evidence that the NF-kB and the
apoptotic pathway are tightly connected. This aspect of TNF
signalling is therefore discussed below in the context of TNF-
induced apoptosis.

TNF-induced activation of JNK and
p38-MAPK

TNF regularily induces the activation of kinases of the stress-
activated protein kinase (SAPK)/c-Jun N-terminal kinase
(JNK) group.126 The JNK isoforms are distantly related to
mitogen-activated protein kinases (ERKs) and, like ERKs, are
activated by dual phosphorylation on tyrosine and threonine
residues. Upon activation, JNK kinases translocate into the
nucleus and enhance the transcriptional activity of transcrip-
tion factors, for example, c-Jun and ATF2, by phosphorylation
of their amino-terminal activation domains.127 c-Jun belongs
to a group of basic region-leucine zipper proteins that dimerize
to form transcription factors commonly designated as
activator protein-1 (AP-1).127 However, JNK kinases have
also functions not related to c-Jun phosphorylation. The AP-1
proteins have an important role in a variety of cellular
processes including proliferation, differentiation and induc-
tion, as well as prevention of apoptosis.127 Although TNF-
induced JNK activation and c-Jun phosphorylation have been
implicated in upregulation of collagenases,128 the chemoat-
tractant MCP-1,129 E-selectin130 and in the regenerative
response to liver injury,131,132 the importance of JNK activa-
tion for TNF-mediated cellular responses is otherwise poorly
understood.

TNF-induced activation of the JNK pathway occurs through
a nonapoptotic TRAF2-dependent pathway (Figure 3).133–138

It is evident from knockout mice and mice overexpressing a
dominant-negative form of TRAF2 that this adaptor is
necessary for coupling the JNK pathway to TNF-R1.137,138

Analyses of MKK7- and MKK4- deficient mouse embryonic
fibroblasts suggest that MKK7 is essentially involved in TNF-
induced JNK activation, whereas MKK4 contributes to optimal
TNF-mediated JNK activation, but is not sufficient to evoke
this response alone.139 The distinct roles of MKK7 and MKK4
in TNF-induced JNK activation most likely reflect the different,
but complementary substrate specificities of these kinases.
MKK7 preferentially phosphorylates threonine 180 of JNK,140

whereas MKK4 mainly phosphorylates tyrosine182.139 In this
regard, it has been shown that MKK7 is able to activate WT
JNK, but to a lesser degree also mutated JNK harboring a
Tyr182Phe substitution, whereas MKK4 is only able to
activate wt JNK.139 Therefore, TNF-induced activation of
JNK seems not to depend completely on dual JNK phosphory-

lation. Thus, phosphorylation of threonine 180 by MKK7 could
be sufficient to activate JNK in response to TNF and MKK4
could enhance TNF–MKK7-mediated JNK activation by
phosphorylation of tyrosine 182. Remarkably, TNF activates
MKK7 but not MKK4,141 suggesting that the basal activity of
MKK4 is sufficient to allow maximal activation of JNK in
response to TNF. While knockout mice have clearly proven
the pivotal roles of TRAF2 and MKK7 for TNF-R1-mediated
JNK activation, the nature and function of the MAP3K, which
must fill the gap between TRAF2 and MKK7, has not been
satisfactorily identified yet. Based on their ability to interact
with TRAF2, the JNK-inducing MAP3 kinases MEKK1 and
ASK1 potentially have a role in TNF-induced JNK activa-
tion,81,142,143 but studies in mice deficient for these kinases
could not support an essential role in TNF-induced JNK
activation.84,144 However, as discussed in detail later, a role of
ASK1 in prolonged TNF-induced JNK activation, which occurs
under apoptotic conditions, is supported by the ASK1 knock-
out mice. It is also possible that a role of ASK1 and/or MEKK1
in TNF-induced JNK activation is masked by redundancies.
Indeed, biochemical data indicate that several parallel path-
ways link TNF-R1/TRAF2 to MKK7 and JNK.

There is evidence that TRAF2 mediates TNF-induced JNK
activation through interaction with members of the germinal
center kinase (GSK) family (Figure 3). The GCK family
comprises a group of serine–threonine kinases homologous
to the yeast Ste20p kinase that can be subdivided into two
groups according to the structure of their carboxy-terminal
regulatory domain. The carboxy-terminal regulatory domain of
group I GCKs contains two or more PEST motifs, binding sites
for SH3-domains and a highly conserved stretch of about 350
aa comprising a leucine-rich amino-terminal part and a so-
called C-terminal region.145 Group I GCKs act as proximal
activators of MAPK pathways by phosphorylation of
MAP3Ks.145 Group II GCKs are homologous in their amino-
terminal kinase domain to group I GCKs but differ drastically
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from these molecules in the architecture of the carboxy-
terminal regulatory domain. In particular, GCKs of the group II
do not stimulate any of the currently known MAPK path-
ways.145 Several group I GCKs (germinal center kinase
(GCK),146 GCK-like kinase (GLK),147 GCK-related
(GCKR),148 HPK/GCK-like kinase (HGK),149 NIK-like em-
bryo-specific kinase (NESK),150 TRAF2 and Nck-interacting
kinase (TNIK)151) have been implicated in TNF-mediated JNK
activation because of the following findings: they become
activated by TNF (NESK, HGK, GCKR, GLK), interact with
TRAF2 (TNIK, GCK, GCKR152) and dominant-negative
mutants of these kinases interfere with TNF-induced JNK
activation (NESK, HGK, GCKR). The group I GCKs seem to
channel stimulation of TNF-R1 to the JNK cascade by
concomitant interaction with TRAF2 and MEKK1 and phos-
phorylation-dependent activation of the latter.146,153 GCK-
induced MEKK1 activation correlated with the enhancement
of the oligomerization of MEKK1,153 a process, which on its
own is sufficient to drive the activation of MEKK1-dependent
signalling pathways.81,153 The suggested role of group I GCKs
in TNF-mediated JNK activation is mainly based on correla-
tion (TNF/TRAF2 activates GCKs – GCKs activate JNK) or
transient overexpression experiments with dominant-nega-
tive mutants, which are difficult to interpret in terms of causal
relations, considering that related molecules may compete for
common endogenous upstream or downstream signalling
components. Additional studies, especially analyses of knock-
out mice, will therefore be necessary to figure out the relative
(and maybe cell-type specific) contribution of the various
GCKs to TNF-induced JNK activation.

A second GCK-independent pathway used by TNF-R1 to
activate JNK is based on the production of reactive oxygen
species (ROS) and activation of apoptosis signal-regulating
kinase-1 (ASK1), a member of the MAP3K family (Figure
3).154 Stimulation of TNF-R1 can result in the TRAF2-
dependent increase of ROS of mitochondrial origin by yet
poorly understood mechanisms.155 Stimulation of TNF-R1
induces interaction of ASK1 with TRAF2 and leads to
activation of ASK1 by antioxidant-sensitive mechan-
isms.156,157 In agreement with the latter, thioredoxin (Trx)
has been identified as an ASK1 interacting protein.157 Trx
contains a redox-active center composed of two cysteine
residues and can exist in an oxidized form containing a
disulfide-bridge in the active center (Trx-S2) or in a reduced
form with two free SH-groups (Trx-(SH)2). Trx can be oxidized
by various ROS and thereby protects to some extent from the
cytotoxic effects of TNF,158 which is partly based on the
production of these molecules. Under reducing conditions, Trx
exists in its Trx-(SH)2 form and is able to bind and inhibit
ASK1.157 The generation of ROS leads to the oxidation of Trx-
(SH)2 to Trx-S2, which is no longer able to interact with
ASK1.157 In addition, it has been shown that TNF-induced
ASK1 activation and TRAF2–ASK1 interaction require prior
dissociation of Trx-ASK1 complexes.159 Thus, a model
obtrudes in which TNF-induced generation of ROS leads to
the oxidation of Trx, release of ASK1 from inhibitory Trx-ASK1
complexes and subsequent formation of JNK-inducing
TRAF2–ASK1 complexes.159 Remarkably, TRAF2-depen-
dent activation of ASK1 correlates with oligomerization of
the kinase.156 Thus, both TRAF2-GCK-mediated and

TRAF2–ASK1-mediated activation of JNK seem to involve
oligomerization-dependent activation of MAP3Ks. TRAF2 has
therefore a dual role in TNF-induced ASK1 activation, firstly as
an inducer of Trx-ASK1 dissociation by ROS induction and
secondly, as an activating oligomerization scaffold for ASK1.
In agreement with the existence of parallel TRAF2-depen-
dent, JNK-activating pathways (TRAF2–GCKs–MEKK1 ver-
sus TRAF2–ROS–ASK1), it has been found that Trx-(SH)2

completely blocks TRAF2–ASK1 interaction, but has only a
partial inhibitory effect on TRAF2-mediated JNK activation.159

TNF not only robustly activates the JNK-inducing MAP
kinase cascade, but also the p38-MAPK signalling cascade.
Indeed, many aspects of TNF-induced JNK activation hold
also true for TNF-induced activation of the p38–MAPK
cascade (Figure 3). Both, JNK and p38, are transiently
activated by TNF, but show prolonged activation under
apoptotic conditions. Moreover, TRAF2, ASK1 and MEKK1,
which have been implicated in TNF-induced JNK activation,
are also strong inducers of the p38–MAPK pathway.146,154,160

Nevertheless, there is clear evidence that upstream and
downstream of the MAP3 kinase level differences exist
between JNK and p38 activation. For example, the various
GCKs, which have been implicated in TNF-induced activation
of JNK, are unable to stimulate the p38–MAPK cas-
cade.147,149–151,161 In addition, it has been shown that a
deletion mutant of RIP, lacking its intermediate domain,
interferes with TRAF2-mediated activation of p38–MAPK, but
failed to inhibit TRAF2-induced JNK activation.146 Thus, TNF
may signal p38–MAPK activation via an axis comprising
TRAF2 and RIP, whereas JNK activation occurs via TRAF2–
GCKs–MEKK1/ASK1. In agreement with the latter, TRAF2
knockout mice are impaired in TNF-induced JNK activa-
tion,138 whereas RIP-deficient mice appear normal in this
regard.162 Unfortunately, studies concerning activation of
p38–MAPK in mice deficient for TRAF2 and/or RIP have not
been published yet.

Mouse embryonic fibroblasts of MKK3-deficient mice show
a strong reduction in TNF-induced activation of p38–MAPK,
but no effect on TNF-induced JNK activation (Table 1).163 In
agreement with the important role of the p38-MAPK signalling
pathway as a mediator of inflammatory processes, TNF-
induced production of IL1 and IL6 is almost completely
blocked in MKK3�/� mouse embryonic fibroblasts. However,
the exact mode of action of p38–MAPK in TNF-induced
upregulation of IL1 and IL6 is not clear yet. p38–MAPK may
act by activation of various transcription factors including
ATF2, CHOP, CREB and ELK1164 but it could also enhance
TNF-induced production of IL1 and IL6 by increasing the
stability of the respective mRNAs via activation of MAP
kinase-activated protein kinase 2.165,166 Remarkably, p38–
MAPK has also been discussed as a mediator of NF-kB
transactivation.167,168 To which extent the various effector
mechanisms of p38–MAPK are of importance in TNF-induced
production of inflammatory cytokines remains to be seen.

TRADD-independent signalling pathways

A number of proteins have been described to interact with
TNF-R1 outside its death domain, some of them with
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undefined impact on TNF signals. The WD-repeat protein
FAN (factor associated with neutral sphingomyelinase activa-
tion) has been identified by its binding capacity to the
membrane-proximal region of TNF-R1.169 FAN interacts with
one of its five WD-repeats with a nine AA stretch of TNF-R1
located directly in the membrane-proximal region of the DD
and appears involved in the activation of the neutral
sphingomyelinase (nSMase).169,170 Defects in cutaneous
barrier repair have been found in mice with a genetic deletion
of FAN.170 The role of nSMase-derived ceramide is largely
undefined, especially as at least in some cells nSMase
becomes only activated very transiently during only the first
3 min of TNF stimulation.171 A proapoptotic function of
nSMase has been described in one report using a domi-
nant-negative form of FAN,172 whereas ERK1/2 and phos-
pholipase A2 activation are not linked to FAN.173 Other
proteins binding TNF-R1 upstream the DD include a
regulatory component of the 26S proteasome, called TRAP2,
55.11 or p97, that binds to aa residues 234–308 of TNF-R1,
and which might be involved in TNF-mediated regulation of
proteasomal functions.174–176 In addition, the mitochondrially
localized Hsp75, also called TRAP1, has been found to bind
TNF-R1 membrane proximal of the DD.177,178

TNF-induced activation of the classical MAP kinases, that is
the ERKs, is, in most cells, absent or only moderate when
compared to TNF activation of the stress-activated protein
kinases179 (see above) or compared to activation of ERKs via
mitogenic receptor tyrosine kinase (RTK) pathways.180

Rather, a negative feedback of TNF on ERK activation
triggered by RTK signals has been observed in several cell
lines.181 TNF-R2 can also induce JNK, but not ERKs.182 A
protein containing a domain with low DD homology termed
MADD or Rab3-GAP binds to the DD of TNF-R1 and is able to
activate MAP kinase pathways.183,184 Various splice variants
of MADD exist which are also termed DENN.185 Further, the
adapter protein Grb2 binds to a PLAP motif of TNF-R1,
thereby potentially linking this receptor via SOS to Ras, c-Raf
and the ERKs.186 This signal, however, appears not sufficient
to efficiently activate the MAP kinases, as FAN/nSMase-
derived ceramide acting on the ceramide-activated protein
kinase (CAP-K;187) is necessary to fully activate c-Raf.186

Consistent with these data, survival of osteoclasts by TNF is
mediated by Akt and ERKs and can be blocked by inhibitors of
the ERK-activating kinase MEK-1, but also by a peptide
interfering with FAN/PLAP domain interaction.188

Molecular mechanisms of TNF-induced
cell death

Like other death receptors, TNF-R1 is able to signal cell death
via its cytoplasmic death domain in a variety of cell lines.
However, in vivo TNF-induced apoptosis seems to have only
a minor role compared to its overwhelming function in the
regulation of inflammatory processes. Indeed, the high
systemic toxicity of TNF is caused by cellular mediators like
NO and not related to its apoptosis-inducing capability.189

Remarkably, mice deficient in p65 or other components
involved in TNF-induced NF-kB activation are embryonally
lethal or die early after birth because of massive TNF-

dependent liver failure (Table 1). Thus, the death-inducing
capability of TNF is masked in vivo by concomitant activation
of NF-kB. Although other death receptors are also able to
activate the NF-kB pathway, they show prominent apoptotic
functions in vivo. Moreover, in some experimental situations
Fas-mediated NF-kB activation becomes apparent only when
parallel apoptosis induction is blocked.190 Thus, while in TNF-
R1 signalling NF-kB activation dominates over apoptosisin-
duction, in Fas or TRAIL-R1/2 signalling apoptosis-induction
is dominant over NF-kB activation. As outlined below in detail,
the apoptotic and the NF-kB pathway are inhibitory to each
other. Thus, there is a situation that both pathways are
connected by self-amplifying inhibitory circuits that may be
responsible for the predominant in vivo specification of TNF-
R1 as an NF-kB-inducing receptor and of Fas as a death-
inducing receptor.

There is genetic evidence from knock-out mice and
mutagenized cell lines that all death receptors investigated
so far critically depend on the death domain-containing
adaptor protein FADD and caspase-8 and -10 to induce cell
death (Table 1).191–199 In the case of Fas and the TRAIL death
receptors, a death-inducing signalling complex (DISC) that
contains FADD and caspase-8/10 has been defined by
immunoprecipitation of the endogenous molecules. Studies
with deletion mutants of Fas, FADD and caspase-8 show that
activated Fas recruits FADD by homophilic interaction of the
DD of these molecules.200 Receptor-bound FADD in turn
interacts with caspase-8/10 via the death effector domains
contained in the amino-terminal parts of both mole-
cules.201,202 There is evidence that the Fas-DISC is a
supramolecular complex of several trimeric or higher-order
Fas complexes.203 Thus, FADD-mediated recruitment brings
several caspase-8/10 molecules in close proximity and
thereby facilitates autoproteolytic activation of these pro-
teases. In contrast to Fas and TRAIL death receptors, TNF-
R1 is indirectly linked to FADD, namely by TRADD which is
also responsible for bridging TNF-R1 to TRAF2 and the IKK
complex.75 However, while several groups were able to
immunoprecipitate the TNF-R1-IKK signalling complex from
TNF-treated cells (see above), a comparable demonstration
of the TNF-R1-DISC was not successful yet. The lack of an
immunoprecipitable TNF-R1-DISC could reflect a comparably
low stability of the complex, but could also indicate that the
efficient formation of such a complex requires special, yet
poorly understood circumstances. In agreement with the
existence of mechanisms that selectively regulate the forma-
tion and/or activity of the TNF-R1-DISC, several groups have
observed that depletion of TRAF2, which is a major part of the
TNF-R1 signalling complex, but does not or only modestly
interact with Fas, sensitises cells for the apoptotic action of
TNF,204–210 whereas Fas- and TRAIL-mediated cell death
remain unaffected.205,210 A TNF-R1 selective apoptosis-
regulating process could be the TRAF2-mediated recruitment
of the antiapoptotic cIAP1 and cIAP2 proteins to TNF-
R1.210,211 cIAP1 and the closely related cIAP2 protein have
been originally identified as molecules present in the TNF-R2
signalling complex.212 Both are typical members of the
inhibitor of apoptosis protein family,213 which bind and inhibit
caspase-3 and -7 via their amino-terminal BIR (baculovirus
IAP repeat) domains,214 a structural feature common to all
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IAP family members.213 In agreement with an antiapoptotic
role of TRAF2-mediated recruitment of cIAP1 and cIAP2, it
has been found that concerted overexpression of TRAF1,
TRAF2, cIAP1 and cIAP2 efficiently interferes with TNF-R1-
induced apoptosis and activation of caspase-8.215 So, it
seems that in the TNF-R1 signalling complex TRAF2-bound
cIAP1/2 molecules are able to block activation of caspase-8,
which is independently recruited into the TNF-R1 signalling
complex via the TRADD–FADD axis and which is otherwise
no substrate for these IAP proteins.214 Depletion of cyto-
plasmic, therefore TNF-R1 accessible, TRAF2 can be
induced by stimulation of non-death domain-containing
members of the TNF receptor family able to recruit TRAF2
and to induce its subsequent proteasomal degradation.207,210

To destine TRAF2 for proteasomal degradation the molecule
has to be ubiquitinated.207,209 Indeed, additional to their
caspase inhibitory BIR domains the carboxy-terminal RING
domain of cIAP1 and cIAP2 can act as E3 ubiquitin ligase216

involved in the proteasomal degradation of caspase-3 and –
7,217 and cIAP1 and cIAP2 themselves.216 Although TRAF2
mediates recruitment of cAP1 and cIAP2 into the TNF-R2
signalling complex with comparable efficiencies,210 only
cIAP1 seems to ubiquitinate TRAF2.207 In agreement with
the hypotheses that TRAF2 depletion interferes with the
formation of the caspase-8 inhibiting TNF-R1-TRAF/IAP
complex mentioned above, it has been demonstrated that
TNF-R2 stimulation enhances TNF-R1-induced caspase-8
activation.208,210 Hence, TNF-R2-dependent enhancement of
TNF-R1-induced cell death appears to be based on two tightly
linked mechanisms: First, on competition of the two TNF-Rs
for binding of TRAF2 and the TRAF2-associated anti–
apoptotic cIAP1 and cIAP2 proteins, and second, on the
cIAP1-initiated degradation of TRAF2, which in turn enhances
receptor competition for the remaining TRAF2, cIAP1 and
cIAP2 molecules. Accordingly, cIAP1 would have an anti-
apoptotic function upon recruitment into the TNF-R1 signalling
complex, but would switch to a net proapoptotic function upon
recruitment into the TNF-R2 signalling complex.

Downstream of caspase-8 processing TNF-R1-induced
apoptosis occurs in principle via the same routes as described
for other death receptors like Fas and TRAIL-R1/2 (see the
parallel review articles). In brief, in type I cells active caspase-
8 alone is sufficient to robustly induce caspase-3 activity and
the execution phase of apoptosis (Figure 4). Thus, release of
cytochrome c from mitochondria and subsequent formation of
the caspase-3-inducing apoptosome complex are dispensa-
ble for the apoptotic process in this type of cells (see the
parallel review articles). However, in type II cells caspase-8-
mediated activation of caspase-3 is inefficient and the
apoptotic process therefore depends on a mitochondria-
dependent amplification loop (Figure 4). Small quantities of
active caspase-8 produced in type II cells are sufficient to
activate proteolytically the BH3 domain-containing Bcl2 family
member Bid.218,219 The truncated carboxy-terminal fragment
of Bid (tBid) generated this way translocates to the mitochon-
dria and promotes release of cytochrome c218,219 and Smac/
Diablo220,221 in a Bax/Bak-dependent manner.222 The release
of cytochrome c from mitochondria into the cytosol allows the
ATP-dependent formation of a caspase-3 activating ‘apopto-
some’, consisting of cytochrome c itself, Apaf-1 and caspase-

9.223 Complementary to the action of the caspase-3-inducing
apoptosome, Smac/Diablo binds and antagonizes the cas-
pase inhibitors xIAP, cIAP1 and cIAP2.220,221 Activated
caspase-3 is able to activate caspase-8224–226 thereby
creating a positive feedback loop.225,226 to the pivotal role of
the mitochondrial cytochrome c release in type II cells, these
type of cells can be experimentally distinguished from type I
cells by overexpression of Bcl-2. While in type I cells apoptosis
induction by death receptors is not sensitive towards Bcl-2
overexpression, this molecule protects type II cells from the
apoptotic effects of death receptors.227 Since the amount of
active caspase-8 seems to be critical to determine type I or
type II responsiveness and TNF-R1-mediated caspase-8
processing is less efficient compared to Fas, it seems
conceivable that the same cells could behave as a type I cell
or a type II cell, depending on the death receptor subtype, that
is Fas or TNF-R1, respectively.

cIAP1, cIAP2 and TRAF1 have been identified as NF-kB
target genes.215,228,229 Thus, ablation of the NF-kB pathway
may interfere with the action of the caspase-8 inhibitory TNF-
R1-TRAF/IAP complex and therefore sensitises for the
apoptotic action of TNF. In particular, this is in good
accordance with the increased TNF sensitivity observed in
various knock-out mice where TNF-induced NF-kB activation
is compromised (Table 1). Remarkably, the NF-kB pathway
targets also several other antiapoptotic factors, including
cFLIP,230,231 IEX-1L,232 Bfl-1/A1,233–235 XIAP,236 Bcl-Xl
234,237,238 and the TRAIL decoy receptor TRAIL-R3.239 All or
part of these genes are most likely involved in or responsible
for the variety of global, non-TNF-R1 selective anti-apoptotic
effects of NF-kB. Upregulation of NF-kB, dependent anti-
apoptotic genes seems not to be the only way by which TNF
counteracts induction of apoptosis by itself or other death
inducers. In accordance with the known anti-apoptotic proper-
ties of the PI3K/Akt pathway, caused by phosphorylation and
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depicted with solid lines. NF-kB-inducible inhibitors of the cell death network are
highlighted with gray boxes. Note that the active caspase-3 (casp.-3*) cleaves
and inhibits PARP, thereby blocking the necrotic response. Cathepsin D-
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inactivation of proteins involved in apoptosis,240–242 there is
growing evidence that the stimulation of this pathway by TNF
not only contributes to TNF-dependent NF-kB activation, but
also independently mediates some additional antiapoptotic
signals of TNF.98,100

While the NF-kB pathway negatively regulates the apopto-
tic program, ongoing apoptosis in turn interferes with the
activation of NF-kB. This is because of the caspase-mediated
cleavage of several of the components utilized by this
pathway including RIP, 243,244 TRAF1, 245 I-kB, 246 IKK2, 247

HPK1, 248 NIK,249 Akt252 as well as p50 250 and p65 250,251

themselves. Noteworthy, in most cases caspase-mediated
cleavage results in release of fragments that can act in a
dominant-negative fashion towards their noncleaved counter-
parts. Thus, caspaseaction not only reduces the amount of
signalling intermediates necessary to transduce a NF-kB
response, but also creates novel peptides that actively
interfere with NF-kB activation. While IKK2, 247 p65, 250,251

I-kB 246, Akt 252 and HPK1 248 are mainly cleaved by caspase-
3-related caspases during the effector stage of apoptosis,
NIK, 249 RIP 243,244 and TRAF1 245 are cleaved by caspase-8
during the initiator phase of death receptor-induced apoptosis.
Thus, caspase-8-generated cleavage products derived from
RIP, TRAF1 and NIK may have a special role in TNF-R1-
induced apoptosis by blocking the concomitantly induced anti-
apoptotic NF-kB response. As death receptors are in principle
able to activate both the apoptotic and the NF-kB pathway, the
regulatory network of these pathways allows a highly flexible
cellular behavior in response to stimulation of death receptors,
especially TNF-R1. Aside from NF-kB activation, stimulation
of c-Jun N-terminal kinase is a second cellular response to
TNF in common to all cell types, which could play a role in
apoptosisinduction by TNF-R1. As outlined in more detail in
the following, there is evidence for an apoptosis-related
crosstalk of the JNK pathway with both the NF-kB, and the
apoptotic pathway itself.

Although c-Jun N-terminal kinase is robustly activated by
TNF via TNF-R1 in almost every cell line investigated, the role
of JNK for TNF function, especially TNF-mediated apoptosis,
is still poorly understood. An essential role of the JNK
signalling pathway in excitotoxic stress-induced neuronal
apoptosis 253,254 and UV-stimulated apoptosis 255 has been
clearly demonstrated, in particular in studies with mouse
embryonic fibroblasts derived from JNK-deficient mice. The
proapoptotic action of JNKs seem mainly dependent on their
capability to phosphorylate c-Jun, a component of the
heterodimeric transcription factor AP-1, 255 but can also be
related to phosphorylation and inhibition of Bcl-2.256–258

Nevertheless, the JNK pathway can also have an anti-
apoptotic function, for example during neuronal development
259 or in thymocytes.260 The ambivalent function of the JNK
pathway in different apoptotic scenarios is also reflected in its
role in TNF-induced apoptosis. While mouse embryonic
fibroblasts of JNK1�/�-and JNK2�/�-deficient mice show
increased sensitivity against TNF-induced apoptosis, 261

mouse embryonic fibroblasts of mice deficient for ASK1, an
MAP3K implicated in TNF-R1-mediated JNK activation, are
significantly protected against TNF-induced cell death.144

Moreover, studies in other cell types using inhibitors of the
JNK pathway also revealed a proapoptotic function of the JNK

pathway in TNF-induced cell death.262–268 The different roles
of JNK in TNF-induced apoptosis could be partly related to
celltype- specific effects, but may also mirror that TNF
engages JNK by more than one pathway. Indeed, especially
under apoptotic conditions, TNF activates JNK, but also p38,
with biphasic kinetics.264 The first transient phase of JNK
activation is caspase-independent 269,270 and almost com-
pletely inhibited in MKK7- deficient mouse embryonic fibro-
blasts.139 In contrast, the second phase of TNF-induced JNK
activation correlates with apoptosis-induction and is blocked
by caspase inhibitors. Remarkably, mouse embryonic fibro-
blasts of mice deficient of ASK1 show reduced sensitivity
against TNF-induced apoptosis and a reduction in apoptosis-
related delayed JNK activation, but are undisturbed with
respect to transient rapid TNF-induced JNK.144 Thus, this
delayed prolonged type of JNK activation by TNF may rather
reflect a common response to the activation of the apoptotic
pathway, as described elsewhere, 271,272 than being a
genuine, direct TNF-mediated effect. Nevertheless, cas-
pase-mediated activation of JNK could trigger a self-amplify-
ing apoptotic loop, for example, by upregulation of death
ligands. In agreement with this idea, a kinase-dead mutant of
ASK1 weakens TNF-induced apoptosis.143,154,273 In addition,
it has been recently shown that ASK1 can trigger a caspase-
dependent, 274 but also a caspase-independent 275 pathway
leading to cell death. In this regard, NF-kB activation inhibits
prolonged TNF-induced JNK activation 267,268,276 and this has
been attributed to the upregulation of JNK inhibitory proteins,
XIAP1 267 in one study and GADD45b 276 in another study.
Both molecules are identified and characterized under
conditions, where TNF-induced NF-kB activation is compro-
mised in the absence of caspase inhibitors. Therefore, it is
possible that XIAP1 and GADD45� are not directly involved in
the regulation of JNK activity, but interfere with prolonged
TNF-induced and ASK1-mediated JNK activation by blocking
apoptosis and caspase activation as described above. A role
of ASK1 in the delayed phase of TNF-induced JNK activation
and apoptosis induction is also in agreement with the finding
that ASK1 is activated by reactive oxygen species (ROS).156

Indeed, the generation of ROS can have a dual role in TNF
signalling. On one hand, it can promote NF-kB activation,
which is redox-sensitive 277 but on the other hand, ROS have
also been implicated as mediators of TNF-induced apopto-
sis.278–283 Remarkably, manganous superoxide dismutase
(MnSOD), which acts as a scavenger of potentially toxic
superoxide radicals, is an NF-kB-dependent target gene of
TNF.282,283 This emphasizes again that NF-kB activation
and apoptosis signalling by TNF are tightly connected
by a regulatory network (Figure 4). ROS-generating com-
pounds can themselves induce caspase-activation and
apoptosis via the mitochondrial pathway, in the context
of TNF signalling ROS production seems to act as an
amplification mechanism.

Noteworthy, production of ROS has not only a role in
apoptosis but also in necrosis. This form of cell death is largely
independent of caspases, morphologically quite different from
apoptosis and in vivo associated with inflammation.284

Necrosis can be induced by death receptors including TNF-
R1 by a RIP-dependent pathway.285 In contrast to its role in
the NF-kB pathway, the role of RIP in induction of necron’s is
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dependent on the kinase activity of the molecule.285 As
FADD, but not caspase-8, is essentially involved in death
receptor-induced necrosis, FADD seems to be the bifurca-
tion point of death receptor-mediated apoptosis and
necrosis.285 There is evidence that death receptor-induced
apoptosis and necrosis do not simply act as parallel linear
death pathways. Under apoptotic conditions caspase-
mediated cleavage of RIP may block the necrotic pathway.
Consequently, inhibition of the FADD-caspase axis of cell
death by use of caspase inhibitors or FADD deletion mutants
lacking their DED leads to sensitiation to death receptor-
induced necrosis286–289. A pivotal role in mediating the
necrotic response has been attributed to the production of
ROS.288,290,291 How RIP is involved in the production of ROS
and how this is related to the capability of TRAF2 to induce
ROS155 is still an open question. TNF triggers oxidative stress
(see also JNK) and mitochondria-dependent production of
ROS.278,292–294 As a consequence of ROS production, DNA is
damaged leading to the activation of PARP-1. Excessive
action of PARP-1 consumes high amounts of NAD+ and leads
to ATP depletion, creating thereby conditions that favor
necrosis instead of apoptosis.295–298 Remarkably, PARP-1
is cleaved by caspases into an amino-terminal fragment
retaining DNA-binding capabilities and a carboxy-terminal
fragment without catalytic activity.299 In particular, the amino-
terminal PARP-1 fragment acts as a dominant-negative
variant for uncleaved PARP-1.299 As ATP is required for
apoptosis, PARP-1 cleavage acts as a switch between
apoptotic and necrotic cell death.300 The fact that Fas is a
more robust activator of caspase-8 compared to TNF-R1 may
explain why in some cells that undergo apoptosis in response
to Fas stimulation, TNF-R1 triggers a necrotic form of cell
death.300,301 Nevertheless, inhibition of the apoptotic pathway
can unmask the capability of Fas to trigger the necrotic
response.288,290

Several studies have implicated acidic SMase and cer-
amide release in TNF-induced cell death.171,302–304 As cells
deficient for acidic SMase are still TNF sensitive,305 TNF-
induced ceramide production seems to have no general,
obligatory role in TNF-induced cell death. Nevertheless, the
demonstration of reduced TNFsensitivity of aSMase�/�
mouse embryonic fibroblasts306 and several other studies
point to aSMase and ceramide production as celltype specific
modulatory factors of TNF-induced cell death.307 TNF-R1-
induced activation of aSMase occurs by a FADD-dependent,
but caspase-8 independent pathway.308,309 In so far the
pathway leading to aSMase activation is identical to the
receptor-proximal necrotic pathway it remains to be verified to
which extent the aSMAse pathway is related to the necrotic
response. Ceramide release by aSMase can contribute to the
activation of caspases and can, in addition, lead to the
activation of the lysosomal compartment, in particular
cathepsin D, which specifically binds ceramide.310 Although
lysosomal enzymes have been implicated in necrosis (for
review see 284) they can also activate caspases and induce
apoptosis,311 most likely via Bid cleavage.312 The potential
relevance of cathepsins for TNF-induced cell death313–315 is
most obvious for cathepsin B, as mice deficient for this
protease are resistant to TNF-mediated hepatocyte apoptosis
and liver injury.316

Mechanisms of TNF-R2-induced
apoptosis

Early studies with soluble TNF gave inconsistent results with
respect to an apoptosis-inducing capability of the nondeath
domain-containing receptor TNF-R2. 317,318,319 However, the
use of agonistic TNF-R2-specific antibodies clearly showed
that exclusive triggering of this receptor is in some cells
sufficient to induce cell death.320–322 Analyses with TNF and
TNF receptor-specific neutralizing antibodies showed that
stimulation of TNF-R2 does not directly engage the apoptotic
program, but relies on the induction of endogenous, mem-
brane-bound TNF, which subsequently activates TNF-R1
(Figure 5).323,324 Remarkably, the action of the endogenously
produced membrane-bound TNF on TNF-R1 is drastically
enhanced by the existing stimulation of TNF-R2. Thus,
apoptosis induction by the non-death domain-containing
receptor TNF-R2 is not only dependent on the production of
endogenous TNF and expression of TNF-R1, but also by the
TNF-R2-dependent process described above leading to
depletion of TRAF2 and TRAF2-associated protective factors.
Similarly, apoptosis induction by the other members of the
TNF receptor family lacking a death domain has also been
attributed to the induction of endogenous TNF and concomi-
tant depletion of TRAF2.323–326
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