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Abstract
Mitochondria are `life-essential' organelles for the production
of metabolic energy in the form of ATP. Paradoxically
mitochondria also play a key role in controlling the pathways
that lead to cell death. This latter role of mitochondria is more
than just a `loss of function' resulting in an energy deficit but
is an active process involving different mitochondrial
proteins. Cytochrome c was the first characterised mitochon-
drial factor shown to be released from the mitochondrial
intermembrane space and to be actively implicated in
apoptotic cell death. Since then, other mitochondrial proteins,
such as AIF, Smac/DIABLO, endonuclease G and Omi/HtrA2,
were found to undergo release during apoptosis and have
been implicated in various aspects of the cell death process.
Members of the Bcl-2 protein family control the integrity and
response of mitochondria to apoptotic signals. The molecular
mechanism by which mitochondrial intermembrane space
proteins are released and the regulation of mitochondrial
homeostasis by Bcl-2 proteins is still elusive. This review
summarises and evaluates the current knowledge concern-
ing the complex role of released mitochondrial proteins in the
apoptotic process.
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Introduction

Since the pioneering work of Xiaodong Wang,1 increasing
evidence has been provided that mitochondrial constituents
are actively involved in the regulation of apoptotic cell death.
Originally, the contribution of mitochondria to apoptosis was
described in terms of disruption of the mitochondrial
transmembrane potential (Dcm), which results from an
asymmetric distribution of protons on both sides of the inner
mitochondrial membrane.2 This Dcm creates an electroche-
mical gradient essential for ATP synthetase activity in the
oxidative phosphorylation pathway. Dcm collapse was
considered as the `point-of-no-return' of the death program.3

A breakthrough in the recognition of the central role of
mitochondria in apoptosis came with the finding that
cytochrome c, an electron shuttle molecule in the oxidative
phosphorylation pathway, is involved in caspase activation
after its release from mitochondria.4 At least in certain
experimental settings, release of cytochrome c from the
mitochondria can occur prior to Dcm collapse.5 ± 7 In Fas-
mediated apoptosis in mouse hepatocytes, mitochondrial
respiration is gradually impaired over time, concomitant with
the release of cytochrome c. Whereas in an early stage of
apoptosis, respiratory dysfunctions can still be overcome by
adding exogenous cytochrome c, at a later stage, when there
is Dcm loss, exogenous cytochrome c can no longer rescue
mitochondrial respiratory function.8 Considering that apopto-
sis is an energy consuming process,9 it is plausible that the
fraction of cytochrome c released early in the process will
participate in apoptosome formation, whereas the cytochrome
c portion that remains mitochondria associated will temporally
warrant sustained ATP production. The initially released pool
of cytochrome c might be the soluble fraction from the
intermembrane space whereas the second pool might
comprise the fraction more tightly associated with the inner
mitochondrial membrane.10,11 Over time, progressive da-
mage to mitochondria becomes irreversible, ensuring cell
death. The `point-of-no-return' is thus not an abrupt phenom-
enon but rather a process accumulating in the decisive
disruption of the mitochondrial membrane potential.

Like cytochrome c, several other mitochondrial inter-
membrane proteins that are released into the cytosol after
exposure to apoptotic stimuli have since been identi-
fied.12 ± 21 The exact role of these proteins in the process
of cell death is still unclear and in most cases has only
been reported in qualitative terms. Recent data demon-
strate that an early relocalisation of these mitochondrial
proteins results in the direct activation of caspases, the

Cell Death and Differentiation (2002) 9, 1031 ± 1042
ã 2002 Nature Publishing Group All rights reserved 1350-9047/02 $25.00

www.nature.com/cdd



neutralisation of cytosolic caspase inhibitors and the
activation of nucleases.4,12 ± 21 This review summarises
recent findings and focuses on the current evidence for a
quantitative contribution of these mitochondrial factors to
apoptosis.

Induction of mitochondrial dysfunction

Numerous cell damage pathways converge on mitochondria
and induce permeabilisation of mitochondrial membranes and
release of mitochondrial proteins.22 These include cytotoxic
drugs, DNA-damaging agents, heat-shock, hypoxia, growth-
factor withdrawal, irradiation and death domain receptor
signalling (Figure 1). Various stress stimuli stabilise the
tumour suppressor protein p53, which promotes cell-cycle
arrest thereby enabling DNA repair or apoptosis. The exact
mechanism of apoptosis induction is still unknown but would
be predicted to involve activation of the mitochondrial pathway
and subsequent activation of downstream caspases.23

Several chemotherapeutic agents and anticancer drugs also
act on mitochondria, although their exact mechanism of action
is unclear.23,24 The mitochondrial and death receptor path-
ways are intimately connected. The main molecular link
connecting the death-inducing signalling complex (DISC)25

and mitochondria is the caspase-8-mediated cleavage of Bid,
a BH3 only member of the Bcl-2 protein family, to generate a
15 kDa fragment. Consequently, truncated Bid (tBid) trans-

locates to the mitochondria where it induces the release of
cytochrome c.26,27 The mechanisms by which tBid rapidly and
selectively targets the mitochondria are not known. Recent
studies show that post-translational N-myristoylation of tBid
following cleavage by caspase-8, serves as an activating
switch for targeting tBid to mitochondria.28 Others provide
evidence that cardiolipin mediates the mitochondrial targeting
of tBid by binding to a specific domain in tBid.29 Cardiolipin is
found at high concentrations throughout the inner mitochon-
drial membrane, including the contact sites between the inner
and outer membrane. Immunogold tomography revealed that
these contact sites are the preferential targets for association
of tBid.30 The presence of Bcl-2 or Bcl-xL still allows cleavage
and translocation of tBid, but prevents the release of
cytochrome c.31

Additional pathways for Bid activation have been
proposed. Granzyme B, a cytotoxic T-cell specific serine
protease, was shown to cleave Bid, activating the
mitochondrial pathway.32 ± 34 On the other hand, granzyme
B also affects mitochondria in a Bid-independent way
resulting in mitochondrial depolarisation and cell death,
even though these mitochondria fail to release cytochrome
c.35,36 Also lysosomal proteases and the calcium-depen-
dent cysteine protease calpain were shown to cleave Bid in
the protease-sensitive region preceding the BH3 domain,
suggesting a role for Bid as a sensor for the integrity of
lysosomes and the endoplasmic reticulum.37,38

Figure 1 Many death signals converge onto mitochondria and release multiple intermembrane space proteins. A variety of apoptotic stimuli (death domain
receptors, chemotherapeutics, DNA-damaging agents, growth-factor withdrawal, irradiation) trigger mitochondria, which results in the release of apoptotic proteins
including cytochrome c, AIF, endonuclease G, Smac/DIABLO and Omi/HtrA2. Cytochrome c induces caspase activation by binding to Apaf-1. Smac/DIABLO and
Omi/HtrA2 can neutralise IAP inhibition of caspases. AIF and endonuclease G are involved in caspase-independent nuclear DNA degradation
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Despite the overwhelming evidence for a central role for
tBid, the phenotype of Bid-deficient mice is limited with
respect to apoptosis induction. Bid-deficient mice are
resistant to Fas- and TNF-induced hepatocyte apoptosis39

but cells from these mice are still susceptible to granzyme
B-induced death36 and to drug and stress-induced
apoptosis.39 Furthermore, Bid-deficient mice develop nor-
mally, in sharp contrast to the embryonic lethality caused
by cytochrome c, caspase-9 or Apaf-1 deficiency,40

suggesting that tBid generation is not required for
programmed cell death in development and may be
compensated for by downstream factors such as Bax and
Bak.41

Regulation of the mitochondrial response
by Bcl-2 family proteins

Mitochondria are the primary site of action of the Bcl-2 protein
family. Both pro-apoptotic (Bid, Bax, Bak, Bok, Bik, Bnip3,
Bad, Bim, Bmf, Noxa, Puma) and anti-apoptotic members
(Bcl-2, Bcl-xL, Bcl-w, Mcl-1, Boo, Bcl-B) are characterised by
the presence of Bcl-2 homology (BH) domains.42 ± 44

Members of the Bid-subfamily (Bid, Bad, Bik, Bim, Bmf,
Bnip3, Noxa, Puma) only share the BH3 domain and are
otherwise unrelated.43 Members of the functionally opposing
subfamilies can heterodimerise through interaction between
the amphipathic BH3 a-helix of the pro-apoptotic proteins and
the hydrophobic groove on the anti-apoptotic members,
created by the a helices in the BH1, BH2 and BH3 regions.43

A BH3-only protein can thus serve as a ligand that binds an
anti-apoptotic Bcl-2 protein. Bax-like proteins (Bax, Bak and
Bok) can also heterodimerise with anti-apoptotic Bcl-2
proteins via the BH3 domain.42

The precise molecular mechanism by which Bcl-2 family
proteins protect from or induce mitochondrial damage is still
controversial. Different models have been proposed to
explain the permeabilisation of the mitochondrial membrane
and the release of mitochondrial proteins (Figure 2).45 The
oldest model (Figure 2A) argues that cytochrome c is
released as a result of the opening of the permeability
transition pore (PTP), a large, poorly characterised protein
complex at contact sites between the outer and inner
mitochondrial membranes.46 The core components of these
contact sites are the ANT protein (adenine nucleotide
translocator), found in the inner membrane, and the VDAC
protein (voltage-dependent anion channel), located in the
outer membrane. The outer membrane is normally perme-
able for solutes up to 5 kDa, allowing the exchange of
respiratory-chain substrates (ADP/ATP, NADH, FADH)
between the intermembrane space and the cytosol. The
inner membrane, however, is almost impermeable, a
feature essential for maintaining an electrochemical poten-
tial across the inner membrane required for oxidative
phosphorylation.46 Opening of the PTP is postulated to
result in the loss of mitochondrial membrane potential,
swelling of the mitochondrial matrix and rupture of the outer
membrane, allowing the release of proteins from the
intermembrane space. An alternative model suggests that

A. B.

tBid

Bad Bim Bmf Noxa Bid

Bax

OMM

IMM

matrix

ANT ANT

V
D

A
C

V
D

A
C

swelling

Bcl-xL

Bcl-2

PTP

Bax

Bax
Bak

Bcl-x
Bcl-2 Bcl-2

Bcl-xL

Figure 2 Regulation of mitochondrial protein release. (A) PTP model. The permeability transition pore (PTP) complex consists of several transmembrane proteins
with core components VDAC in the outer mitochondrial membrane (OMM) and ANT in the inner mitochondrial membrane (IMM). Pro-apoptotic Bcl-2 proteins, such
as Bax, bind to the PTP complex and induce its opening resulting in the release of intermembrane space proteins such as cytochrome c. In another model PTP
opening results in rupture of the OMM due to swelling of the mitochondrial matrix and consecutive release of intermembrane space proteins. Anti-apoptotic Bcl-2
proteins, such as Bcl-2 and Bcl-xL, prevent the opening of the PTP.45,46 (B) Bax/Bak model. BH3-only proteins, such as tBid, interact with cytosolic Bax inducing its
translocation to and oligomerisation in the OMM. tBid can also translocate to mitochondria activating Bak and inducing Bak oligomerisation in the OMM. Bax and
Bak form heterotetrameric channels through which mitochondrial proteins are released. Anti-apoptotic Bcl-2 proteins, such as Bcl-2 and Bcl-xL, inhibit the
conformational change and oligomerization of Bax and Bak.45 The pro-apoptotic BH3-only proteins Bad, Bim, Bmf and Noxa bind to anti-apoptotic Bcl-2 members
changing the conformation of the latter and so `switching' them from anti-apoptotic to pro-apoptotic factors (Bcl-2*, Bcl-xL*) that require Bax/Bak for their activity44
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intermembrane space proteins would be released through
the PTP itself. Pro- and anti-apoptotic Bcl-2 proteins were
shown to interact with the PTP.45,46 This PTP-Bcl-2 family
member interaction has been reported to be either through
ANT47 or through VDAC.48 Bax and Bak are believed to
promote the opening of the PTP allowing cytochrome c to
pass through it, while anti-apoptotic Bcl-2 and Bcl-xL would
favour the closure of the PTP.48 However, the exact
mechanism whereby pro-apoptotic Bcl-2 proteins could
modulate the opening of the PTP is still not clear.
Moreover, how PTP, which are located at contact sites
between outer and inner mitochondrial membrane, allow
the passage of intermembrane space proteins is not yet
explained in molecular terms.

A second model (Figure 2B) proposes that at least some
pro-apoptotic Bcl-2 proteins are able to form tetrameric
outermembrane channels that could mediate the release of
apoptogenic factors from the mitochondrial intermembrane
space. Genetic knockout studies place Bax and Bak
downstream of tBid as Bax-Bak double knockout cells are
completely resistant to mitochondrial cytochrome c release
during apoptosis.41 tBid possesses pore-forming activity
allowing the release of cytochrome c without a drop in the
mitochondrial transmembrane potential.49,50 Bax and Bak
are thought to undergo a conformational change after
interaction with tBid. Bax is a monomeric soluble cytosolic
factor in healthy cells but oligomerises, translocates and
inserts into the mitochondrial outer membrane upon
induction of apoptosis.51,52 In contrast to Bax, Bak resides
in the outer membrane of mitochondria but also undergoes
oligomerisation and activation upon apoptosis.5 Both
proteins can form tetrameric channels through which
cytochrome c can escape. The BH3-only proteins Bad,
Bim, Bmf and Noxa bind to anti-apoptotic Bcl-2 members
but not to Bax and Bak. It was proposed that when these
BH3-only proteins become activated, they are released
from an inactivating complex and bind to Bcl-2 and its
homologues changing their conformation.44 The anti-
apoptotic Bcl-2-like proteins with altered conformation
would now resemble pro-apoptotic Bax/Bak-like factors
and stimulate the aggregation of the latter in a homotypic
`prion'-like manner.44 In their anti-apoptotic conformation,
Bcl-2 and Bcl-xL inhibit the conformational change and
oligomerisation of Bax and Bak by sequestering BH3-only
molecules in stable mitochondrial complexes preventing the
activation of Bax and Bak (Figure 2B).53,54 Using electro-
physiological methods, a comparable channel activity in the
outer membrane of mitochondria was recently proposed by
Pavlov et al.: their `MAC' model (mitochondria apoptosis-
induced channel) may represent a channel similar to the
Bax/Bak channel but was shown to have a pore diameter
significantly larger than that of the Bax/Bak channel
allowing diffusion of proteins larger than cytochrome c
(12 kDa), such as AIF (57 kDa) and Smac/DIABLO (which
behaves as a *100 kDa dimer55).56 Although Bax plays an
essential role in MAC activation, this channel most probably
contains other additional outer membrane proteins.

Recently, a third model of Bid-mediated perturbation of
mitochondrial function has emerged. Several reports argue
for an interaction between Bid and phospholipid metabo-

lism. Following cleavage by caspase-8, the C-terminus of
Bid translocates from the cytosol to the mitochondrial
contact sites, the structures that form the contacts between
the outer and inner mitochondrial membranes. This
relocation occurs in a cardiolipin-dependent way.29,30

Truncated Bid is far more potent in cardiolipin binding than
Bid, explaining the requirement for proteolytic activation
during apoptosis.29 Very recently another connection was
made with phospholipid metabolism. Bid possesses
phospholipid transfer activity reflecting its role in dynamic
remodelling of intracellular membrane.57 Enhanced avail-
ability of phosphatidylglycerol, phosphatic acid and phos-
phatidylcholine, but not phosphatidylserine, induces
relocation of Bid and tBid to the membranes. Other Bcl-2
family members such as Bcl-xL and Bak do not possess
this lipid transfer activity. How can this be associated with
the proapoptotic function of Bid and tBid? Death domain
receptor and other proapoptotic stimuli often result in the
activation of phospholipases58 causing changes in phos-
pholipid homeostasis, and resulting in enhanced lysolipids.
These are preferentially transferred by tBid to the
mitochondria and may contribute to the loss of membrane
integrity.57,59

Mitochondrial proteins released during
SR>apoptotic cell death

Cytochrome c

Cytochrome c was the first apoptogenic intermembrane
protein identified as being released from mitochondria during
apoptosis. Using a cell free system, Xiaodong Wang and
colleagues showed that cytochrome c is required for the
proteolytic activation of procaspase-3.4 In addition, micro-
injection of cytochrome c results in apoptosis.60 Following
release from mitochondria, cytochrome c, together with the
`apoptotis protease-activator factor 1' (Apaf-1), dATP and
cytosolic procaspase-9, forms a high molecular weight
caspase-activating complex, termed the `apoptosome' (Figure
1).61 ± 64 Once assembled, the apoptosome processes and
activates procaspase-9 as the initiator caspase, which in turn
proteolytically activates the executioner procaspase-3 and
procaspase-7. A proteolytic cascade is then initiated in which
caspase-3 activates procaspase-2, -6, -8 and -10, resulting in
a feedback amplification of the apoptotic signal.65,66 Cas-
pase-3 can further amplify the proteolytic processing of
caspase-9 by generating an alternative proteolytic p10
caspase-9 fragment lacking the amino-terminal XIAP-inter-
acting motif and thereby evading caspase inhibition.67

Recently, the three-dimensional structure of the apoptosome
has been determined, revealing a wheel-shaped structure
with sevenfold symmetry.68

A fundamental difference between the initial activation of
procaspase-9 and other procaspases is its requirement for
Apaf-1 and dATP. Apaf-1 is a cytosolic protein that
comprises an N-terminal caspase-recruitment domain
(CARD), a nucleotide-binding domain and a C-terminal
domain containing multiple WD-40 repeats.62 The CARD
domain of Apaf-1 acts as a docking region for the
recruitment of procaspase-9 but is normally not exposed

Cell Death and Differentiation

The role of mitochondrial factors in apoptosis
G van Loo et al

1034



unless Apaf-1 is activated by dATP and cytochrome c.61,69

Apaf-1 binds dATP poorly, but the affinity of both molecules
is significantly increased upon binding of cytochrome c.70

WD-40 repeats are found in a wide variety of proteins and
represent a protein ± protein interaction motif.71 The WD-40
motif of Apaf-1 was shown to be required for binding of
cytochrome c.72 ± 74 Mutational substitution analysis has
provided indirect evidence that cytochrome c is completely
wrapped around Apaf-1 upon binding.75 This contrasts with
the interaction of cytochrome c with its partners in the
electron transfer pathway, where only the lysine-rich
interphase implicated in heme binding is involved. Yet the
dual function of cytochrome c in both oxidative phosphor-
ylation and apoptosome formation can be uncoupled, as
exemplified in Saccharomyces cerevisiae, where cyto-
chrome c is incapable of activating Apaf-1 in a cell free
system.76,77

The importance of cytochrome c, Apaf-1 and caspase-9
for the execution of apoptosis has been confirmed by
genetic studies in mice through the targeted disruption of the
corresponding genes, resulting in embryonic or perinatal
death of the homozygous knockout-animals.78 ± 82 Embryo-
nic stem cells and fibroblasts derived from these null-mice
demonstrate defects in response to a variety of apoptotic
stimuli and no procaspase-9 activation occurred in any of
the knockout cells. The remarkable similarity between the
phenotypes of the Apaf-1 and caspase-9 knockout mice has
confirmed that these proteins act in the same pathway.
Cytochrome c deficient mice die in utero around midgesta-
tion. Despite their severe phenotype and developmental
delay, cytochrome c knockout embryos seem capable of
developing differentiated tissues derived from the three
germ layers, indicating that cytochrome c, unlike AIF, is not
essential for cavitation.78,83

Apoptosis Inducing Factor (AIF)

The mammalian mitochondrial protein AIF was identified as a
57 kDa flavoprotein sharing homology with bacterial, plant
and fungal oxidoreductases.12 AIF, which bears both
mitochondrial and nuclear signal sequences, is normally
confined to the mitochondrial intermembrane space but
translocates to the nucleus in response to apoptogenic stimuli
causing large-scale (*50 kb) DNA fragmentation and
peripheral chromatin condensation, but not oligonucleosomal
DNA laddering.12,84 Besides its nuclear effects, overexpres-
sion of AIF induces other characteristics of apoptotic cell
death, such as the dissipation of the mitochondrial transmem-
brane potential and exposure of phosphatidylserine on the
plasma membrane.12 The molecular mechanism whereby AIF
exerts its cytotoxic activity remains unclear, since AIF does
not contain intrinsic nuclease activity and the oxidoreductase
activity is not required for its apoptogenic function.85 None of
these AIF effects, however, are prevented by the wide-range
caspase inhibitor zVAD-fmk. Recent data indicate that the
heat-shock protein Hsp 70 can bind and antagonise AIF,86

explaining in part the cytoprotective property of Hsp70.
Although AIF seems to mediate apoptotic functions in a
caspase-independent way, it is unclear what its contribution is
to the apoptotic process as AIF is released together with

cytochrome c and other proapoptotic mitochondrial factors.
Moreover, embryonic stem cells from AIF deficient animals
were shown to be sensitive to most conventional triggers of
bona fide apoptosis, such as staurosporin, etoposide and UV
irradiation. However, they are resistant to cell death after
growth factor deprivation.83 Nevertheless, AIF-deficient mice
exhibit a clear cell death associated phenotype as embryoid
bodies from AIF7/7 ES cells lack the formation of the
proamniotic cavity normally induced by death of the central
core of ectodermal cells.83 This phenomenon is considered as
the very first wave of programmed cell death indispensable for
normal morphogenesis.87 Whether the observed phenotype is
the result of the loss of the cytotoxic property of AIF or of its
oxidoreductase function is unclear. AIF-dependent cell death
can be genetically uncoupled from Apaf-1 and caspase-9
expression as was shown in Apaf-17/7 and caspase-97/7

ES cells, indicating that AIF acts independent to the
cytochrome c/Apaf-1/caspase-9 apoptosome.83 The exis-
tence of AIF homologues in plants and fungi suggests that
the role of AIF in cell death may represent a caspase-
independent ancestral pathway.88

Smac/DIABLO

The Apaf-1/cytochrome c apoptosome complex was sown to
contain the inhibitor of apoptosis protein XIAP, which binds
and sequesters activated caspase-3 produced within the
apoptosome.89 In this context, Alnemri and colleagues also
demonstrated interaction of XIAP with caspase-9 in the
apoptosome complex. Procaspase-9 is initially processed at
Asp315 resulting in the generation of an aminoterminal
recognition motif in the linker region on the small subunit,
which binds to the BIR3 domain of XIAP.90 Processed
caspase-3, however, interacts with the BIR2 domain of XIAP.
These interactions with caspase-9 and -3 allow XIAP to
efficiently block activated caspases and thus prevent the
proteolytic cascade. If the proapoptotic stimulus persists or is
overwhelming, the progressive generation of activated
caspases on the one hand, and the competition of
mitochondrial proteins that block XIAP activity on the other,
can overcome the protective effect of XIAP.

One of these mitochondrial XIAP antagonists is Smac/
DIABLO, a 29 kDa mitochondrial protein, which is pro-
cessed to a 23 kDa mature protein and translocates to the
cytosol after an apoptotic trigger. Besides its interaction
with XIAP, Smac/DIABLO was shown to bind other IAP
proteins including c-IAP1, c-IAP2, survivin and baculoviral
Op-IAP.13,14 As for caspase-9, a similar recognition motif at
the aminoterminus of mature Smac/DIABLO binds the BIR3
domain of XIAP.55,90 ± 92 The same aminoterminal se-
quence of Smac/DIABLO also forms a stable complex with
the BIR2-domain of XIAP allowing competition with the
XIAP-dependent inhibition of caspase-3 and -7.55,93 ± 95

Interestingly, the aminoterminal residues of Smac/DIABLO
and caspase-9 that interact with the BIR3 domain of XIAP
share significant homology with the Drosophila proteins
Hid, Grim and Reaper,90,96 three cytosolic proteins that
promote apoptosis in the fly by antagonising DIAP-1 and
-2.97 ± 99 Very recently, another Drosophila cell death
protein was described, termed Sickle, which binds IAPs

Cell Death and Differentiation

The role of mitochondrial factors in apoptosis
G van Loo et al

1035



through a similar motif and neutralises their anti-apoptotic
activity.100 ± 102 It is remarkable that proteins that have no
further homology such as Sickle, Grim, Hid and Reaper in
Drosophila and caspase-9, Smac/DIABLO and Omi/HtrA2
in mammals, share this aminoterminal IAP-binding motif.
The same motif is utilised in completely different protein
contexts: in the case of caspase-9 as an anti-apoptotic
mechanism to recruit IAPs, or in the case of Grim, Hid,
Reaper, Sickle, Smac/DIABLO and Omi/HtrA2 as a
proapoptotic mechanism to block IAPs, suggesting a
stringent co-evolution of pro- and anti-apoptotic mechan-
isms. Smac/DIABLO also possesses another way of
inducing apoptosis, independent of its IAP-binding
domain.103 This is revealed by the proapoptotic activity
of Smac b, a Smac/DIABLO splice variant, lacking the
mitochondrial-targeting sequence and the ability to bind
IAPs. Furthermore, overexpression of a truncated Smac/
DIABLO mutant, which lacks the entire IAP-interacting
domain, potentiates apoptosis to the same extent as does
Smac/DIABLO and Smac b, suggesting that this alter-
native proapoptotic mechanism of Smac/DIABLO may
prevail.103 The underlying mechanism of this IAP-
independent activity is currently unknown. Whether
Smac/DIABLO is an essential factor in the apoptotic
process or just a disorientated mitochondrial protein is still
unclear, although the presence of the IAP binding motif
favours the first view. However, Smac/DIABLO-deficient
mice are completely viable and do not show any
abnormality. All types of Smac/DIABLO-deficient primary
cells respond normally to a broad range of apoptotic
stimuli.104 These observations suggest the existence of
redundant factors compensating for the loss of Smac/
DIABLO, probably Omi/HtrA2, or that Smac/DIABLO has
no essential and general role in apoptosis during
development.

Omi/HtrA2

Another mitochondrial factor that shares functional properties
with Smac/DIABLO is the serine protease Omi,105 also known
as HtrA2.106 Upon apoptosis induction with anti-Fas, TRAIL,
staurosporin and UV-irradiation, this protease is released
from the intermembrane space of mitochondria and interacts
with cytosolic IAP proteins via a similar IAP binding motif as
described above.17 ± 21 Omi/HtrA2 was identified as a 49 kDa
serine protease, homologous to the bacterial DegP/HtrA
protein, and was suggested to be involved in cellular stress
response pathways.105,106 Although originally defined as
being localised to the endoplasmic reticulum105 or the
nucleus,106 a mitochondrial localisation signal was identified
using computational models and its presence in mitochondria
was confirmed using Omi/HtrA2 specific antibodies.17 ± 21

Upon mitochondrial transport, an aminoterminal presequence
is cleaved off and Omi/HtrA2 is processed to the mature
37 kDa protein which is released into the cytosol after an
apoptotic trigger.17 ± 21,107 Whether Omi/HtrA2 undergoes
autocatalytic cleavage for correct processing or whether it is
cleaved by another mitochondrial protease is unknown. The
free aminoterminus of processed mature Omi/HtrA2 exposes
the `conserved' tetrapeptide motif essential for IAP interaction.

Omi/HtrA2 interacts with both the BIR2 and BIR3 domains of
XIAP, although with higher affinity for the BIR2, as opposed to
Smac/DIABLO, which preferentially binds the BIR3 do-
main.17,20 This selectivity suggests that Omi/HtrA2 may
promote preferentially caspase-3 activation rather than
caspase-9 activation through inhibition of XIAP.

Although Omi/HtrA2 and Smac/DIABLO both seem to
target XIAP once released into the cytosol, their distribution
pattern is quite different. Northern blot analysis of mRNA
showed that Smac/DIABLO was most abundant in heart,
liver, kidney and testis with no expression detected in
skeletal muscle, lung, thymus and brain.13,14 In contrast
Omi/HtrA2 mRNA, like XIAP, is expressed ubiqui-
tously.105,106 This suggests that Smac/DIABLO and Omi/
HtrA2 may have a redundant function in certain cell types.

Besides its IAP-interacting property, Omi/HtrA2 is also
an inducer/accelerator of cell death through its serine
protease catalytic domain. When the mature protein,
without its mitochondrial presequence, is overexpressed
in the cytoplasm, it induces cell death independent of
caspase activation or IAP interaction. The catalytic domain
is essential for this cytotoxic activity.17 ± 20 In addition to its
amino-terminal mitochondrial presequence and its catalytic
domain, Omi/HtrA2 also has a carboxyterminal PDZ
domain.105 PDZ domains, an acronym formed by the
proteins in which they were first identified (postsynaptic
density protein, disc large tumour suppressor and Zo-1 tight
junction protein) have been found to be involved in a
variety of protein ± protein interactions including the assem-
bly of multimeric complexes that can initiate signal
transduction at specific subcellular locations, particularly
at the cell surface.108,109 One group of proteins that is
characteristic for the presence of such PDZ modules are
MAGUK (membrane-associated guanylate kinase) proteins,
a class of proteins that are typically associated with cell
junctions or other specialised sites on the plasma
membrane.110 In this context, the caspase recruitment
domain proteins CARD11 and CARD14 were identified as
MAGUK family members that interact with the B-cell
lymphoma protein Bcl-10 and activate NF-kB signalling
pathways.111 Via its PDZ domain, Omi/HtrA2 was shown to
bind Mxi2, an alternatively spliced form of p38 stress-
activated kinase,112 but the function of this interaction is still
elusive. Specific physiological substrates for Omi/HtrA2, in
the context of cell death, are still unknown and require
further investigation. Recently, the crystal structure of Omi/
HtrA2 was revealed showing that the protein behaves as a
homotrimer.113 Trimerisation creates a pyramid-shaped
structure, with the aminoterminal IAP-binding sequences
on top and the PDZ domains at the bottom. Monomeric
Omi/HtrA2 mutants are completely inactive showing that
trimerisation is essential for protease activity and proper
function. However, the IAP-binding motif was shown to be
dispensable for its cell-killing activity, in contrast to the PDZ
domain that seems to serve as a sensitive regulator of the
protease activity in Omi/HtrA2.113 Based on these structural
and biochemical observations, it was proposed that the
homotrimeric Omi/HtrA2 would most likely interact with its
PDZ domains with a trimeric assembly. Omi/HtrA2 may so
interact with trimeric death receptors, such as TNFR and
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Fas, or other components of the DISC, and by its
proteolytic activity contribute to the activation of the
apoptotic pathway.113

Omi/HtrA2 represents an evolutionarily conserved pro-
tease whose bacterial orthologue, the E. coli DegP/HtrA
endoprotease, is necessary for bacterial thermo-, oxidative
and osmotic tolerance.114 At high temperature, bacterial
HtrA functions as a protease and at normal temperatures
as a chaperone.115 These prokaryotic functions could
suggest that Omi/HtrA2 is a multi-functional protein with
protective functions in mitochondria and cytotoxic functions
once released into the cytosol. However, the precise
function of Omi/HtrA2 in cell death, both caspase-
dependent as well as caspase-independent, remains
elusive and may only be revealed by `knockin' transgenic
studies using mutant forms of HtrA2/Omi that lack one of
the functional domains.

Endonuclease G

Endonuclease G, and its homologue cps-6 in C. elegans,116

are 30 kDa proteins that contain a mitochondrial localisation
signal which is removed after import into the mitochondrial
intermembrane space.15,16,117 Although originally identified
as a protein involved in mitochondrial DNA replication,117

endonuclease G was recently shown to be released from
mitochondria during apoptosis induced with TNF, agonistic
anti-Fas antibodies and UV-irradiation and to translocate to
the cell nucleus where it is involved in nuclear DNA
breakdown.15,16,116 Several DNAses have been implicated
in apoptotic DNA degradation.118 The best-characterised
enzyme is the caspase-activated DNAse CAD/DFF40,119,120

that forms an inactive heterodimer with its chaperone and
inhibitor, ICAD/DFF45.120,121 Upon induction of apoptosis,
ICAD is cleaved by caspase-3 releasing active CAD that can
then degrade nuclear DNA.120,121 However, ICAD-deficient
mice or transgenic mice lacking the ICAD-caspase-3
cleavage sites are phenotypically normal and still show
residual DNA fragmentation,122,123 indicating that CAD is
not the only DNAse implicated in apoptosis. Therefore, it is
conceivable that endonuclease G is responsible for the
nuclear DNA degradation observed in embryonic fibroblasts
from these mice after induction of apoptosis by TNF treatment
or ultraviolet radiation.15

DNA degradation during apoptosis generally occurs in
two stages: first when high molecular weight fragments
(*50 kb) are generated, consistent with the size of
chromatin loop domains, and second when oligonucleoso-
mal fragments are formed (so-called `DNA laddering').124

CAD/DFF40 is dispensable for high molecular weight DNA
cleavage and early stage chromatin condensation, but it is
essential for final chromatin condensation, and oligonucleo-
somal fragmentation.125 Although Wang and colleagues
showed endonuclease G-dependent DNA `laddering',15,126

we could only observe higher order DNA degradation in
isolated nuclei.16 The role of endonuclease G in apoptosis
is further questioned by the high concentration required to
induce DNA degradation in vitro as compared to CAD/
DFF40 (100 times more endonuclease G is required than
CAD).15,121 Probably, endonuclease G alone is not

sufficient, but requires other nucleases or cofactors. In this
context, it was shown that both exonucleases and DNAse I
facilitate the ability of endonuclease G to generate DNA
cleavage products, suggesting that, in vivo, these activities
work in concert to ensure efficient DNA breakdown in
apoptotic cells.126 Unlike CAD/DFF40, endonuclease G-
induced DNA degradation was shown to be independent of
caspase activation,15,16 as is also the case for AIF.12 AIF,
however, is not a self-nuclease while endonuclease G is. It
is also possible that both proteins do not act in isolation but
require each other for full activity. Both proteins may ensure
nuclear degradation when caspase activation is limited or
compromised, as may be the case during viral infec-
tion.127,128 or they may be responsible for the caspase-
independent DNA degradation that has been observed in
plants, fungi and protozoa.88,129

Other

Besides their localisation in the cytoplasm, the mitochondrial
intermembrane space has also been reported to contain a
subpopulation of procaspases (-2, -3, -8, -9), at least in certain
cell types. Upon apoptotic permeabilisation of the outer
mitochondrial membrane, such procaspases are released
from mitochondria into the cytosol generating enzymatically
active caspases, either through the apoptosome (for
procaspase-3 and -9) or via unknown mechanisms (for
procaspase-2 and -8).130 ± 134 Also, active caspase-7 was
shown to be associated with the mitochondrial fraction.135

More recently, mature processed caspase-9 was also
identified in mitochondria of non-apoptotic cells, although this
seems to be a cell type-specific phenomenon.136 Upon
induction of apoptosis, this processed caspase-9 is released
from mitochondria and becomes active in the presence of its
co-activators Apaf-1 and cytochrome c. The mitochondrial
localisation of caspases remains controversial for several
reasons. Using purified mitochondria from different cell
sources, we could not identify any procaspase or active
caspase in this mitochondrial fraction by Western blotting (van
Loo et al., in preparation). Moreover, using the PSORT
database (http://psort.nibb.ac.jp), no mitochondrial localisa-
tion signal could be identified in any of the caspases except
for procaspase-2.

Using a proteomics approach, we and others have
identified proteins that are released from purified mitochon-
dria treated with recombinant tBid or atractyloside.137,138

Apart from AIF, which could only be identified in the
mitochondrial supernatant of tBid-treated mitochondria
using a specific antiserum (G van Loo and P Vandena-
beele, unpublished results), and the caspases, which were
not detectable by Western blotting, all of the mitochondrial
proteins described above were identified in the supernatant
of tBid-treated mitochondria. Some other promising factors
were also found, but their exact function in cell death is still
elusive.137,138 A remarkable link with the previously
discussed role of tBid in phospholipid transfer is the
release of the fatty acid-binding protein (FABP), which
binds free fatty acids and may be implicated in intracellular
lipid transport. Acyl-CoA-binding protein, the endogenous
ligand of the mitochondrial benzodiazepine receptor, is
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involved in acetyl-CoA ester transport and was reported to
cause opening of the PTP after ligation with its receptor,
thus favouring apoptosis.139 Furthermore, we identified the
translocase of the inner mitochondrial membrane TIMM13b,
a protein implicated in protein import from the cytoplasm
into the mitochondrial inner membrane. Another member of
this family, the X-linked deafness-dystonia protein (also
called TIMM8a)140 has already been described as being
released from the intermembrane mitochondrial space after
treatment with atractyloside.138

An important question in this story of mitochondrial
protein efflux concerns the kinetics of release. Using a
range of cytotoxic drugs and DNA damaging agents, Adrain
et al. recently demonstrated that, in contrast to cytochrome
c efflux, Smac/DIABLO release from mitochondria is largely
attenuated by inhibition of caspases. This suggests that
Smac/DIABLO release is a caspase catalysed event
occurring downstream of cytochrome c translocation.141

Cytochrome c release would function as an initial trigger in
the formation of the apoptosome leading to a caspase-
dependent positive feedback loop resulting in generalised
mitochondrial destruction facilitating the release of Smac/
DIABLO. However, an opposite sequence of release,
Smac/DIABLO followed by cytochrome c, has also been
reported following TRAIL-induced apoptosis (MacFarlane et
al., in press). Although the precise mechanism of
cytochrome c release is still unclear, it seems to occur in
a two-step process representing loosely and tightly bound
pools of cytochrome c.10 The latter pool represents
cytochrome c associated with cardiolipin.142 Cardiolipin is
an acidic phospholipid that is synthesised in the mitochon-
dria and its expression pattern is confined to the inner
mitochondrial membrane and the mitochondrial contact
sites.143 Lipid peroxidation may mediate the transition from
the tightly to the loosely bound pool of cytochrome c, which
is then released by a Bax-dependent mechanism.10 Further
studies will be required to evaluate whether or not a
hierarchical model exists of mitochondrial protein release
and whether differential molecular thresholds exist for the
release of these proteins.

Concluding remarks and future
perspectives

Several mitochondrial proteins have recently been shown
to become toxic moieties when mitochondrial integrity is
compromised. This is often the initiating event for
caspase-dependent and caspase-independent mechanisms
of cell death. Cytochrome c and Smac/DIABLO induce
cellular damage by amplifying caspase-mediated proteo-
lysis. Omi/HtrA2 may neutralise IAP proteins but also
contributes as a caspase-independent proteolytic agent.
AIF and endonuclease G are both involved in caspase-
independent nuclear DNA disintegration. Under healthy
conditions, each of these proteins seems to have a
mundane, but essential, role in normal mitochondrial
function and cell survival. Cytochrome c and AIF have
an electron acceptor/donor (oxidoreductase) function in
mitochondrial oxidative phosphorylation; endonuclease G
was suggested to be involved in mitochondrial DNA

replication (although this activity is controversial as it
does not agree with an intermembrane localisation) and
the serine protease Omi/HtrA2 is implicated in mitochon-
drial control of cell protein stability under osmotic, thermal
and oxidative stress conditions. However, as yet, no
mitochondrial function has been described for Smac/
DIABLO. Following an apoptotic insult, each of these
proteins is released into the cytosol where they become
cytotoxic agents participating in the destruction of the cell.
In this way, mitochondria possess an autonomic system,
viz. an arsenal of innocent essential molecules required
for mitochondrial (and cellular) homeostasis that, once
released into the cytosol, become deadly weapons that
push the balance towards cell death.

Although the mitochondrial events in apoptosis have
been documented for a wide variety of stimuli, the relative
contribution of the different mitochondrial factors in the
apoptotic process remains to be determined. It is still
unclear whether the homeostatic functions of cytochrome
c and AIF in oxidative phosphorylation are required for
their proapoptotic activity after relocalization. A `knockin'
animal of cytochrome c or AIF only possessing their
oxidative phosphorylation function will shed light on the
precise contribution of these mitochondrial factors to the
apoptotic process in the context of developmental cell
death. Also for the other factors such as Smac/DIABLO
and Omi/HtrA2 the contribution of the IAP binding motif to
the propagation of apoptotic cell death will only become
clear by `knockin' studies with mutants that lack this motif.
Moreover, their role as essential components in the
apoptotic machinery will only be revealed by genetic
deletion of the corresponding genes. Targeted disruption
of Smac/DIABLO in vivo has no effect on apoptosis,
possibly because Omi/HtrA2 is still fully active.104 Double
mutant mice, lacking both Smac/DIABLO and Omi/HtrA2,
could hopefully clarify their physiological role in apoptotic
cell death. Another important issue is the relative
contribution of caspase-dependent and caspase-indepen-
dent mechanisms in cytotoxicity. Do the caspase-
independent pathways such as AIF, HtrA2/Omi and
endonuclease G form a `second line' of cytotoxic
capability in cases where the enzymatic activity of
caspases is compromised? If so, then it is important to
identify these conditions of reduced or inappropriate
caspase activity. It has been reported that viral infec-
tion,127,128 nitrosylation144,145 and ATP depletion146 nega-
tively influence caspase activity.

In this overview we have raised many questions
concerning the contribution of mitochondrial factors to
caspase-dependent and caspase-independent pathways
leading to cell death. Nonetheless, the last decade of cell
death research has contributed substantially to identifying a
completely new and additional role for mitochondria, which
apart from being suppliers of new energy are also sensors
and regulators of cell death. As is generally true for other
areas of molecular cell biology, assessing the relative
contribution of these different pathways remains the
toughest problem to solve. Also, the biochemical mechan-
ism leading to mitochondrial dysfunction and release of
mitochondrial factors is still not clear and requires further
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investigation. Hopefully these questions will be solved in a
near future, permitting a general view on the mechanism by
which mitochondria regulate apoptosis. From a therapeutic
point of view, this knowledge would allow the rational
design and use of specific synthetic molecules that mimic
Bcl-2-like proteins, IAP-binding factors or the action mode
of Smac b. These molecules may not necessarily provoke
apoptosis, but they might sensitise cells to apoptotic stimuli,
allowing more efficient cancer therapies. On the other hand
strategies that block the proapoptotic activities of BH3-only
proteins at premitochondrial levels may allow decreased
damage after ischaemia ± reperfusion.
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