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Abstract
Intermediate filament (IF) proteins utilize central a-helical
domains to generate polymeric fibers intermediate in size
between actin microfilaments and microtubules. The regions
flanking the central structural domains have diverged greatly
to permit IF proteins to adopt specialized functions. Keratins
represent the largest two groups of IF proteins. Most keratins
serve structural functions in hair or epidermis. Intracellular
epidermal keratins also provide strength to epithelial sheets.
The intracellular type I keratins and other IF proteins are
cleaved by caspases during apoptosis to ensure the disposal
of the relatively insoluble cellular components. However,
recent studies have also revealed an unexpected protective
role for keratin 8 during TNF and Fas mediated apoptosis.
Evidence for possible functions of keratins both upstream and
downstream of apoptotic signaling are considered.
Cell Death and Differentiation (2002) 9, 486 ± 492. DOI: 10.1038/
sj/cdd/4400988
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Introduction

Three filamentous systems make up the cytoskeleton of cells.
These are microfilaments, microtubules and the intermediate
filaments. Sixty-five homologous proteins with the ability to
form 10 nm filaments define the intermediate filament family in
humans.1,2 They likely arose by mutation of an ancestral
nuclear lamin gene3 and are restricted in expression to
metazoans.4 Individual IFs have diverged and specialized
their N-terminal and C-terminal domains that flank the a-
helical central region necessary for filamentous polymeriza-
tion. The proteins are divided into at least five groups as
shown in Table 1. The type I and type II keratins are the
largest subgroups of the intermediate filament family. The

keratins polymerize as obligate heteropolymers of individual
type I and type II proteins. The keratins are further subdivided
into epithelial and hair related keratins. Type III IF proteins are
represented by vimentin, glial fibrillary acidic protein, desmin
and peripherin. Type IV IF proteins include the three forms of
neurofilament proteins, a-internexin, syncollin, nestin and
synemin and the type V IF proteins represent the three
nuclear lamins.

Keratins

Investigations of the functions of specific intermediate filament
proteins and the identification of mutant IF proteins involved in
human genetic diseases have demonstrated that many IF
proteins function to provide mechanical strength to cells and
tissues. This is clearly demonstrated in mammalian skin
where mutations or the absence of specific epidermal keratins
causes epidermal fragility resulting in blistering skin dis-
eases5 ± 7 and alterations in the mechanical properties of
filaments.8 Similarly, muscle mechanical defects are evident
in the absence of desmin.9 In addition, A2 and A3 IF proteins
of Caenorhabditis elegans are necessary for locomotion.4

The keratins associated with hair are uniquely specialized for
stability reinforced by extensive extracellular disulfide brid-
ging. The specialized keratins of the outer epidermis (K1, K2,
K9, K10) are distinguished by tail domains greatly enriched in
glycine and by the lack of caspase cleavage sites within the
type I extracellular keratins (K9, K10). These keratins
contribute to the structural integrity essential for the barrier
function of the skin. Intracellular epithelial keratins such as K5
and K14 crossbridge desmosomal junctions and thus provide
structural continuity with the edges of epithelial cells.
Individual keratins bind to the desmoplakin component of
desmosomes with varying affinity and structural require-
ments.10,11 Additional adapter proteins also contribute to the
association of IF with desmosomes.12 Keratins and E-
cadherin are two defining characteristics of epithelial cells.
Many simple epithelial cells are particularly sensitive to
apoptosis when detached from extracellular matrix and
neighboring cells in a process termed anoikis.13,14 A possible
role of keratins in anoikis remains to be investigated. Multiple
excellent reviews concerning the structure, dynamics and
function of intermediate filaments are available.2,5,15 ± 20

Further discussion here will focus on the possible roles of
keratins in apoptosis.

K8 and K18

K8 and K18 are expressed in simple, or predominately single
layered, internal epithelia. Several characteristics of K8 and
K18 distinguish them from other members of the type I and II
keratins. First, they are the first IF proteins to be expressed
during mammalian development being associated with the
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differentiation to the trophectodermal layer of the blastocyst.
However, the human epiblast, unlike the mouse inner cell
mass, is an epithelium and expresses K8 and K18. In addition
to the unique genes coding for human K8 and K18, each is
represented by 35 and 62 processed pseudogenes respec-
tively. These are distributed over many chromosomes.1,21

The large number of processed pseudogenes for K8 and K18
may reflect their expression in the human epiblast which
provides a germ line target for retroviral reverse transcrip-
tion.16 The smaller number of K8 and K18 pseudogenes found
in mice21,22 is consistent with the difference in expression of
these genes during early development. K18 is also the only
type I keratin found within the type II keratin multigene locus
found on human chromosome 12. The other type I keratins
are found on chromosome 17. The genes for K8 and K18 are
adjacent to each other and at the distal end of the Krt1 locus.

Another distinguishing characteristic of K8 and K18 is
their common and persistent expression in carcinomas.
Other keratins that are expressed in the tissue of origin of
carcinomas tend to be more sporadically expressed or lost
during the progression of the tumor. K8, K18 and K19 have
proved to be useful carcinoma markers.

While keratins are promiscuous in their ability to
heterpolymerize from different type I and II proteins in
vitro,23,24 preferential assembly of certain keratin pairs in
vivo has been revealed by gene knockout experiments.
Thus the removal of K18 results in the loss of K7 as well as
K8 protein in intestine.25 In the absence of a complementary
partner K8 and K18 are normally degraded rapidly, although
K8 is degraded less quickly than K18 in some cells.26 In K18
null animals, aggregates of precipitated K8 residue, known
as Mallory bodies, are found in the livers of old animals.
Thus the degradation of K8 may not necessarily be
complete, at least under some pathological conditions.25

Gene targeting experiments have demonstrated that K8
is important for development because K8 deficient embryos
die at E12.5.27 However, the viability of K8 deficient mice is
dependent on the genetic background.28 In an FVB/N
genetic background approximately 50% of the expected
number of K8 deficient embryos are born. By contrast, the
knockout of K18 or K19 does not alter viability.25,29

However, K18, K19 compound homozygote null embryos
die at about 9 days of development.30 Thus K18 deficiency
is compensated by K19 and vice versa (Table 2). K8
deficiency is also compensated to some degree by K19
because K8, K19 compound homozygote null embryos die
earlier than K8 null embryos.29 The protective effect of K19
is likely due to low levels of K7, expressed in late
trophoblast derivatives. This interpretation of K8, K18 and
K19 knockouts is summarized in Table 2. However, the
absence of all keratins (and very likely all IF) in K18, K19
compound homozygotes still permits keratin deficient
blastocysts to implant, invade the uterine environment
and develop for 9 days. If K8 and K18 primarily provide
mechanical strength, it is perhaps surprising that develop-
ment can proceed during trophectoderm expansion, im-
plantation, and invasion. Furthermore, no abnormalities of
parietal or visceral yolk sac development were detected
during the differentiation of K8 deficient ES cells in vitro.31

Thus K8 is not necessary for the appearance or function of

polarized epithelial yolk sac cells or the initial trophoblast
derivatives. Other cytoskeletal elements may provide
sufficient strength to implanting embryos until day 9 of
development. However, the postimplantation failure of
trophoblast derivatives may reflect additional functions for
simple epithelial keratins.

K8 and K18 associated disease

The incomplete penetrance of embryonic lethality of K8 null
mice has permitted the evaluation of the importance of K8 in
adult mice. Adult K8 null mice in the semipermissive FVB/N
background develop a mild hepatitis and a more dramatic
inflammatory bowel disease by about 6 months of age.28 This
condition is similar to that seen in mice without the T cell

Table 1 Coding Intermediate Filament Genes

Type I Type II Type III

K9 K1 vimentin
K10 K1b desmin
K10b K2e GFAP
K10c K2p peripherin
K10d K3
K12 K4 Type IV NF-L
K12b K5 NF-M
K13 K5b NF-H
K14 K5c a-internexin
K15 K6a syncollin
K16a K6b nestin
K17 K6hf synemin
K18 K6h
K19 K6i Type V laminA/C
K20 K6k laminB1
K23 K6l laminB2

K7
K8 Others ®lensin

phakinin
Hair type I Hair type II
KRTHA1 Hb1
KRTHA2 Hb2
KRTHA3a Hb3
KRTHA3b Hb4
KRTHA4 Hb5
KRTHA5 Hb6
KRTHA6
KRTHA7
KRTHA8

Data are from a survey of the human genome draft sequences.1 Intermediate
®laments associated with genetic mutations in human genetic disease are
indicated in bold1,5

Table 2 Keratin complementation in placenta

Mouse genotype

Keratin pair K18 ko K19 ko K8 ko K8/19 ko K18/19 ko

K8/K18 no yes no no no
K8/K19 yes no no no no
K7/K19 yes no yes no no
K7/K18 no yes yes yes no
Viability adult adult E12 E10 E9
Penetrance 7 7 3750% 100% 100%

Potential keratin heteropolymers are shown in the ®rst column. Expected
presence or absence of the heteropolymers are indicated as a function of the
keratin genotype indicated in the ®rst row. The onset of embryonic lethality is
correlated with the absence of heteropolymers of K7, K8, K18 and K19
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receptor a32 or the IL-233 and IL-1034 cytokines. In addition, K8
null adults were found to be particularly sensitive to
pentobarbital anesthesia, partial hepatectomy35 and to liver
toxicity induced by griseofulvin, 3,5-diethoxycarbonyl-1, 4-
dihydrocollidine36 acetaminophen37 or the phosphatase
inhibitor microcystin-LR.38 In the case of griseofulvin treat-
ment, which models the formation of Mallory bodies in
alcoholic liver disease, the use of K8 null animals revealed
that Mallory body formation was dependent on K8. However,
K8 null animals developed liver disease even in the absence
of Mallory bodies.36 Thus these dense aggregates of cross-
linked and modified K8/K18 are not the causative agent of
subsequent liver damage. An important role for K8/K18 in
resistance to liver toxicity is reinforced by the increased
sensitivity of transgenic mice which overexpress mutant forms
of K18 to griseofulvin, acetaminophen and microcystin-
LR.37,39,40 Recently, mutations of K8 in humans have been
found to be associated with cryptogenic liver disease41 and
inflammatory bowel disease (Birgit Lane, personal commu-
nication). In the case of crytogenic liver disease, two
mutations of K8 have been identified. One changes a tyrosine
at position 53 to a histidine (Y53H). The second changes a
conserved glycine at position 61 to a cysteine (G61C). One
consequence of the G61C is disulfide bridging of K8,
apparently to itself. Both mutations appear to alter the stability
of K8/K18 filaments when cells are stressed but not under
normal growth conditions. Together, the mouse and human
diseases associated with K8 mutations indicate an important
role in resistance to liver toxicity and inflammatory bowel
disease. The mechanism of the protective effects of K8/K18
remains to be determined.

K8 and TNF sensitivity

A recent observation has implicated K8 and K18 in
resistance to apoptosis induced by TNF family receptors.
Several epithelial cell lines deficient in K8/K18 IF are more
sensitive to apoptosis induced by the combination of TNF
and cycloheximide than their control counterparts.42 This
resistance to TNF was correlated with the ability of K8 but
not K18 to bind to the cytoplasmic domain of TNFr2 and the
lymphotoxin-b receptor (LTbR) but not TNFr1 or Fas. Co-
localization of TNFr2 and K8/K18 was detected at the
periphery of cells. In addition, treatment of either K8 or K18
null animals with concanavalin A (ConA) showed that the
hepatocytes of both types of keratin deficient animals were
more sensitive to lymphocyte initiated apoptosis. K8 and
K18 are the only IF proteins expressed in hepatocytes.
Thus gene targeting of either gene results in the absence of
hepatocyte IF. ConA induced hepatitis acts through
circulating blood elements and involves both Fas and
TNF.43,44,45 Increased levels of both TNF and Fas ligand
are found in the livers of mice treated with ConA. The
similar response of both K8 and K18 null animals to ConA
was of particular interest because K18 null animals are
phenotypically normal and do not develop the spontaneous
mild hepatitis found in K8 null animals. The colonic
hyperplasia of the K8 null animals may also reflect the
involvement of the immune system. It is interesting that
trophoblast derivatives are normally resistant to TNF

induced apoptosis.46,47 It is possible that TNF sensitivity
may be involved in the trophoblastic defects found in null K8
and K8, K19 and K18, K19 compound null animals.

K8 and Fas

Very recently, a similar role for K8 in protection from Fas
mediated apoptosis of hepatocytes has been discovered.48

Explanted hepatocytes from K8 deficient mice are particularly
sensitive to activating Fas antibody but not TNF or TRAIL.
Furthermore, the increased sensitivity to Fas activating
antibody was correlated with an increase in the fraction of
cellular Fas on the cell surface. Total Fas levels in K8 null and
wild-type hepatocytes appear similar. The increased sensi-
tivity of K8 null animals to activating Fas antibody was found
only at a moderate dose of antibody. Microtubule dissociating
drugs helped protect hepatocytes from subsequent Fas
antibody challenge. K8/K18 may be involved in the trafficking
of Fas from the Golgi to the apical surface of polarized
epithelia.

Increased Fas on the cell surface of K8 null hepatocytes
may predispose them to apoptosis because over expression
of death receptors can trigger the apoptotic cascade even in
the absence of ligand. However, TNF is key for liver growth
and regeneration as well as an apoptotic stimulus.49

Perhaps K8 hepatocytes are presensitized to Fas stimula-
tion by previous exposure to TNF. It will be interesting to
determine if K18 null mice also express elevated levels of
hepatocyte surface Fas and to analyze the effects of TNF
and Fas deficiencies on K8 null embryonic lethality.

The association of K8/K18 with death receptor family
function may be related to earlier implications of K8/K18
with drug resistance in several cell lines.50,51 Some K8/K18
deficient cell lines are more sensitive to DNA damaging
agents such as mitoxantrone, doxorubicin, melphalan,
bleomycin, and mitomycin C than the controls that were
engineered to express keratin. These drugs have been
shown to induce surface Fas expression through a p53
dependent process in multiple cancer cells.52 Increased
Fas expression sensitizes cells to FasL stimulated killing.
Chemotherapeutic drug treatment sensitizes multiple can-
cer cell lines to either Fas or Trail killing.53 While several
observations indicate that killing of cancer cells by DNA
damaging agents is not exclusively dependent on Fas,54

Fas or other death receptors may contribute to the cellular
damage. The role of keratin IFs in resistance to some drug
induced apoptosis, may be linked to death receptors.

K8 and K18 have now been convincingly connected to
resistance to multiple kinds of stress.15,19 This evidence
includes the association of HSP70 with K18;55 the
increased sensitivity of K8 null mice and K18 dominant
negative transgenic mice to the toxicity of acetamino-
phen,37 microcystin-LR38 and griseofulvin36 and the
increased sensitivity of K8 null mice to pentobarbital and
liver perfusion.35 While the correlation of various forms of
stress with K8/K18 filament phosphorylation is well
established, the mechanism by which these keratins confer
resistance or protection is less obvious. One potential
common thread to many types of stress is TNF family
involvement.
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However, one potential contradiction to the function of
K8/K18 in moderating TNF family ligand induced pathology
is the surprising lack of protective effect of either K8 or K18
on experimentally induced pancreatitis.56 TNF is reported to
contribute to the severity of the experimental disease.57

However, TNF may play a secondary role in the
pancreatitis models and a more direct role in several liver
toxicity models.

How might K8/K18 moderate TNF and Fas induced
apoptosis?

Both TNF and FasL normally induce apoptotic signaling by
the engagement of the cognate receptors. However,
increased surface expression of receptor can also initiate
signaling. The increased sensitivity of K8 null hepatocytes to
activating Fas antibody has been suggested to be a
reflection of the increased proportion of Fas expressed at
the cell surface. This would imply that K8/K18 filaments
might specifically moderate the transport of Fas to the cell
surface. This suggestion is of particular interest in light of the
recent identification of abnormalities in the distribution of
apical surface markers in both the small intestine and liver of
K8 null animals.58 In the small intestine of K8 null animals,
regional specific differences in the expression of syntaxin-3,
intestinal alkaline phosphatase and CFTR chloride channel
proteins were found. Given the rapid turnover of intestinal
cells, these regional differences on the villi may reflect
alterations in the turnover of the proteins. Syntaxin-3 is a key
element of the SNARE machinery involved in specific
vesicular transport. Interestingly, sytaxin-3 is co-localized
with vimentin filaments in fibroblasts and Hela cells59 but is
not found associated with the K18 filaments of Hela cells.
The mechanism by which keratin filaments might influence
vesicular trafficking of specific surface molecules remains to
be elucidated. However, the recently appreciated dynamic
properties of IF including rapid intracellular movement60

facilitates consideration of many possibilities.
Interference with the transport of TNFr1 from the Golgi to

the cell surface has been shown to be a mechanism of
inhibition of TNF induced apoptosis in poliovirus infected
cells.61 This function would place K8/K18 upstream of TNFr
or Fas receptor signaling. Alternatively, K8 may play a role
downstream of TNFr signaling by moderating the signaling
from receptors. Indirect evidence of IF involvement in
signaling includes the increased NF-kB and Jnk activation
found in keratin deficient endodermal cells in response to
TNF,42 the binding of 14-3-3 protein to K18 in a
phosphorylation dependent manner,62 and MAP kinase
phosphorylation of IF proteins.63 K8 is capable of binding
the cytoplasmic domain of TNFr2. However, signaling
through TNFr2 is significantly different from TNFr1, as
TNFr2 has no death effector domain. One example of an
indirect mechanism of influencing TNF signaling is the
induction of TNF on the cell surface by TNFr2 signaling
which then contributes to apoptosis.64

Very recently Inagaki and colleagues65 described an
alternative and likely key mechanism by which keratin
attenuates TNF induced death. Residues 77 ± 128 of K18
and K14 both mediate an association with the C-terminal

portion of TNFR1-associated death domain protein
(TRADD). This association with a key adapter molecule
was demonstrated biochemically by co-assembly, co-
immunoprecipitation analysis, and by immunofluorescent
localization of both endogenous and exogenous TRADD
and K18. Importantly, this investigation provides evidence
for the competition of ligand activated TNFR1 and keratin
for TRADD that dissociates from keratin and associates
with ligand bound TNFR1 to form a signaling complex that
activates caspase 8. This report provides the best present
explanation of the protective effect of K8/K18. The very
interesting control of the association of TRADD with
keratins will likely be an important focus of future
investigation.

Intermediate filament proteins are cleaved by
caspases during apoptosis

Nearly 30 years ago, Bjorklund developed an antibody test
for tissue polypeptide antigen (TPA) that was found in the
serum of cancer patients. The nature of this circulating
antigen remained obscure in spite of significant use of the
tumor marker, until 1984, when the antigen(s) was identified
as a complex of keratin 8, 18 and 19 fragments.66 This
discovery helped explain the correlation of TPA with
carcinoma status because most carcinoma continued to
express epithelial keratin intermediate filament proteins K8,
K18 and K19.67 However, the origin of soluble fragments of
insoluble keratin was still a puzzle. In 1997, Caulin et al.
demonstrated that K18 but not K8 was a substrate for
caspase digestion during the course of epithelial cell
apoptosis.68 Caspases 3, 6 and 7 were all capable of
cleaving after the aspartate 238 (D238) and mutation of the
DEVD238 sequence rendered this site resistant to cleavage
both in vitro and in vivo.68,69 However, the K18 internal
cleavage site is utilized in apoptotic MCF-7 cells which are
deficient in caspase 3.70 Thus caspase 3 is not essential for
K18 cleavage at D238. A second cleavage site nearer the C-
terminal end was deduced on the basis of a ten residue,
monoclonal antibody epitope terminating with a potential
caspase cleavage site, DALD,397 that rendered antibody
binding dependent on apoptotic cleavage of K18.71 The
identification of D397 as the second caspase cleavage site
of K18 was confirmed by mutagenesis.72

The first intermediate filament protein to be identified as
a caspase substrate was the nuclear lamin A.73,74 The
internal cleavage site of lamin A is identical to that found
in K18. This cleavage site of K18 and other IF proteins is
found within the L1-2 linker region between two con-
served, central, alpha helical domains (Figure 1).75 None
of the type II keratins have similar potential cleavage sites.
Simple alignment of other IF proteins lead to the prediction
that other type I keratins and vimentin, desmin and NF-M
would likely be caspase substrates. Caspase cleavage at
the L1-2 linker region has been confirmed for K14, K17,
K19, and vimentin.72,76 The L1-2 caspase cleavage site of
multiple type I keratins is of particular interest because
mutations of the caspase recognition site have been found
in K14 of patients with epidermolysis bullosa simplex, a
genetic blistering skin disease. However, a careful analysis
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of four spontaneous mutations within the context of K14
revealed that only the mutation of the required aspartate
(VEVD or VEMD) prevented cleavage of K14 during
apoptosis.72 Confirmation of the cleavage of the wt
sequence VEMD/A of K14 suggests that other type I
keratins, K12 ± 17, desmin and neurofilament-L may also
be caspase substrates.

Consequences of caspase digestion of IF during
apoptosis

The orderly packaging and disposal of cellular contents
during cell death may be important to limit inflammatory
reaction. The cleavage of IF during apoptosis may reflect the
programmed disposal of relatively insoluble structural
proteins. The engagement of Fas with FasL, or activating
antibody results in the formation of a signaling complex
involving proteins with death effector domains such as FADD
and the subsequent activation of caspase 8. Caspase 8
translocates from either a membrane or mitochondrial
location to plectin, an abundant cytoskeletal scaffolding
protein which binds all three cytoskeletal fibers, actin,
intermediate filaments and microtubules. The subsequent
cleavage of plectin by caspase 8 results in a reorganization
of the microfilament system.70 The early cleavage of plectin
appears not to affect intermediate filament organization.
Soon after an apoptotic challenge K8/K18 filaments are

hyperphosphorylated and collapse to punctate inclusions of
variable size (Figure 2). Similar K18 aggregations have been
observed in some epithelial cells not undergoing apoptosis77

and may reflect the consequences of keratin phosphoryla-
tion.63 During TRAIL induced apoptosis, activated caspase 3
co-localizes with similar, though larger aggregates late in the
process of death.78 This organization into dense aggregates
without a limiting membrane appears to contain most of the
activated caspase 3 and the K18 that has been cleaved at
position D397. The status of the VEVD238 cleavage site in
such aggregates is not known. If the association of active
caspase 3 with these aggregates is strictly dependent on the
presence of K18, it is possible that keratins may provide
some protection against caspase 3 digestion by limiting the
availability of active caspase 3.

The hyperphosphorylation of K18 in cells treated with
okadaic acid, a phosphatase inhibitor, was found to render
K18 resistant to caspase digestion at D238 but not D397.72

This is an interesting result in light of the rapid phosphor-
ylation of K18 on serine 53 after apoptosis initiation.68,69,79

The reorganization of K18 filaments in apoptotic cells is
associated with the cleavage of K18 at D397, K18
phosphorylation at S53, and the association of active
caspase 3 with the K18 granules. However, it is not clear
whether the reorganization of keratin filaments is caused by
its phosphorylation alone, its cleavage or even an
association with other proteins within the cells. Dissection
of the roles of K18 phosphorylation, its association with
caspase 3 and caspase cleavage of K18 may reveal new
ways to regulate caspase activity.

While the initial observations linking intermediate fila-
ments and apoptosis involved lamins and keratins, other IF
proteins may also function during the process. For
example, vimentin is a caspase substrate.76,80 Furthermore,
the forced expression of the N-terminal caspase digestion
product of vimentin as a GFP fusion protein has been
reported to induce caspase dependent apoptosis.76 This
effect is suggested to amplify the death signal. However,
the effect has only been reported with the GFP fusion
protein and the natural N-terminal caspase product of
vimentin has not been detected in apoptotic cells suggest-

Figure 1 Conservation of caspase cleavage site of type I keratins and other
IF protein. A schematic diagram of the domain structure of IF proteins is shown
at the top. The L1-2 linker region connects the coil 1B and coil 2A subdomains.
Note the conservation of the VEVD or VEMD caspase recognition sites except
in K9 and K10 which function as extracellular barrier proteins in epidermis and
the absence of similar sites in type II keratins (reprinted with permission from
the Journal of Cell Biology)68

Figure 2 K18 reorganization during epithelial cell apoptosis. SNG-M human
adenocarcinoma cells were treated with etoposide, then fixed and stained with
K18 monoclonal antibody and propidium iodide for nuclear morphology. (A)
K18. (B) DNA fluorescence. Arrows point to apoptotic cells. Note the
reorganization of keratin filaments into granules and the apoptotic nuclear
morphology. Similar granular structures also react preferentially with K18
phospho-serine 53 specific antibody68
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ing that it may be further degraded rapidly. Additional
investigation should reveal whether the subtle phenotypes
of the vimentin knockout81,82 may be supplemented by a
functional role in apoptosis.

In summary, simple epithelial keratins have been
implicated in resistance to drug toxicity, hepatic stress
and inflammatory bowel disease. Recent connections of
death receptor involvement with epithelial apoptosis in both
cell lines and mouse models should stimulate further
advances in understanding the possible functions of
programmed cell death.
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