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TNF-a/NF-kB/Snail pathway in cancer cell migration and invasion
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Tumour necrosis factor-alpha (TNF-a) is an important inflammatory factor that acts as a master switch in establishing an intricate link
between inflammation and cancer. A wide variety of evidence has pointed to a critical role of TNF-a in tumour proliferation,
migration, invasion and angiogenesis. The function of TNF-a as a key regulator of the tumour microenvironment is well recognised.
We will emphasise the contribution of TNF-a and the nuclear factor-kB pathway on tumour cell invasion and metastasis.
Understanding the mechanisms underlying inflammation-mediated metastasis will reveal new therapeutic targets for cancer
prevention and treatment.
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Tumour necrosis factor (TNF)-a is a key cytokine involved in
inflammation, immunity, cellular homeostasis and tumour pro-
gression (Balkwill, 2009). It was first identified as an anti-tumor
cytokine accompanied by serious toxicity involving in the innate
and adaptive immune system. It is required for proper prolifera-
tion and function of NK cells, T cells, B cells, macrophage and
dendritic cells and is an important effector molecule in cell-
mediated killing of certain tumours. However, emerging evidences
have shown TNF-a was one of the major mediators of cancer-
related inflammation and acted as a tumour-promoting factor.
This apparently paradoxical effect of TNF-a on tumour may reflect
the difference in chronic synthesis and acute high-dose local
administration. High doses of human recombinant TNF-a-induced
haemorrhagic tumour necrosis of both syngeneic and xenografted
tumours when injected locally and repeatedly (Balkwill, 2009). By
contrast, low dose, chronic TNF-a has angiogenic activity and
promotes tumour progression.
Tumour necrosis factor-a is synthesised as a transmembrane

protein with a molecular mass of 26 kDa and the pro-peptide is
secreted as a soluble 17-kDa molecule on cleavage by TNF-
a-converting enzyme (TACE). Although activated macrophages are
the major source of TNF-a, it can also be produced by a variety of
other cells, such as fibroblasts, astrocytes, Kupffer cells, smooth
muscle cells, keratinocytes and a wide variety of tumour cells,
including B-cell lymphoma, breast and colon carcinomas. Increas-
ing evidences indicate that TNF-a acts as tumour-promoting factor
and is linked to all steps of tumourigenesis including transforma-
tion, proliferation, angiogenesis, invasion and metastasis in many
cancers. Tumour necrosis factor-a has a particularly important
role in tumour microenvironment and promotes tumour cell

migration and invasion, however, the mechanism by which TNF-a
facilitates these events remains elusive. In this study, we discuss
the molecular mechanisms of TNF-a-induced tumour migration
and invasion, particularly focusing on the contribution of
TNF-a–NF-kB–Snail pathway.

TNF-a/NF-jB SIGNALLING PATHWAY

Tumour necrosis factor-a secretion can be induced by conserved
structural elements common to microbial pathogens, such as
lipopolysaccharide (LPS), that are bound by Toll-like receptors
(TLRs) (Aderem and Ulevitch, 2000). The TLRs transcriptionally
induce proinflammatory cytokines, including TNF-a, through the
convergence of the nuclear factor (NF)-kB and NF-AT signalling
pathways, and thereby enhance translational efficiency by a
mechanism targeting consensus 30-untranslated AU-rich elements
(ARE) in mRNA (Dumitru et al, 2000). Tumour necrosis factor-a
mediates its effect through two different receptors: TNF-a
receptor I (TNF-R1; p55 or p60) and TNF-a receptor II (TNF-R2;
p75 or p80) (Aggarwal, 2003). The TNF-R1 and TNF-R2 belong to
the TNF super family receptors that have structurally related
cysteine-rich extracellular domain. The TNF-R2 is expressed only
on endothelial and immune cells. Although TNF-R2 has been
shown to mediate signals that promote tissue repair and
angiogenesis, the functional consequences of TNF-R2 signalling
are not well characterised. The TNF-R1 is universally expressed on
all cell types and has a broader role in NF-kB activation versus that
of TNF-R2. The TNF-R1 ligation induces receptor trimerisation
and the recruitment of the adaptor protein TNF-R1-associated
death domain protein (TRADD) that binds to a specific death
domain (DD) in the cytoplasmic domain of TNF-R1. TNF-R1-
associated death domain protein also recruits TNF receptor-
associated factor (TRAF2) and activates IkB kinase (IKK) through
receptor-interacting protein (RIP). The RIP1 is ubiquitinated in a
TRAF2-dependent manner during TNF-R1 activation and is
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essential for TNF-a-induced IKK and NF-kB activation. RIP1
knock-out cells fail to activate IKK in response to TNF-a. The
TRAF2 recruits the IKK complex to the activated TNF-R1 by
interacting with the LZ motifs of IKKa and IKKb. The IKK
complex consists of IKKa, IKKb and NEMO (also known as IKKg).
In the classical activation pathway, activated IKKb phosphorylates
specific serine residues of IkB in a NEMO-dependent manner,
leading to IkB phosphorylation, ubiquitination and proteosome-
mediated degradation. The degradation of IkB releases the
transcription factors NF-kB, which translocates to the nucleus,
binds the kB site and activates gene transcription.
Nuclear factor-kB is composed of five distinct but structurally
related subunits, p50, p52, c-Rel, RelA and RelB. These subunits
can form various homodimeric and heterdimeric complexes;
each combination of subunits has a specific signalling function
(Ghosh et al, 1998). These subunits are transcriptionally inactive
when they form complexes with cytoplasmic IkB family proteins.
Ligation of TNF-R1 is both necessary and sufficient to induce the
cytotoxic and proinflammatory TNF-a response. The TNF-R2 may
contribute to TNF-R1 responses at low concentrations of TNF-a,
in which TNF-R2 captures TNF-a and passes it to TNF-R1
(Bradley, 2008). Although the TNF-a signal transduction pathway
is complex (Figure 1) and not fully understood, the pro-
inflammatory effects of TNF-a are primarily because of its ability
to activate NF-kB whereas the anti-tumor effects are due to
activation of Caspase 3 and induction of apoptosis. In almost all
cell types, when exposed to TNF-a, NF-kB is activated and leads to
the expression of a variety of inflammation-related genes.
Transient activation of NF-kB in response to stimulation by

cytokines induces the inflammatory response; however, sustained
activation of NF-kB has been associated with several aspects
of oncogenesis, such as promoting cancer-cell proliferation,
preventing apoptosis in drug resistance and increasing tumour
angiogenesis and metastasis.

TNF-a IN TUMOURIGENESIS

The association of inflammation and cancer has been well
recognised in many types of cancer and inflammation has been
regarded as the ‘seventh hallmark of cancer’ (Mantovani et al,
2008; Mantovani, 2009). Accumulating evidence has shown that
TNF-a is a key mediator of inflammation and cancer (Sethi et al,
2008; Balkwill, 2009). Constitutive production of TNF-a from the
tumour microenvironment is a characteristic of many malignant
tumours and its presence is often associated with poor prognosis.
As TNF-a receptors are expressed on both epithelial and stromal
cells, TNF-a can directly facilitates cancer development by
regulating the proliferation and survival of neoplastic cells and it
can also exert its effects indirectly through endothelial cells and
other inflammatory cells presented at the tumour microenviron-
ment. Tumour stromal cells, including macrophages, dendritic
cells and fibroblasts, generate several inflammatory cytokines such
as TNF-a, IL-1 and IL-6. These cytokines attract and recruit more
inflammatory cells to the tumour microenvironment to further
enhance the proliferation and survival of genetically altered
tumour cells. Furthermore, the inflammatory nature of the tumour
microenvironment can lead to additional genetic changes in cells
associated with malignancy.
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Figure 1 The downstream signalling pathways of TNF-a. The TNF-a can activate different pathways to induce apoptosis, cell survival or inflammation.
Tumour necrosis factor induces the apoptosis by binding caspase-8 to FADD and promotes inflammation and survival, which is mediated through TRAF2 via
JNK-dependent kinase cascade, MEKK kinase cascade and NF-kB activation by RIP.
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Tumour necrosis factor-a is involved in all steps of tumourigen-
esis (Balkwill, 2009). First, TNF-a induces tumour initiation and
promotion. Either TNF-a or TNF-a receptors deficient mice have
reduced susceptibility to chemically induced skin cancers and
develop fewer experimental metastases. In TNF-a-deficient mice,
okadaic acid has reduced tumour-promoting activity and the
development of TPA-induced skin cancer is delayed. Inhibition of
TNF-a results in a marked reduction in tumour onset and tumour
burden (Karin and Greten, 2005).
Tumour necrosis factor-a-induced tumour initiation and tumour

promotion are mediated by the activation of NF-kB-, PKCa- and
AP-1-dependent pathways. Nuclear factor-kB is critical for TNF-a-
induced tumour promotion. In mouse epidermal JB6 cells, TNF-a
treatment increases NF-kB activity in a dose-dependent manner
and TNF-a-induced NF-kB activation is essential for neoplastic
transformation of these cells (Hsu et al, 2001). Second, TNF-a
enhances tumour cell proliferation. It serves predominantly as a
mutagen to promote the proliferation and survival of many tumour
cell lines without inducing cell differentiation. Once again, NF-kB
activation is essential for TNF-a-induced survival and proliferation.
Inhibition of nuclear translocation of NF-kB specifically blocks
TNF-a-induced cell proliferation. The TNF-a also promotes tumour
cell survival through the induction of genes encoding NF-kB-
dependent antiapoptotic molecules (Shishodia and Aggarwal,
2004). In addition, TNF-a not only acts as an autocrine growth
factor but also induces the expression of other growth factors such
as amphiregulin, EGFR and TGF-a, leading to increased tumour
proliferation. Third, TNF-a enhances tumour angiogenesis. It
mediates tumour angiogenesis through various angiogenic factors
such as IL-8 and VEGF, and also is a critical regulator of VEGF and
jagged-1 expression via a JNK- and AP-1-dependent pathway
(Johnston et al, 2009). Neutralising TNF-a function with a
polyclonal antibody completely blocks its angiogenic activity
(Leibovich et al, 1987). Finally, TNF-a also confers an invasive
and transformed phenotype onto tumour cells. Pre-treatment of the
animals with TNF-a increases lung metastases in an experimental
fibrosarcoma (Orosz et al, 1993). However, neutralising endogen-
ous TNF-a with an anti-TNF-a antibody reduces lung metastasis.
Tumour necrosis factor-a-mediated signalling maintains tumour
neovascularisation partly by inducing hepatocyte growth factor
(HGF) to support lung metastasis (Tomita et al, 2004). The TNF-a
also induces tumour cell invasion through NF-kB- and JNK-
mediated upregulation of migration-inhibitory factor (MIF) in
macrophages and through enhanced MMPs production in tumour
cells (Hagemann et al, 2005). In addition, in some cancer cells,
TNF-a enhances cells migration and metastasis through NF-kB-
dependent induction of the chemokine receptor CXCR4, monocyte
chemoattractant protein-1 (MCP-1), IL-8 and intercellular adhesion
molecule-1 (Kulbe et al, 2005). The TNF-a signalling through
NF-kB in resident macrophages creates an inflammatory micro-
environment that enhances LLC cells to metastasise (Stathopoulos
et al, 2008). It can also promote breast cancer cell migration through
upregulation of LOX (Liang et al, 2007). Furthermore, TNF-a
enhances the invasiveness of tumour cells through induction of
MMPs or a2b1 integrin (Montesano et al, 2005). Importantly, both
exogenous and macrophage-produced TNF-a accelerate the
epithelial-mesenchymal transition (EMT). The TNF-a enhances
the invasive property of cancer cells by inducing EMT through
Snail- or ZEB1/ZEB2-dependent mechanisms (Chua et al, 2007;
Chuang et al, 2008). Therefore, TNF-a promotes tumour metastasis
through its effects on tumour cells and stromal and inflammatory
cells within the tumour microenvironment.

THE NETWORK BETWEEN THE TNF-a/NF-jB AND
SNAIL DURING EMT

Epithelial-mesenchymal transition is a complex stepwise pheno-
menon that occurs during embryonic development and tumour

progression, and it also has a crucial role in chronic inflammatory
and fibrogenic disease (Thiery and Sleeman, 2006). It is
characterised by the disruption of intercellular junctions, replace-
ment of apical-basolateral polarity with front-to-back polarity and
acquisition of migratory and invasive phenotypes. It is a critical
early event for the invasion and metastasis of many carcinomas
(Cardiff, 2005; Thompson et al, 2005). The loss of E-cadherin is the
hallmark of EMT. Several transcription factors have been
implicated in the transcriptional repression of E-cadherin,
including zinc-finger proteins of the Snail/Slug family, Twist,
ZEB1, SIP1, and the basic helix-loop-helix factor E12/E47. Snail
was the first discovered and is the most important transcriptional
repressor of E-cadherin. Snail was identified in Drosophila as
a suppressor of the transcription of shotgun (an E-cadherin
homologue) in the control of embryogenesis (Nieto, 2002;
Barrallo-Gimeno and Nieto, 2005). Snail has a central role in
morphogenesis, as it is essential for the formation of the
mesoderm and neural crest, which requires large-scale cell
movements in organisms ranging from flies to mammals. Absence
of Snail is lethal because of severe defects at the gastrula stage
during development (Carver et al, 2001). Snail has a fundamental
role in EMT and breast cancer metastasis by suppressing
E-cadherin expression. In fact, overexpression of Snail was recently
found in both epithelial and endothelial cells of invasive breast
cancer but was undetectable in normal breast (Parker et al, 2004;
Martin et al, 2005). The expression of Snail in breast carcinomas is
associated with metastasis, tumour recurrence and poor prognosis
(Peinado et al, 2007). Snail also downregulates the expression
of other epithelial molecules, including Claudins, Occludins and
Muc1 and induces the expression of genes associated with a
mesenchymal and invasive phenotype, such as fibronectin and
MMP9. Expression of Snail is regulated by a complex integrated
signalling network; this includes integrin-linked kinase (ILK),
phosphatidylinositol 3-kinase (PI3-K), mitogen-activated protein
kinases (MAPKs), glycogen synthase kinase 3-beta (GSK-3b) and
NF-kB pathways (De Craene et al, 2005). Snail expression is
regulated by the NF-kB pathway through transcriptional and
post-translational mechanisms. First, Snail expression is directly
activated by the NF-kB homologue, Dorsal, in drosophila (Ip et al,
1992). Nuclear factor-kB also binds the human snail promoter
between �194 and �78 bp, leading to increased Snail transcription
(Barbera et al, 2004). Recently, Raf kinase inhibitor protein
(RKIP), a metastatic suppressor, was shown to inhibit NF-kB
activity, and conversely, Snail can repress the expression of RKIP.
Therefore, there is a circuitry between RKIP, NF-kB and Snail, in
which overexpression of Snail in tumours inhibits RKIP and
induce EMT (Katsman et al, 2009; Wu and Bonavida, 2009). In
addition, GSK-3b inhibition stimulates the transcription of Snail
by activating the NF-kB pathway (Bachelder et al, 2005).
Furthermore, in human mammary epithelial MCF-10A cells,
overexpressing a constitutively active Type I insulin-like growth
factor receptor (IGF-1R) leads to the activation of Akt, suppression
of GSK-3b and activation of NF-kB. This results in increased Snail
expression, downregulation of E-cadherin and the subsequent
induction of EMT (Kim et al, 2007). Tumour necrosis factor-a can
also activate Akt, which stimulates NF-kB by directly phosphory-
lating IKKa, and this results in the upregulation of Snail and
induction of EMT (Julien et al, 2007). Previously, we have shown
that Snail is a highly unstable protein targeted for degradation
by GSK-3b-dependent phosphorylation and SCFb�TRCP-mediated
ubiquitination (Zhou et al, 2004). In our recent study, we found
that TNF-a is the major signal that induces Snail stabilisation and
EMT induction (Wu et al, 2009). We showed that TNF-a greatly
enhanced the migration and invasion of tumour cells by inducing
the EMT programme through NF-kB-mediated Snail stabilisation.
Knockdown of Snail expression not only inhibits TNF-a-induced
cancer cell migration and invasion in vitro but also suppresses
LPS-mediated metastasis in vivo. The TNF-a/NF-kB-stabilised
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Snail is mediated by the transcription induction of CSN2, which
inhibits the phosphorylation and ubiquitination of Snail by
disrupting the binding of Snail to GSK-3b and b-Trcp, and
results in the stabilisation of Snail in a non-phosphorylated and
non-ubiquitinated functional state (Figure 2). CSN2 is the second
and most conserved component of the eight subunits of COP9
signalosome (CSN) complex, which controls the functional
assembly and activity of cullin-RING ubiquitin ligases (CRLs).
The majority of protein degradation in cells occurs through the
ubiquitin-mediated proteolytic pathway that catalyses the covalent
attachment of ubiquitin to target proteins by the concerted actions
of three enzymes, E1 (ubiquitin-activating enzyme), E2 (ubiquitin-
conjugating enzyme) and E3 (ubiquitin ligase). Ubiquitin E3
ligases provide the substrate specificity for ubiquitination reaction.
Cullin-RING ubiquitin ligase forms multisubunit complexes
including a cullin, a RING H2 finger protein (Rbx1 or 2), an
adaptor subunit (e.g., Skp1 for Cul1), and an F-box protein
(Nalepa et al, 2006). Cullin is a scaffold protein that serves as the
assembly centre for the recognition components of a large variety
of ubiquitin E3 ligases and their cognate ubiquitin E2 enzymes. For
example, the C-terminus of Cul1 binds Rbx1 that facilitates the
recruitment of the E2 to the complex, whereas the N-terminus of
Cul1 associates the adaptor Skp1, which links to an F-box protein
through the F-box motif. The F-box protein binds and positions
the substrate for ubiquitination by the E2. There are seven Cullins
in human and all cullins contain a conserved lysine residue in its
C-terminus that can be conjugated to the ubiquitin-related protein
Nedd8 (neddylation). Numerous studies show that Cullin neddyla-
tion is essential for the activation of E3 ligase activity of CRL.
De-neddylation, which removes the Nedd8 moiety, requires the
isopeptidase activity of COP9 signalosome (CSN) that consist eight
subunits in complex. De-neddylation results in the binding of
inhibitory protein CAND1 to Cullin. Thus, neddylation stimulates
the assembly of competent E3-substrate complexes with their

cognate E2 enzymes and that de-neddylation facilitates the
turnover of these complexes and results in the stabilisation of
substrate proteins. It will be interesting to determine whether
CSN2 expression correlates with tumourigenesis. Importantly,
TNF-a also promotes the activation of the Wnt/b-catenin pathway
through the suppression of GSK-3b activity in gastric tumour cells
(Oguma et al, 2008). In addition, Wnt signalling leads to the
sequestering of GSK-3b and the upregulation of Axin2 and thus
induces EMT by inducing the stabilisation as well as nuclear
localisation of Snail (Yook et al, 2006). Furthermore, Snail can
enhance the activation of Wnt signalling by interacting with
b-catenin and thus Snail establishes a positive feedback loop for
Wnt-dependent transcription (Stemmer et al, 2008). Strikingly,
both b-catenin and Snail are highly expressed in tumour cells at
the invasive front (tumour-stromal boundary) in which the level of
TNF-a is elevated. These cells lose the expression E-cadherin and
they dissociate from the tumour mass and infiltrate into the
surrounding stroma. It will be interesting to know whether the
synergistic interaction of Snail and b-catenin is required for EMT
induction and tumour cell invasion at the invasive front (Figure 2).

CONCLUSION

Tumour necrosis factor-a clearly has a major role in establishing
the link between inflammation and cancer. It contributes to the
development of the tissue architecture necessary for tumour growth
and metastasis. It also induces other cytokines, angiogenic factors
and MMPs and thus contributes to the increased growth and survival
of tumour cells. These tumour-promoting activities suggest that
inhibition of TNF-a is an effective strategy for cancer therapy. Indeed,
clinical trials with TNF-a antagonists are encouraging and show
promising effects. For example, D2E7 (a fully humanised anti-TNF-a
monoclonal antibody), infliximab (a chimeric immunoglobulin
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Figure 2 An overview of the signalling pathways mediated by TNF-a in metastasis. The TNF-a induces protein stabilisation of Snail and b-catenin by
inhibiting GSK-3b-mediated phosphorylation through NF-kB and Akt signalling pathways. It also induces CSN2 expression through a NF-kB-dependent
pathway. Together, these signalling events contribute to EMT induction and invasion in tumour cells.
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G1 monoclonal antibody against TNF-a), pegylated recombinant
humanised sTNF-R1, pegylated humanised anti-TNF-a fragment
(CDP870) and TNF-a synthesis inhibitors (p38 kinase inhibitors)
have now been used to treat various tumours (Szlosarek and Balkwill,
2003; Garber, 2009). However, further investigation is required to
determine whether these agents also inhibit Snail expression and
suppress other EMT-associated signalling events.
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