British Journal of Cancer (2005) 93, 924-932
© 2005 Cancer Research UK All rights reserved 0007 -0920/05 $30.00

npg)

www.bjcancer.com

No common denominator for breast cancer lymph node
metastasis
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The axillary lymph node status is the most powerful prognostic factor for breast cancer patients to date. The molecular mechanisms
that control lymph node metastasis, however, remain poorly understood. To define patterns of genes or gene regulatory pathways
that drive breast cancer lymph node metastasis, we compared the gene expression profiles of |5 primary breast carcinomas and their
matching lymph node metastases using microarrays. In general, primary breast carcinomas and lymph node metastases do not differ at
the transcriptional level by a common subset of genes. No classifier or single gene discriminating the group of primary tumours from
those of the lymph node metastases could be identified. Also, in a series of 295 breast tumours, no classifier predicting lymph node
metastasis could be developed. However, subtle differences in the expression of genes involved in extracellular-matrix organisation
and growth factor signalling are detected in individual pairs of matching primary and metastatic tumours. Surprisingly, however,
different sets of these genes are either up- or downregulated in lymph node metastases. Our data suggest that breast carcinomas do
not use a shared gene set to accomplish lymph node metastasis.

Published online 27 September 2005
© 2005 Cancer Research UK

Distant metastases are the main cause of death in breast cancer
patients. To successfully establish a metastatic colony, primary
tumour cells have to invade their surrounding host tissue and
enter the bloodstream. Subsequently, the neoplastic cells must
survive in the blood circulation, arrest in capillary beds of distant
organs and extravasate into the parenchyma. Finally, tumour cells
need to proliferate and establish vascularisation (Fidler, 1978;
Chambers et al, 2002). The biology of this multistep metastatic
process has mainly been studied for tumour cells that disseminate
via the haematogenous route. In breast cancer, however, the
axillary lymph nodes are often the first sites to harbour metastases
(Stacker et al, 2002). These regional metastases are not life
threatening per se, yet their presence or absence is the most
powerful prognostic factor for disease course that is currently
available for breast cancer patients (McGuire, 1987; Foster, 1996).
Approximately one-third of women with breast cancer and
tumour-negative lymph nodes develop distant metastases, whereas
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about one-third of patients with positive lymph nodes remain free
of distant metastases 10 years after local therapy (Rosen et al, 1989;
Hellman, 1994). Given this lack of correlation between the lymph
node status and tumour recurrence at distant organs, it remains
unclear whether metastasis to distant sites proceeds sequentially
from lymph node metastasis or in parallel by a haematogenous
route (Chambers et al, 2002). Moreover, it is still under debate to
what extent lymph node metastasis depends on lymph vessel
growth or on invasion of existing lymph vessels (Padera et al, 2002;
Nathanson, 2003; Williams et al, 2003). The identification of
molecules promoting lymphangiogenesis and lymphatic metastasis
in mouse models, such as the vascular endothelial growth factor
(VEGF) family members C and D, suggests that lymph vessel
neogenesis is an essential step in the process of lymph node
metastasis (Karpanen et al, 2001; Mandriota et al, 2001; Skobe
et al, 2001; Stacker et al, 2001). The invasion into the lymph nodes
has also been suggested to be activated by chemokines, including
CXCL12 that acts on its receptor CXCR4 (Muller et al, 2001).
Furthermore, lymph node metastasis has been proposed to be a
passive, mechanical process, based on the fluid pressure within a
tumour, washing cells into draining lymphatics (Hartveit, 1990).
However, once passively transported cells have reached the lymph
nodes, they have to be able to proliferate in this new environment
in order to form a metastasis.

Thus, there is a need for a better understanding of the molecular
basis of breast cancer initiation and metastasis to improve



prognosis prediction and develop targeted, molecular-based
therapies. In the present study, we compared the gene expression
profiles of primary tumours and their matching lymph node
metastases obtained from the same patient. Our aim was to define
patterns of genes or gene regulatory pathways that drive the
metastatic dissemination of primary breast cancer cells to the
lymph nodes.

MATERIALS AND METHODS

Tissue samples

A total of 15 breast cancer patients with lymph node metastases at
diagnosis, four patients with two primary breast carcinomas and a
metastasis, and additional primary tumour samples (n=31) for
real-time PCR analysis were selected from the fresh-frozen tissue
bank of the Netherlands Cancer Institute. The tumour and
metastatic material was snap-frozen in liquid nitrogen within 1h
after surgery. Before and after cutting sections for RNA isolation,
one slide was stained with haematoxylin and eosin to select only
samples of 60% or more tumour cells in primary tumours and of
70% or more in lymph node metastases. Patients had no prior
malignancies. A tumour was oestrogen receptor-o (ER-o) negative
when less than 10% of the cells showed staining by immuno-
histochemistry.

For real-time PCR analysis, fresh-frozen material from normal
lymph nodes (n = 10) and normal skin (n = 10) was obtained from
patients without breast cancer undergoing a preventive breast
ablation and normal breast tissue (n=10) was obtained from
healthy women undergoing breast reduction. Additionally, total
RNA of normal bone marrow, normal liver and normal lung was
obtained from BD Biosciences (Palo Alto, USA).

This study was approved by the Medical Ethical Committee of
the Netherlands Cancer Institute.

RNA isolation and amplification, cRNA labelling and
hybridisation

RNA isolation and amplification were performed as described
previously (Weigelt et al, 2003). Amplification yields were 1000 -
2000-fold and quality was checked on agarose gel. Detailed
protocols for RNA isolation and amplification can be found at
http://www.nki.nl/nkidep/pa/microarray/protocols.htm.

cRNA labelling and hybridisation were performed as described
previously (Weigelt et al, 2003). The reference pool consisted of
pooled cRNA of equal amounts of 100 primary breast tumours. For
each tumour and metastasis, two hybridisations were performed
using a reversal fluorescent dye. Detailed protocols for cRNA
labelling and hybridisation can be found at http://www.nki.nl/
nkidep/pa/microarray/protocols.htm.

Fluorescent images of the microarrays were obtained using the
Agilent DNA microarray scanner (Agilent Technologies, Palo Alto,
USA). Fluorescent intensities of the images were quantified using
ImaGene 5 (Biodiscovery, Marina Del Rey, USA) and corrected for
background noise. The original data are available at http://
www.nki.nl/nkidep/pa/microarray.

Microarray slides

Complementary DNA (cDNA) microarray slides were manufac-
tured at the Central Microarray Facility (CMF) of the Netherlands
Cancer Institute, Amsterdam, The Netherlands. Sequence-verified
cDNA clones (InVitrogen, Huntsville, USA) were spotted using the
Microgrid II arrayer (Apogent, Cambridgeshire, UK) with a
complexity of 19200 spots per glass slide. The complete list of
genes and controls spotted on the cDNA arrays, as well as detailed
protocols for spotting and preparation of the slides, is available on
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the CMF website (http://microarrays.nki.nl/download/geneid.html,
http://microarrays.nki.nl/download/protocols.html).

Analysis and statistics

Fluorescence intensities of scanned images were quantified,
normalised and ratios were calculated and compared to the
intensities of the reference pool (Yang et al, 2002). Weighted
averages and confidence levels were computed according to the
Rosetta Error Model (Hughes et al, 2000). To determine genes that
discriminate between primary tumours and metastases, we
employed a supervised classification method using a nearest
prototype classifier, and a leave-one-out crossvalidation method
(van ’t Veer et al, 2002).

A ‘predicting analysis of microarrays’ (PAM) was performed to
find genes that accurately predict classes based on class labels
(supervised analysis) (Tibshirani et al, 2002), using all 18 336 genes
of the array. After training, a 10-fold balanced crossvalidation was
employed.

Differentially expressed genes between primary tumours and
lymph node metastases were selected by the ‘significance analysis
of microarrays’ (SAM) (http://www-stat.stanford.edu/~tibs/SAM)
(Tusher et al, 2001). The input criteria selected for SAM included a
Delta of 0.4 and one-fold or greater expression in the primary
breast tumour group as compared to the lymph node metastases
group using all 18336 genes. In addition, a paired two-class
SAM analysis was performed to identify genes consistently
regulated between primary and metastatic tumour pairs, using
all genes.

Gene clustering and tumour clustering were performed as
described previously (Weigelt et al, 2003). For tumour clustering,
complete linkage clustering was based on Xdev (defined as
log(ratio) divided by error of log(ratio)) values across all 18k
genes. Mapping by multidimensional scaling was performed as
described previously (Weigelt et al, 2003). The permutation test to
compute the within-pair-between-pair scatter ratio (WPBPSR)
was repeated 20000 times.

Additional microarray information

The description of this study followed the MIAME guidelines
issued by the Microarray Gene Expression Data Group (Brazma
et al, 2001).

Real-time quantitative PCR

A 1pg portion of total RNA was used for cDNA synthesis, as
described previously (Lambrechts et al, 1999). Real-time quanti-
tative PCR primers (Sigma Genosys, Cambridge, UK) and
eventually 5'-fluorescently FAM labelled probes (Applied Bio-
systems, Nieuwerkerk a/d IJssel, The Netherlands) for matrix
metalloprotease (MMP)3 and MMP9 were selected using the
Perkin Elmer Primer Express™ software (PE, Foster City, USA).
The primer and probe sequences of VEGF-C, VEGF-D, CXCR4 and
CXCL12 were selected from the literature (Niki et al, 2000;
Schrader et al, 2002; Van Trappen et al, 2003) (Supplementary
Table S1). Commercially available primers and probes for GAPDH
and f-actin were used (Applied Biosystems) as housekeeping
genes. The quantities found for the f-actin control and marker
gene in singleplex reactions (ABI PRISM 7700, Applied Bio-
systems) were used to calculate the relative quantity of gene
expression and that of GAPDH to confirm ff-actin expression. Each
experiment was performed in triplicate. The quality control of the
PCR reactions was assessed by standardised PCR conditions,
including in each experiment a genomic DNA control and a
negative nontemplate control.
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RESULTS

Gene expression profiling of primary breast carcinomas
and matching lymph node metastases

We selected 15 breast cancer patients with axillary lymph node
metastases at diagnosis whose invasive primary and metastatic
tumours were stored in the tissue bank of the Netherlands Cancer
Institute. No other selection criteria regarding age of the patient,
ER status, tumour diameter or histological type of breast
carcinoma were applied (Table 1). The patients had no prior
malignancies and did not receive neo-adjuvant treatment. At the
most recent follow-up (median 2.7 years), four patients (patient
number 7, 8, 11 and 14) developed distant metastases.

We used human 18k cDNA microarrays to study the gene
expression profiles of matching primary breast tumours and
lymph node metastases and to gain an insight into specific changes
associated with breast cancer metastasis to the lymph nodes. First,
we employed a supervised classification method to identify genes
that could discriminate the group of primary tumours from that of
lymph metastases. The top ranked genes to separate the two classes
in a nearest prototype classifier were determined and used in a
crossvalidation procedure (Hughes et al, 2000; van ’t Veer et al,
2002). No classifier, employing an incremental number of genes,
which performed significantly better than random classification
could be determined (data not shown). A second supervised
analysis, the PAM, was used to classify and predict the category of
the primary tumours and lymph node metastases on the basis of
their gene expression profiles (Tibshirani et al, 2002). No subset of
genes could be identified using PAM that can distinguish primary
from metastatic tumours since the classification accuracy obtained
from the crossvalidation procedure never exceeded 57% (Supple-
mentary Figure S1). We further used the SAM (Tusher et al, 2001)
to select genes differentially expressed between the primary breast
carcinomas and the lymph node metastases. The SAM did not
identify a single gene that is differentially expressed between the
two groups (Supplementary Figure S2). Also a paired two-class
SAM analysis did not find significant genes that are consistently
regulated between primary and metastastic tumours (false
discovery rate (FDR) of 5%) (data not shown). When we lowered
the FDR to 10%, 14 genes were identified to be uniformly regulated
between primary tumours and lymph node metastases (data not
shown). This set of genes is, however, a very small subset from the

Table | Patient characteristics of |5 patients with matching primary
tumours and lymph node metastases

Primary
Age at tumour  Number
Patient diagnosis diameter positive ER-a WHO type
number (years) (mm) LN status carcinoma
I 774 30 1714 + IDC
3 40.5 80 12/12 - IDC
4 704 45 2/8 + Mucinous
5 66.3 18 1/18 + IDC
6 49.0 50 2/8 - IDC
7 65.6 18 14/14 - IDC
8 37.6 35 6/24 — Metaplastic
9 56.5 35 17/17 + ILC
10 550 22/12% 16/18 + ILC
I 49.2 35 1117 + IDC
12 89.0 21724% 3/18 + IDC
14 37.6 30 2/22 + IDC
15 70.1 23 2/17 + IDC
16 837 30 2/12 — IDC
17 39.8 35/18° 2/14 - IDC

*One tumour with two foci of different sizes. LN =lymph node; ER = oestrogen
receptor;, WHO =World Health Organization; IDC =invasive ductal carcinoma
(NOS); ILC =invasive lobular carcinoma.
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18336 genes analysed with a relatively high FDR. In summary, our
findings suggest that the primary breast carcinomas and lymph
node metastases do not differ at the transcriptional level by a
common subset of genes.

To further scrutinise our results, we examined the similarity
between primary and matching metastatic tumours. Unsupervised
hierarchical clustering, the grouping of tumours based on their
similarity measured overall genes on the array, revealed that the
gene expression profiles of primary breast and matching regional
metastatic tumours are highly alike (Figure 1A). The division of
the dendrogram into two branches is based on the highly
dominant ER-o expression profile displayed by nine of the 15
tumours and matching metastases (Gruvberger et al, 2001; van ’t
Veer et al, 2002; Weigelt et al, 2003).

A multidimensional scaling analysis further emphasises the high
similarity in overall gene expression between primary breast
carcinomas and their lymph node metastases, since all matching
primary and metastatic tumours, except those of patient 6,
established a pair (Supplementary Figure S3).

Given the relatively small number of samples included in this
study, it is essential to ascertain that the similarity we observed
between primary and metastatic tumours was not a result of
chance. Therefore, a computational analysis was performed to
establish the WPBPSR (Weigelt et al, 2003). Subsequently, we
determined the statistical significance of this WPBPSR for the 15
given pairs by a permutation test. The similarity between matching
pairs of primary breast carcinomas and lymph node metastases
was shown to be significantly higher than the similarity between
random pairs (WPBPSR 0.45 vs 1.0+ 0.05; P<0.0001) (Figure 1B).
This finding demonstrates that the similarity within the matching
pairs was not due to chance, but rather that the expression profiles
of primary breast carcinomas are highly similar to their
corresponding metastatic lesions.

To validate our finding that gene expression profiles of primary
breast carcinomas are maintained in their lymph node metastases,
a random subset of samples from our matching pairs (pair number
3, 4, 5, 12, 16, 17) was re-profiled and analysed using a different
platform of inkjet-synthesised oligonucleotide microarrays, con-
taining approximately 25000 human genes. The primary tumours
were not hybridised against a reference pool, but directly against
their matching lymph node metastases obtained from the same
patient. Using different analytical approaches, including para-
metric and nonparametric methods, no significant universal
differences between the groups of primary and metastatic tumours
could be found (data not shown). Nonetheless, an unaccordant
difference for individual pairs was observed in a small number of
genes comparable to false discovery.

The similarity in gene expression detected between primary
tumours and their affiliated lymph node metastases is also
reflected in the similarity of their histology (Figure 2). Although
the morphological spectrum of breast cancers varies widely, the
resemblance of the phenotypes of the pairs of primary tumours
and lymph node metastases is striking. Metastases in the lymph
nodes (Figure 2B and D) share distinct histological characteristics,
like the growth pattern, with their primary ductal carcinomas
(Figure 2A and C). Phenotypically, primary tumour and metastasis
are visually distinguishable only by the normal mammary gland
tissue and the lymph node capsule adjacent to the tumour mass
itself.

Similarity of primary breast carcinomas and matching
metastases based on tumour-specific genes

Since both primary and metastatic tumour tissues were derived
from one individual, we attempted to show that the similarity in
overall gene expression between primary breast carcinomas and
their metastases is based on genes specific for the primary tumour
rather than specific for the patient. We selected two patients who
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(A) Unsupervised hierarchical clustering of 30 primary breast carcinomas and lymph node metastases from |5 patients, measured over 18336

genes. The dendrogram has two large branches; the orange bar represents ER-a-negative and the green bar ER-a-positive tumours. Alignment of all matching
pairs was established. (B) Permutation test of the WPBPSR. Blue: null hypothesis distribution. Distribution after randomisation of the labels of the primary
and metastatic tumours, repeated 20000 times (WPBPSR = | +0.05). The red line represents the WPBPSR of the |5 matching pairs (WPBPSR =0.45;
P<0.0001). Prim = primary tumour; LNmeta = lymph node metastasis; Prim n, LNmeta n (n= | —7) = patient number primary tumour, patient number

lymph node metastasis, respectively.

developed bilateral breast cancer and a lymph node metastasis of
either one of the two primary tumours (patient 18 and 21), one
patient with contralateral breast cancer and a distant metastasis in
the ovary (patient 24) and one patient who developed two primary
breast carcinomas in one breast and a lymph node metastasis
(patient 23) (for patient and tumour characterisation, see Table 2).
The primary and metastatic tumours were then analysed for their
gene expression profiles. Unsupervised hierarchical clustering
using all 18366 genes underscored our histological observations,
namely that the gene expression profile of a primary breast tumour
is more similar to that of its affiliated metastasis than to that of the
second primary tumour (Figure 3).

Genes differentially expressed between pairs of primary
breast tumours and matching lymph node metastases

To gain an insight into the pattern of genes or gene regulatory
pathways allowing the primary tumours to metastasise to the
lymph nodes, we selected genes that were significantly expressed in
both primary tumour and lymph node metastasis of one patient as
computed by the Rosetta error model (P<0.01) (Hughes et al,
2000; van ’t Veer et al, 2002). Of these significantly expressed genes
per pair, on average more than 97% were coexpressed, and 3 -149
genes were antiexpressed (Supplementary Table S2), that is,
upregulated in the primary tumour and downregulated in the

© 2005 Cancer Research UK

lymph node metastasis or reciprocally, compared to a reference
pool of 100 primary breast tumours. The scrutiny of the molecular
functions of the differentially expressed genes in the 15 matching
pairs revealed several repeating biological themes (Supplementary
Table S3). On average, 18% (range 4.7-66.6%) of the contrarily
expressed genes within a matching pair were extracellular-matrix
and cell-matrix interaction molecules (e.g., MMP3, MMP9,
osteopontin, CD44, COL1A1, L-selectin, VCAM-1, integrin alpha
2, thrombospondin 4) and 4.2% (range 0-20%) growth factors,
growth factor receptors and growth factor-binding proteins (e.g.,
insulin-like growth factor IGF1, IGF2, t-PA, IGFBP3), as well as
immune response, cell cycle and signal transduction molecules
(see Supplementary Table S2). Since only approximately 1% of the
18336 genes on the cDNA array represent genes involved in
extracellular structure organisation and biogenesis, defined by the
gene ontology tool ‘FatiGO’ (Al-Shahrour et al, 2004) (data not
shown), we see a noticeable increase in this functional group of
genes antiexpressed within the matching pairs. No distinct pattern
of these differentially expressed genes can be identified, since
different sets of these genes are upregulated in some lymph node
metastases and downregulated in others compared to their
matching primary breast tumours.

Matrix metalloproteases, one tissue inhibitor of metallopro-
teases (TIMP-3) and members of the IGF family are regularly
contrarily expressed between primary tumours and lymph node

British Journal of Cancer (2005) 93(8), 924-932
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Primary breast carcinomas

Lymph node metastases

Figure 2 Haematoxylin and eosin staining of two paraffin-embedded primary infiltrative ductal breast carcinomas and their matching lymph node
metastases ( x 5). (A, €) Normal mammary gland tissue next to tumour cells. (B, D) The lymph node capsule adjacent to tumour cells. S = stromal cells;

T =tumour cells.

Table 2 Patient characteristics of four patients with two primary breast
tumours and a metastasis of either of the two tumours

Primary
Age at tumour  Number
Patient diagnosis diameter positive ER-o WHO type
number (years) (mm) LN status carcinoma
I8A 554 12 0/10 + IDC
18B 554 17 3/11 + IDC
21A 449 24 2/18 - IDC
21B 489 37 0/10 - IDC
23A 66.0 36 1713 - IDC
238 66.0 24 0/13 + ILC
24A 629 I5 o/ - IDC
24B 64.5 18 0/16 + IDC

See Table | footnote for abbreviations.

metastases. The differential expression of MMP3 in primary and
metastatic tumours of patient 1 and 7 and of MMP9 in patient 1
and 15 could be confirmed by quantitative real-time PCR
(Supplementary Figure S4).

Expression of genes determining the lymph node as
metastatic destination of tumour cells

When analysing the significant genes antiregulated in the
individual pairs, we expected to identify chemokines, since they
had been reported to be differentially expressed between primary
tumours and various metastasis sites in a mouse model (Muller
et al, 2001). However, no chemokine was differentially regulated in
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Figure 3 Unsupervised hierarchical clustering of eight primary breast
carcinomas, obtained from four patients with two primary tumours, and
matching metastases, measured over 18336 genes. Alignment of primary
tumours with their metastases, not with the second primary tumour, is
shown. Prim = primary tumour; LNmeta=Ilymph node metastasis; Me-
ta=distant metastasis; Prim n, LNmeta/Meta n (n=18, 2I, 23,
24) =patient number primary tumour, patient number metastasis,
respectively; Prim nA, Prim nB=two primary tumours; LNnA/B = lymph
node metastasis developed from primary tumour A or B.

our matching pairs, perhaps due to changes in gene expression
that are too subtle to be detected by microarrays. We subsequently
determined CXCR4 and CXCL12 expressions by quantitative real-
time PCR in the pairs as well as in normal tissues of the breast,
lymph nodes, bone marrow, lung, liver and skin (Figure 4A and B).
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Figure 4 Relative quantity of expression of (A) CXCR4, (B) CXCLI2 and (€) VEGF-C and VEGF-D in primary breast carcinomas, lymph node
metastases and various normal tissues. LN =Ilymph node. Primary tumours LN metastases = primary breast carcinomas that developed lymph node
metastases only; primary tumours distant metastases = primary breast carcinomas that developed distant metastases only; primary tumours distant and LN
metastases = primary breast carcinomas that developed distant and lymph node metastases; primary tumours no metastases = primary breast carcinomas
that developed no metastases. The median expression level for each marker gene within a group is indicated by a horizontal line.

Still, using a more sensitive technique, we did not detect a
difference in CXCR4 and CXCL12 expressions between primary
breast carcinomas and matching lymph node metastases. We
found the median expression of CXCR4 to be significantly higher
in breast tumours, in both primary and metastatic carcinomas,
than in normal mammary tissue (P=0.0027 and 0.016, respec-
tively) (Figure 4A). CXCR4 was, however, even more highly
expressed in normal bone marrow and normal lung, two breast
cancer metastasis sites, than in the breast tumours studied
(Figure 4A). CXCL12 expression was higher in breast cancer
metastasis organs, normal lymph nodes, bone marrow, liver and
lung, compared to skin, a site of low metastasis frequency, as
described (Muller et al, 2001) (Figure 4B). However, CXCL12
expression was highest in normal mammary tissue, and no
difference in the median CXCL12 expression between normal
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lymph nodes or liver and the 15 matching pairs could be observed
by quantitative real-time PCR.

A second group of molecules we expected to be highly expressed
in our primary breast carcinomas were the vascular endothelial
growth factor genes VEGF-C and VEGF-D, as their overexpression
was associated with lymph vessel neogenesis and increased
lymphatic metastasis in mice (Karpanen et al, 2001; Mandriota
et al, 2001; Skobe et al, 2001; Stacker et al, 2001). We determined
the VEGF-C/D expression levels by quantitative real-time PCR in
our matching pairs, and in primary tumours of 10 breast cancer
patients who exclusively developed distant metastases, of 10
patients who developed both lymph node and distant metastases
and of 11 patients who did not develop any regional or distant
metastases within a median follow-up of 8.6 years. The tumours
show large spread in VEGF-C/D expression (Figure 4C). No

British Journal of Cancer (2005) 93(8), 924-932
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significant differences in the median expression levels of these two
molecules between the different groups of primary breast
carcinomas investigated were found.

Prediction of the lymph node status

Although lymph node metastasis is a prognostic factor for disease
outcome in breast cancer, it is still unknown whether metastasis to
distant sites proceeds sequentially from lymph node metastasis or
in parallel by a haematogenous route. The finding that expression
profiles of human primary breast tumours can predict the risk of
distant metastasis development, in patients with both lymph node-
negative and lymph node-positive disease (van de Vijver et al,
2002), suggests that the molecular mechanisms underlying distant
haematogenous and lymphogenic metastasis are distinct. Further-
more, in this data set, including 151 lymph node-negative and 144
lymph node-positive patients, no expression signature predicting
the lymph node status could be determined (Supplementary Figure
S5A and S5B). In contrast, Huang et al (2003) identified a gene
expression pattern associated with the breast tumour’s likelihood
of having lymph node metastases at diagnosis. For validation, we
applied this lymph node expression signature on the data set of the
295 patients described above. The classification accuracy obtained
from the crossvalidation procedure for predicting the lymph node
status in these patients was however only about 50% (Supplemen-
tary Figure S5C and S5D). This implies that the expression pattern
illustrated (Huang et al, 2003) is not a general predictor of nodal
metastasis in primary breast carcinomas.

DISCUSSION

Elucidation of the molecular mechanism underlying lymph node
metastasis is likely to have implications for the clinical manage-
ment of breast cancer. The data presented here show that gene
expression profiles of primary breast carcinomas are maintained
in their lymph node metastases, which has been suggested earlier
in two patients using a smaller subset of genes (Perou et al, 2000).
In this larger study, we have not been able to identify common
differentially expressed genes that discriminate the group of
primary tumours from the group of lymph node metastases using
two different microarray platforms. This finding is rather
surprising, since we only analysed metastases from one metastasis
site. Furthermore, we showed by expression profiling of two
primary breast carcinomas and a metastasis obtained from the
same patient that the similarity between primary and metastatic
tumours can be attributed to tumour-intrinsic rather than to
patient-specific factors.

We were not able to develop a classifier predicting the lymph
node status in a series of 295 primary breast tumours. These data
suggest that lymph node metastasis occurs independent of distant
haematogenous metastasis, and therefore that the axillary lymph
node status is not the most reliable predictor of disease course in
breast cancer patients.

Moreover, the molecular mechanisms determining breast cancer
lymph node metastasis remain poorly understood. Whether the
expression of VEGF-C and VEGF-D also plays a role in
lymphangiogenesis and the formation of lymph node metastases
in human tumours, as described for immunodeficient mice
(Karpanen et al, 2001; Mandriota et al, 2001; Skobe et al, 2001;
Stacker et al, 2001), is still unknown. We did not find a correlation
between the VEGE-C and/or VEGF-D expression level, determined
by real-time PCR, and the formation of lymph node metastases in
the human primary breast carcinomas studied. In this context, it is
important to note that the results obtained with the experimental
VEGF breast tumour models and the correlative clinical studies are
rather inconsistent. The expression of VEGF-C in MB-435 tumours
caused an increase not only of lymph node but also of lung
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metastases (Skobe et al, 2001). MCF-7-VEGF-C tumours caused
lymph node metastasis in nude mice in one study (Mattila et al,
2002), but in another report they did not (Karpanen et al, 2001). In
clinicopathological studies, a positive correlation between VEGF-C
levels in primary breast carcinomas and lymph node metastases
was observed only once (Kurebayashi et al, 1999; Gunningham
et al, 2000; Kinoshita et al, 2001; Koyama et al, 2003). Vascular
endothelial growth factor-D expression was shown to be as-
sociated with lymph node metastasis (Kurebayashi et al, 1999;
Nakamura et al, 2003), although an inverse correlation with
lymphatic invasion and the number of nodal metastases
was described (Koyama et al, 2003). Taken together, these
results indicate that the involvement of VEGF-C/D in human
breast tumour lymph node metastasis is far from firmly
established.

In contrast to the mammary tumours in the animal models
(Karpanen et al, 2001; Skobe et al, 2001; Mattila et al, 2002), we did
not observe intratumoral lymph vessels and only a low density in
the peritumoral areas in our human invasive breast cancer (data
not shown), in agreement with others (Williams et al, 2003). In line
with this observation, no association between the presence of
intratumoral lymphatic structures and the axillary nodal status or
survival could be found, but between the peritumoral lymph vessel
density and poor outcome in ductal breast cancer (Bono et al,
2004). The peritumoral lymphatics in human breast carcinomas
appear to be mature pre-existing vessels rather than newly
proliferating ones, as no cycling endothelial cells could be
found (Williams et al, 2003). These findings not only reveal
fundamental differences in the histology between human and
mouse mammary tumours metastasising to the lymph nodes, but
also suggest that human breast tumours disseminate by invasion of
pre-existing peritumoral lymphatics and do not require lymph
neogenesis.

The organ-specific spread of breast cancer cells to different sites,
including the lymph nodes, has been reported in a mouse model to
require the chemokine receptor CXCR4 on tumour cells and the
chemokine CXCL12 in target organs (Muller et al, 2001). Using
real-time PCR, we found CXCR4 expression to be significantly
higher in breast carcinoma cells than in normal mammary tissue,
in concordance with others (Muller et al, 2001; Balkwill, 2004). Our
present results suggest a role for CXCR4 in breast tumorigenesis
rather than in the invasion of metastasis target organs. Indeed, it
has recently been shown that carcinoma-associated fibroblasts
secrete CXCL12 and therewith stimulate tumour proliferation
directly by acting through CXCR4 found on the breast cancer cells
(Orimo et al, 2005).

The subtle differences in gene expression observed within the
individual pairs of matching primary tumour and lymph node
metastasis did not reveal one common lymph node metastasis-
specific gene set. Hao et al (2004) also identified differences within
tumour and lymph node metastasis pairs obtained from one
individual, although employing a less detailed analysis. We did
identify common gene groups, involved in ECM remodelling, cell-
matrix interaction, growth factor signalling and immune response,
to be differentially expressed between primary and metastatic
tumours. Our findings might reflect the dynamic changes in
tumour cell interactions with the microenvironment, and suggest
that most of the subtle differences between primary breast tumours
and lymph node metastases relate to the stromal component rather
than to the tumour itself. An example is MMP9, which is highly
expressed in the lymph node metastasis of patient 1 (1318 relative
expression units), and more than 40 times lower in the metastasis
of patient 15 (32 relative expression units), who in turn shows high
MMP9 expression in the primary breast tumour (658 relative
expression units) (Supplementary Figure S4). Based on these data,
metastasising primary breast carcinomas appear to be unique and
complex organs that may use individual sets of genes to
accomplish lymph nodes metastasis.
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In summary, based on the result that no classifier in primary
breast tumours predicting the lymph node status could be
identified, our data suggest a model that predicts lymph node
metastasis to occur independent of distant metastasis as a random
event. Further studies are needed to solve this very important issue.
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