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Disorganisation of the actin cytoskeleton is a characteristic feature
of transformation (reviewed in Pawlak and Helfman, 2001) and the
potential to reinstate normal cytoskeletal structure and function
represents a promising target for cancer therapy. Tropomyosins
(TMs) contribute to actin cytoskeleton integrity by binding and
stabilising actin filaments (Lin et al, 1997; Gunning et al, 1998), and
decreased expression of tropomyosin 1 (TM1) is characteristic of
cellular transformation in a number of cell types (Hendricks and
Weintraub, 1981; Cooper et al, 1985; Bhattacharya et al, 1990;
Masuda et al, 1996; Wang et al, 1996; Hughes et al, 2003).
Exogenous TM1 expression can reverse transformation, suggesting
a direct role for TM1 in transformation (Prasad et al, 1993;
Braverman et al, 1996; Shah et al, 2001) and, conversely, enforced
downregulation of TM1 causes the acquisition of transformed
characteristics (Boyd et al, 1995). These observations have led to the
proposal that TM1 may be a tumour suppressor (Prasad et al, 1999).

Cell lines derived from human neuroblastoma tumours are
grouped according to three characteristic phenotypes that reflect
changes in the underlying actin cytoskeleton. The three morpho-
logical types, substrate (S), intermediate (I) and neuroblastic (N),
represent a decreasing order of cell size and substrate adhesion
(Biedler et al, 1973; Ross et al, 1995) and a corresponding
conversion to anchorage independence and tumorigenicity (Spen-
gler et al, 1997). Notably, exogenous expression of the actin-
binding protein actinin-4 in I-type cells reverted the cells to an S-
type morphology (Nikolopoulos et al, 2000). This suggests that the
actin cytoskeleton of neuroblastomas may be responsive to
modulation by actin-binding proteins.

To date, the effect of TM1 expression on actin cytoskeleton
organisation has primarily been studied in oncogene-transformed
rat fibroblasts and little is known about the potential for TM1 to
restore cytoskeletal structure and function in human cancer.
Considering the well-described correlation between morphological
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Tropomyosin | (TM1) is downregulated in a number of transformed cell types, and exogenous expression of TM| can restore actin
organisation and reverse cellular transformation. We find that TMI is also downregulated in human neuroblastoma cell lines,
correlating with increasing malignancy. However, exogenous TM| does not restore actin cytoskeleton organisation in neuroblastoma
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characteristics and tumorigenicity in neuroblastoma, we have
chosen to investigate the function of TM1 in cells derived from
human neuroblastomas. We show that TMI1 expression is down-
regulated in I- and N-type neuroblastoma cell lines and inversely
correlates with increased expression of the prognostic indicator N-
Myc. However, exogenous expression of TM1 in these cell lines
does not alter either cellular morphology or the actin cytoskeleton
organisation. Therefore, expression of TM1 alone is insufficient to
restore normal cytoskeletal structure and function to the
neuroblastoma cell lines tested.

MATERIALS AND METHODS

Antibodies and plasmids

Rabbit polyclonal «-f/9d antibodies that recognised TMI, and
other TMs, have been previously described (Schevzov et al, 1997).
Anti-o-tubulin was from Sigma (MO, USA), anti-N-myc was
purchased from Oncology Research Products (CA, USA) and HRP-
conjugated secondary anti-mouse and anti-rabbit antibodies were
purchased from Amersham Pharmacia Biotech (UK). The TM1
expression construct (pTMI1) consists of the 852bp TM1 coding
sequence inserted into the Sall and BamHI coding sites of
modified pEGFP-N1 (Clontech, CA, USA) that has the GFP coding
sequence excised.

Cell culture and transfection

The three neuroblastoma cell lines, SH-EP (S-type), BE(2)-C (I-
type) and IMR32 (N-type), were routinely cultured in Dulbecco’s
modified Eagle’s medium with 10% fetal bovine serum at 37°C with
5% CO,. Cultures of IMR32 and BE(2)-C cells were transfected
with either pTM1 or empty vector using Lipofectamine 2000 as per
the manufacturer’s protocol (Gibco BRL, NY, USA). Pools of stably
transfected cells were selected and maintained in the presence of
0.5mgml ' G418.



Preparation of cell lysates and Western blot analysis

Total proteins were extracted in 0.1% SDS-RIPA buffer (50 mm Tris
pH 7.4, 150 mm NaCl, 5 mm EDTA, 1% Nonidet P-40, 0.1% SDS and
1% sodium deoxycholate). Cells were fractionated into detergent-
soluble and -insoluble components as described previously (Polte
and Hanks, 1997). Briefly, adherent cells were extracted for 2 min
on ice with cytoskeletal stabilisation (CSK) buffer (0.3 M sucrose,
0.5% Triton X-100, 100 mM PIPES pH 6.8, 100 mm KCl, 1 mm CaCl,,
2.5mm MgCl,, 50 mM NaF plus 1 mm sodium orthovanadate, 1 mm
PMSF, 1ugml™' leupeptin and 1ugml ' aprotinin). Soluble
proteins were aspirated and the remaining insoluble proteins
extracted with 0.1% SDS-RIPA buffer. Loosely adherent cells were
first collected by centrifugation, then incubated on ice in CSK
buffer for 2min and the insoluble proteins extracted as above.
Volumes of corresponding soluble and insoluble samples were
equalised prior to gel analysis.

Total proteins were separated by SDS-PAGE gel electrophoresis
in 15% low bis-acrylamide 10 cm x 8 cm minigels (29.7% (wv™ ')
acrylamide, 0.3% (wv™h) bis-acrylamide stock solution). Western
blots of separated proteins were probed with primary antibodies
and bound antibodies detected using HRP-conjugated secondary
antibodies and chemiluminescence was performed using the
manufacturer’s protocol (NEN Dupont, MA, USA).

Immunofluorescence

Cells on coverslips were fixed with 4% paraformaldehyde for
15min at room temperature, then permeabilised with 0.2% Triton
X-100 for 5 min. Cells were then stained with TritC-phalloidin or
with anti-o-f/9d followed by Alexa488-labelled donkey anti-rabbit
antibodies from Jackson Immnuoresearch Laboratories (PA, USA).
Immunofluorescently labelled cells were visualised using an
Olympus BX50 fluorescence microscope (Tokyo, Japan), and
photographed using a SPOT II CCD camera (Diagnostic Instru-
ments Inc., MI, USA). Images were optimised for brightness and
resolution by adjusting the histogram range and running a sharpen
filter using ImagePro Plus software (Media Cybernetics, MD, USA).

RESULTS

The expression pattern of the putative tumour suppressor TM1 in
neuroblastoma cells was determined by probing Western blots of
protein extracts from each cell line with the o-f/9d antibody. The
results show that the S-type SH-EP cells are TM1-positive, while
the I-type BE(2)-C cells and the N-type IMR32 cells have no
detectable TM1 expression (Figure 1A). As predicted based on
their morphological characteristics, the TM1 positive SH-EP cells
have discernible actin stress fibres (Figure 1Ba), while the BE(2)-C
and IMR32 cells both lack well-organised parallel bundles of stress
fibres (Figure 2A and C). Correspondingly, there is a clear
filamentous tropomyosin staining pattern in the SH-EP cells
(Figure 1Bb). Interestingly, the absence of TMI1 expression
correlates with increased N-myc expression (Figure 1A), a marker
of rapidly growing, metastatic neuroblastomas (Goodman et al,
1997). Therefore, similar to observations in tumours derived from
other cell types, loss of TM1 correlates with more malignant
neuroblastoma cell types.

Following the observation that TM1 expression is absent in the
cell lines with poorly organised cytoskeletons, we wished to
determine whether exogenous expression of TM1 could restore
actin organisation into stress fibre bundles in these cell lines.
Stable pools of BE(2)-C and IMR32 cells transfected with either
TM1 or empty vector control were prepared. Phalloidin staining of
transfected cells shows that the actin cytoskeleton organisation in
the TMI1 transfectants is indistinguishable from that of the vector
transfectants (Figure 2, compare A with B and C with D). This is
supported by our observation that the TM1 transfectants have
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Figure | TMI expression is downregulated in more malignant
neuroblastomas. (A) Westem blots of total protein extracts from SH-EP
(@), IMR32 (b) and BE(2)-C (c). Equivalent concentrations of total protein
were loaded for each cell line. Blots were probed with a-f/9d to detect
TMI, anti-p-tubulin as a loading control and anti-N-myc antibodies, as
indicated. (B) SH-EP cells were grown on coverslips and stained with
TritC-phalloidin (a) or a-f/9d (b).

Figure 2 Exogenous TMI expression does not alter the actin
cytoskeleton. Vector (A,C) and TMI (B,D) transfected IMR32 (A,B)
and BE(2)-C (C,D) cells were grown on coverslips. Cells were then stained
with TritC-phalloidin to detect actin microfilaments. Panels (B,D) show the
same cells stained with «-f/9d to detect cells expressing TMI. The
percentage of TM|-transfected cells calculated to be TM|-positive with a-f/
9d staining was 36% IMR32 cells and 67% BE(2)-C cells.

unchanged morphology. We further note that TM1 expression had
no measurable effect on the growth rate of transfected cells (data
not shown). Together, these results suggest that exogenous TM1
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Figure 3 Exogenous TMI localises to both the detergent-insoluble- and
-soluble-fractions. Equal volumes of detergent-soluble and -insoluble
fractions of control (C), vector-transfected (V) and TMI-transfected
(TMI) cells were loaded into each lane of an SDS—polyacrylamide gel.
Western blots were probed with a-f/9d to detect TMI as indicated. (A)
Lysates from IMR32 cells and (B) Lysates from BE(2)-C cells. *Note that
after a longer exposure, TM| can be detected in the insoluble fraction of
the IMR-32 TM | -transfectants. (C) Fractionated extracts from SH-EP cells
showing the detergent-soluble fraction (S), the insoluble fraction (1) and the
whole-cell lysate (W). Western blots of lysates were probed with a-f/9d
and actin, as indicated.

had no effect on the organisation of the actin cytoskeleton in the
BE(2)-C and IMR32 cells.

It was possible that the lack of TM1 effect on actin organisation
may have been due to an inability of exogenous TMI to
incorporate into stress fibres, therefore preventing TM1-mediated
stress fibre stabilisation. Therefore, we assessed TM1 subcellular
localisation. High cytosolic levels of the exogenous protein
prevented the analysis of TM1 localisation at stress fibres by
immunofluorescence analysis. Instead, cells were fractionated into
detergent-soluble and -insoluble pools and the distribution of TM1
was assessed. The results demonstrate that exogenous TM1
associates with both the detergent-soluble and -insoluble fractions,
suggesting that at least some of the exogenous TM1 is incorporat-
ing in the insoluble actin cytoskeleton compartment (Figure 3A
and B). We note that the distribution of the exogenous TMI is
similar to that of endogenous TM1 in the SH-EP cell line, where
approximately equivalent levels of TM1 are seen in the soluble and
insoluble fractions (Figure 3C). Therefore, the failure of exogenous
TMI1 to stimulate stress fibre formation is not due to inability of
the TM1 to incorporate into the existing actin stress fibres.

DISCUSSION

The downregulation of TMs and other actin-binding proteins is a
common feature in transformed cell populations (Pawlak and
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Helfman, 2001) and we now confirm that this is also true in
neuroblastoma cell lines. Our studies suggest that TM1 cannot act
alone to restore the transformed phenotype. In the current study,
we observed loss of not only TM1, but also TM2 and TM3 (data not
shown), and the absence or loss of function of other TMs may
inhibit the normal function of the exogenously added TM1. It is
likely that the complement of actin binding protein expression in
each tumour or cell type will ultimately determine our ability to
restore normal actin cytoskeleton structure and function.

In a recent study, exogenous TMI inhibited anchorage-
independent growth of MCF7 breast cancer cells (Mahadev et al,
2002). In contrast, our study suggests that TM1 cannot restore
normal actin cytoskeleton function to neuroblastoma cell lines.
There are a number of possible explanations for the differences
observed between the two cell types. In previously reported
experimental systems, cells transformed with a single agent can be
reverted by the introduction of TMI1 alone (Prasad et al, 1993,
1999); therefore, it is possible that the multistep mutations that
cause human cancer mean that replacing a single cytoskeletal
protein will be insufficient to restore normal function in many
cancers. Alternatively, the function of TMI in different cell types
may determine the effects of restoring TM1 expression in cancer
cells. The expression of TM1 has been shown to be developmen-
tally regulated in the brain (Hughes et al, 2003), suggesting that
this isoform may play a role in specific differentiated tissues. As a
specific cell type loses differentiated characteristics, such as is seen
in the development of cancer, it may also consequently lose
responsiveness to TM1 function. If this is the case, we can expect
that cells of different origin, for example epithelial-derived breast
cancer vs neural crest-derived neuroblastoma, will be differentially
responsive to the effects of restored TMI expression. Our data
demonstrate that there is cell-type specificity to the ability of TM1
to restore normal cytoskeletal function. Therefore, the efficacy of
this molecule as a target for reverse-transformation of cancer cells
will need to be determined for each individual cancer type.

It is clear that the cytoskeleton contributes to many aspects of
cancer progression. By appropriately targeting the cytoskeleton,
we may be able to stimulate reversion of cancer cells. Further, the
demonstrated role of the cytoskeleton in normal cellular function,
including the systematic cellular events executed during apoptosis
(Pawlak and Helfman, 2001), suggests that a better understanding
of the molecular composition of the cytoskeleton may help
overcome resistance to currently used therapies and aid in the
design of more efficacious therapies.
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