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and the Tran-Blaha modified Becke Johnson potential (MBJ). This data is distributed publicly through
JARVIS-DFT database. We used this data to evaluate the differences between these two formalisms and
quantify their accuracy, comparing to experimental data whenever applicable. At present, we have 17,805
OPT and 7,358 MBJ bandgaps and dielectric functions. MBJ is found to predict better bandgaps and
dielectric functions than OPT, so it can be used to improve the well-known bandgap problem of DFT in a
relatively inexpensive way. The peak positions in dielectric functions obtained with OPT and MBJ are in
comparable agreement with experiments. The data is available on our websites http://www.ctcms.nist.gov/
~ knc6/JVASP.html and https://jarvis.nist.gov.
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Background & Summary
Optoelectronic properties, such as fundamental electronic bandgaps and dielectric functions, provide
important material information in designing optoelectronic devices for a variety of applications, such as
photovoltaic cells1, light emitting diodes2, transparent electronics3, dynamic random access memory4,
astronomical devices5, and smaller and faster devices6. For industrial advancement in these industries,
there is a great need to synthesize cheaper, more efficient, and tunable devices. Designing these new
materials requires knowledge of already available ones, which can then be tailored for a particular
application. Databases dedicated to optoelectronic materials meet this need. However, such user-friendly
and easy-accessible public databases are still in the development phase. Computationally, it is much easier
to provide properties for thousands of materials in a systematic way than to do so through experiments.
Density functional theory (DFT) is the tool of choice to compute these properties in a high-throughput
manner.

It is important to note that the term 'bandgap' generally refers to the fundamental gap and not the
optical gap. The difference between these quantities could be small in semiconductors but significant in
insulators7. Materials Genome Initiative based projects such as the Materials Project (MP)8, the open
quantum materials database (OQMD)9, and AFLOW10 have successfully enumerated bandgaps of
hundreds of thousands of materials using the generalized-gradient-approximation Perdew-Burke-
Ernzerhof functional (GGA-PBE)11 and +U corrections. MP has also calibrated the static dielectric
constant of 1056 materials using density functional perturbation theory (DFPT)12, but frequency-
dependent dielectric functional data is missing. Although PBE provides great insights in distinguishing
non-metallic materials, the bandgaps of materials are generally underestimated typically by 30% to 100%
(refs 13,14), hindering its practical application in the fields of semiconductors, photovoltaic materials, and
thermoelectric devices. Other systematic databases of optoelectronic materials include Zunger et al.15

work for photovoltaic materials using Green function screened coulomb (GW) calculations, and
Castelli et al.16 work on energy-harvesting materials using the Gritsenko- Leeuwen-Lenthe-Baerends
(GLLB-SC) functional. GW is much more reliable than PBE in computing optoelectronic properties.
However, its high computational cost severely limits its application in high-throughput screening.
Catelli’s work is also limited, containing information for only about 2400 materials.

Various techniques have been used to improve bandgap prediction at a moderate computational cost,
including Chan and Ceder (delta-sol)14, modified Becke-Johnson potential17–19, and empirical fits by
Setyawan et al.20. Recently, the modified Becke-Johnson (MBJ) potential introduced by Tran and
Blaha17–19 has been proven to improve the bandgap description in a computationally efficient way. This
potential has been successfully used in characterizing electronic properties of nonmagnetic transition-
metal oxides and sulfides, metals, (anti) ferromagnetic insulators, dielectric and topological
insulators19,21–24.

In this work, we have identified a sweet spot between the computational expense and accuracy for
describing optoelectronic properties by using MBJ potential in a high-throughput approach. At present,
we have 7358 MBJ bandgap and frequency-dependent dielectric function entries, and the database is still
growing. Additionally, we computed 17805 bandgaps and frequency-dependent dielectric functions using
OptB88vdW (OPT) for comparison purposes. OPT is a Van der Waal-dispersion functional (vdW-DF)
with non-local correction, which can predict crystal-structure geometry, and is essential to the calculation
of optoelectronic properties, especially for anisotropic materials. The OPT functional has not only been
proven to reduce error in lattice constants, but its combination with MBJ functional is known to predict
bandgaps of materials25 successfully. In addition, the error in lattice constants can significantly impact the
error in optoelectronic properties such as refractive indices, and hence birefringence of non-cubic class
materials. Thus, for a better description of lattice constant and bandgaps of materials, it is necessary to
first optimize geometries with vdW functional such OPT. OPT is also known to predict reasonable
geometrical structures for non-vdW bonded structures26.

We validate our computational results in a few cases through comparison with experimental values.
We create a public JARVIS database of our results available at https://www.ctcms.nist.gov/~knc6/JVASP.
html. The data is also available in REST-API format at https://jarvis.nist.gov/ and Cloud of Reproducible
Records (CoRR) at NIST (https://mgi.nist.gov/cloud-reproducible-records). We provide the code used in
this work at github page: https://github.com/usnistgov/jarvis.

Methods
The methodology supporting the current work consisted of several steps, including density functional
theory calculations and experimental validation of a few data points. The overall processes are shown in
Fig. 1 and each step is explained in detail below.

Density functional theory setup
The DFT calculations are performed using the Vienna Ab-initio Simulation Package (VASP)27,28 and the
projector-augmented wave (PAW) method29. Please note commercial software is identified to specify
procedures. Such identification does not imply recommendation by the National Institute of Standards
and Technology. The crystal structures were obtained from the Materials Project (MP) DFT database.
More specifically, we obtained all the crystal structures with less than 30 atoms per unit cell from MP, and
the potential candidates for low dimensional materials using lattice-constant criteria30 and data-mining
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approaches31. We convert the crystal cells into its primitive cell representation before a DFT calculation.
If the primitive cell and corresponding conventional cell of a crystal-structure have the same number of
atoms, then we prefer conventional cell as the DFT input structure.

As the error in lattice constants can significantly impact the error in optoelectronic properties, such as
refractive indices and birefringence of non-cubic class materials, we re-optimized MP geometric
structures using the OPT functional26,32. PBE is known to report good lattice constants for materials, but
its applicability to vdW-bonded materials is questionable. Recently, around 5000 materials have been
proposed to be vdW-bonded using lattice-constant criteria30 and data-mining approaches31, signifying
that a correct treatment of the vdW interactions is more important than previously thought. OPT is part
of vdW-DF functional, which is a non-local correlation functional that approximately accounts for
dispersion interactions. OPT has been recently determined to perform well for bulk solids as well as vdW
bonded structures26. In a recent work by Tawfik et al.33, OPT was proven to be one of the most accurate
functionals to capture vdW interactions among several other methods. We performed plane-wave energy
cut-off and k-point convergences with 0.001 eV tolerance on energy. We assumed that satisfactory energy
convergence would extrapolate to reasonably converged optical property calculations as well. The
structure relaxation with OPT functional was obtained with 10− 8 eV energy tolerance and 0.001 eV/Å
force-convergence criteria.

Next, we computed bandgap and optical properties with both OPT and MBJ in subsequent DFT
calculations. In the MBJ calculations, we started from OPT-relaxed structures because the MBJ functional
is a potential-only functional, which implies that we cannot compute Hellmann-Feynman forces with
MBJ, hence ionic relaxations were not performed using MBJ. The OPT functional has not only been
proven to reduce error in lattice constants, but its combination with MBJ functional is known to predict
correct bandgaps25 as shown for few vdW bonded materials. The MBJ potential is given by:

vmBJ
x rð Þ ¼ cvBRx rð Þ þ 3c - 2ð Þ1

π

ffiffiffiffiffi
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where c is a system-dependent parameter, with c = 1 corresponding to the Becke-Roussel (BR) potential
vBRx rð Þ, which was originally proposed to mimic the Slater potential, the Coulomb potential
corresponding to the exact exchange hole34. For bulk crystalline materials, Tran and Blaha proposed
to determine c by the following empirical relation:
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Figure 1. Flowchart for calculating bandgap and dielectric function of materials using density functional

theory.
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With α ¼ - 0:012, β ¼ 0:541 Å1/2 and Vcell is the volume of the unit cell. The c-parameter was
automatically determined in VASP through a self-consistent run.

To obtain the optical properties of the materials, we calculated the imaginary part of the dielectric
function from the Bloch wavefunctions and eigenvalues35,36 (neglecting local field effects). We introduced
three times as many empty conduction bands as valance bands. This treatment is necessary to facilitate
proper electronic transitions. We choose 5000 frequency grid points to have a sufficiently high resolution
in dielectric function spectra. The imaginary part is calculated as:

ε2αβ ωð Þ ¼ 4π2e2
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where e is electron charge, Ω is the cell volume, w
k
! is the Fermi-weight of each k-point, eα are unit vectors

along the three Cartesian directions, ψ
n k
!

����
�

is the cell-periodic part of the pseudopotential wavefunction

for band n and k-point k, q stands for the Bloch vector of an incident wave, c and v stand for conduction
and valence bands, ξ stands for eigenvalues of the corresponding bands respectively. The matrix elements on
the right side of Equation (3) capture the transitions allowed by symmetry and selection rules37. The real
part of the dielectric tensor ε1 is obtained by the usual Kramers-Kronig transformation35.

ε1αβ ωð Þ ¼ 1þ 2
π
P
Z 1

0

ε2αβ ω0ð Þω0

ω02 -ω2 þ iη
dω0 ð4Þ

where P denotes the principle value, and η is the complex shift parameter taken as 0.1.
It is to be noted that in conventional DFT, excited states are not optimized, hence many-body

interactions are missing. To get the excited state optical properties, a high-level calculation such as the
Bethe-Salpeter equation (BSE)38 is needed, however, the conventional DFT data remains useful for
qualitative comparison.

Experimental details
We validated our DFT dielectric function data for 2H-MoS2, 1T-SnSe2, Si, Ge, GaAs and InP comparing
to experiments. We perform our experimental measurements for 2H-MoS2, 1T-SnSe2. Other
experimental data were taken from Aspnes et al.39 for validation. 1T-SnSe2 (40 nm thickness) was
grown on a GaAs (111) substrate by molecular beam epitaxy (MBE)40. The GaAs substrate was
deoxidized in-situ under ultra-high vacuum (4 × 10− 8 Pa) at 690 °C for 3 min and annealed under a flux
of Se for 20 min, which provides a smoother growth surface. After the substrate was cooled down and
held at the growth temperature of 200 °C for 40 min, sixty-three layers (≈40 nm) of 1T-SnSe2 were grown
by a simultaneous incidence of Sn and Se at a rate of 1/38 layer per second based on Reflection High-
Energy Electron Diffraction (RHEED) oscillations. The beam equivalent pressures (BEPs) for Sn and Se,
supplied by using Knudsen cells, are 2.67 × 10− 6 Pa (2 × 10− 8 Torr) and 2.67 × 10− 4 Pa (2 × 10− 6 Torr),
respectively. The single phase and high crystallinity of SnSe2 were confirmed by X-ray diffraction (XRD).
Bulk MoS2 was commercially purchased from SPI Supplies41. Please note the commercial product is
identified to specify procedures. Such identification does not imply recommendation by the National
Institute of Standards and Technology. The dielectric functions were obtained from spectroscopic
ellipsometry (SE). The SE measurements were performed in a nitrogen gas-filled chamber at room
temperature on a vacuum ultraviolet (UV) spectroscopic ellipsometer with a light photon energy from
(0.7 eV to 8.0) eV in steps of 0.02 eV for SnSe2 and from (1.0 eV to 9.0) eV in steps of 0.01 eV for MoS2,
at an angle of incidence of 70°.

User-interface
The data is presented in a webpage format (https://www.ctcms.nist.gov/~knc6/JVASP.html). First, a user
selects the desired element/elements in the periodic table provided at the website and clicks on the
‘Search’ button (as shown in Fig. 2). This procedure generates a data table on the webpage consisting of
the calculation-identifier, the formula of the structure, the functional used in the calculation, bandgap,
mechanical property, space group of crystal and energetics of the system. Next, the user clicks on the
calculation identifier for a formula, space group and functional and property data for detailed
information. The detailed page is provided in the format such as https://www.ctcms.nist.gov/~knc6/
jsmol/JVASP-1174.html where ‘1174’ denotes an identifier and can assume any JARVIS-ID. The
particular webpage consists first of an interactive crystal visualization, then geometric properties such as
computational XRD, bandstructure and the optical properties consisting of dielectric function and
refractive index. We also provide a classification of materials based on their OPT and MBJ based
bandgaps, and static refractive index data as shown in Fig. 3. Clicking on one of the options in Fig. 3
results in materials with classified properties. For example, clicking on ‘Classification of 3D-bulk
materials based on TB-MBJ-bandgap’ produces a table with materials that have a bandgap in rage from 0
to 1, 1 to 2, 3 to 4 eV and so on. Each material is hyperlinked to its specific webpage.
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Code availability
The code used in this work is provided at https://github.com/usnistgov/jarvis. There are two main scripts
in this folder- 1) joptb88vdw.py and 2) master.py. The joptb88vdw.py script heavily utilizes the
Pymatgen8 and ASE42 codes for file and data management. The joptb88vdw.py generates a series of
folders and JSON files starting with keyword ‘ENCUT’ and ‘KPOINT’ denoting the convergence test. An
example of an actual calculation is also provided in the folder. After the convergence, the script carries
out main geometric relaxation, band structure, optical property with OPT and optical property with MBJ
calculations. The master.py takes the argument of the identifier of the database or the structure in
‘VASP’s ‘POSCAR’ format. The master script can tackle both PBS and SLURM formalism used in HPC
architecture.

Figure 2. Snapshot of JARVIS-DFT website.

Figure 3. Material classifications using OPT and MBJ.
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Data Records
All data computed in this work can be found at https://www.ctcms.nist.gov/~knc6/JVASP.html and
https://jarvis.nist.gov/. A JSON file is also available in a Figshare repository (Data Citation 1). Key
variables for the JSON file are shown in Table 1. They include identifiers, structure, bandgaps and
dielectric function information with OPT and MBJ methods. The dielectric function data in xx, yy, zz, xy,
yz, and zx directions can be used for analyzing the anisotropic nature of the dielectric function. The
opt_gap and mbj_gap data can be used to analyze the effect of DFT methodologies on bandgap of a
material, where available. The ‘jid’,’mpid’and ‘cif’ mentioned in Table 1 belong to string-type, while
‘opt_gap’ and ‘mbj_gap’ belong to float-type data. The ‘mpid’ facilitates easy linking to the Materials-
project database. Other values such as ‘opt_en’, ‘mbj_en’, ‘opt_realxx’,’opt_imagxx’, ‘mbj_realxx’ and
‘mbj_imagxx’ are arrays with float-type values. The ‘real’ part in these keys corresponds to real part of
dielectric function while ‘imag’ corresponds to imaginary part of dielectric function in the respective
directions. The Pymatgen code can be used to process the ‘cif’ string-type data. The key ‘opt_en’ has the
same array-size as that of dielectric function data with OPT such as ‘opt_realxx’, ‘opt_imagxx’, while
‘mbj_en’ has the same array-size as that of dielectric function data with MBJ such as ‘mbj_realxx’ and
‘mbj_imagxx’. Packages such as Matplotlib and Gnuplot can be used to plot these arrays and visualize the
data. We provide a few examples to explore the JSON files at the github page https://github.com/
usnistgov/jarvis/tree/master/jarvis/db/static.

Technical Validation
As discussed in the method section, the crystal structures were obtained from the Materials Project, which
uses PBE for structure optimization. We re-optimize the MP crystal structures with the OPT functional.
Most of the MP crystal-structures have Inorganic Crystal Structure Database (ICSD) IDs, which can be
used to obtain experimental lattice parameter information. Hence, we compute PBE and OPT based
mean absolute error (MAE) and root-mean-squared error (RMSE) of all the available structures in our
database. There are presently 10,052 structures with ICSD IDs in our database. We further classify these
structures into predicted vdW and predicted non-vdW structures. We use the lattice-constant criteria30

and data-mining approaches31 to identify vdW structures. All the remaining structures are treated as
non-vdW bonded. The predicted vdW bonded materials can have vdW bonding in one, two or three
crystallographic directions. It is to be noted that exfoliation energy is calculated to predict vdW bonded in
materials30, but the two heuristic methods mentioned above can act as pre-screening criteria for
determining vdW bonded structures. Out of 10,052 structures, 2,241 were predicted to be vdW bonded.
In addition to the overall MAE and RMSE, we also calculate the same for these two classes of materials as
shown in Table 2. As evident from Table 2, the OPT seems to improve lattice constants in a, b, c
crystallographic directions compared to PBE. Significant improvement in lattice parameters is observed
for predicted vdW materials, especially in c-directions. For predicted non-vdW materials, the errors are
similar for OPT and PBE, suggesting that OPT can improved lattice constant predictions for vdW
materials without much affecting the predictions for non-vdW bonded materials. Our PBE MAE value
for all the materials (0.13 Å) are similar to that obtained by Jianmin et al.43 (0.135 Å) for a smaller set of
materials.

As a first validation, we compared the MBJ and OPT bandgaps to experimental values, whenever
available. Table 3 (available online only) displays such a comparison for 54 materials and shows the
corresponding results from MP, OQMD, and AFLOW (PBE/PBE+U based data). We also provide
identifiers across different databases to facilitate comparison. In general, the values of our OPT and MBJ

Key Description

Jid JARVIS-DFT calculation identifier

Mpid Materials-Project identifier

Cif Crystal structure in Crystallographic Information File (CIF) format

opt_gap bandgap (unit eV) with OPT

mbj_gap bandgap (unit eV) with MBJ

opt_en Energy grid array for dielectric function using OPT

opt_realxx, opt_realyy, opt_realzz, opt_realxy,
opt_realyz, opt_realzx

Energy dependent real part of dielectric function in xx, yy, zz, xy, yz and zx directions using OPT

opt_imagxx, opt_imagyy, opt_imagzz, opt_imagxy,
opt_imagyz, opt_imagzx

Energy-dependent imaginary part of dielectric function in xx, yy, zz, xy, yz and zx directions using OPT

mbj_en Energy grid array for dielectric function using MBJ

mbj_realxx, mbj_realyy, mbj_realzz, mbj_realxy,
mbj_realyz, mbj_realzx

Energy-dependent real part of dielectric function in xx, yy, zz, xy, yz and zx directions using MBJ

mbj_imagxx, mbj_imagyy, mbj_imagzz, mbj_imagxy,
mbj_imagyz, mbj_imagzx

Energy-dependent imaginary part of dielectric function in xx, yy, zz, xy, yz and zx directions using MBJ

Table 1. JSON keys for metadata and their descriptions.
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bandgap data are higher than MP’s PBE data, with MBJ data being closer to experiments44,45. The mean
absolute error (MAE) of MBJ with respect to experimental data is 0.51 eV, while that of OPT is 1.33. The
OPT has MAE similar to MP, OQMD, and AFLOW because all of them are primarily PBE based
calculations. However, significant improvement is shown with MBJ. Similar results for MBJ gaps versus
experimental ones were found by Tran and Blaha et al.18, validating our methodology. We calculate two
MAEs for the data: 1) MAE computed with respect to experiment using all available data for each
method, 2) MAE computed with respect to experiment using only data for materials that have results
available in all three DFT methods. Both of these values are shown in Table 3 (available online only).
Both of the MAEs are found to show similar results. It is to be noted that our geometric optimization was
performed with OPT, which is different from the one used by Tran-Blaha et al.18 This explains small
differences in MBJ gaps found between our work and by them. Due to the inadequacy of experimental
data for all the materials, it is intractable to calculate the error for the whole database. Also, some of the
experimental bandgaps were averages of multiple experiments.

The MBJ potential is found to be more suitable for large bandgap insulators and can change the
energetics of bands in metallic systems also. We found that some of the materials predicted as metallic
using PBE are semiconductors using MBJ, such as Ge and GaAs. To better understand the source of error
in the bandgap evaluation, we followed the Materials Project (MP) approach (https://www.
materialsproject.org/docs/calculations#Accuracy_of_Band_Structures) and determined a “shifted” MAE
for our bandgap evaluations. This treatment allows removing the effect of the DFT systematic
underestimation of the gap. To do this, we first fitted a linear equation for the OPT and MBJ data with
respect to experiment. The slope was found to be 1.17 and 1.44 for MBJ and OPT, respectively. The slope
was then used as a scaling parameter to scale-up the OPT and MBJ data. After the data have been shifted,
the MAE with respect to experiment was found to be 0.42 for MBJ, 0.69 for OPT, to compare with the
MP result of 0.6. We also calculated the Spearman’s coefficient (SC), to measure monotonicity in the
bandgap data from different methods compared to experiment. High value for SC suggests that the trends
are similar to those in the experimental data. The highest value was obtained for HSE06 (0.97), followed
by MBJ (0.94) and AFLOW (0.94). Additionally, we compare the computational time taken during
HSE06, MBJ and OPT calculations for a few cases. We find that the MBJ takes about an order of
magnitude more computational time than OPT, while HSE06 takes an order of magnitude more
computational time than MBJ. A comparison table for computational time for calculations is given in
supplementary information (Supplementary Table. S1).

Next, to understand the trends in the whole database, we compared the bandgaps obtained from the
OPT and MBJ as shown in Fig. 4a. It is to be noted that many of our calculations for OPT and MBJ are
still running; we compare data which are common in both OPT and MBJ only. The blue circles show the
MBJ bandgaps while the green ones represent the OPT bandgaps. We also plot the experimental results
(red dots) for a small subset (from Table 3 (available online only)) in the Fig. 4a. More specifically, we
plotted the three types of data (MBJ, OPT and experiment) against the MBJ results. As the MBJ data are
plotted against themselves, they produce a straight line along the diagonal of the plot. For a perfect
agreement between OPT and MBJ, all the OPT data should lie on the same straight line. However, most
of the OPT data is below the straight line, representing an underestimation of the bandgap. Compared to
experiments, the MBJ results describe bandgaps much better than the OPT results. This is shown by the
fact that up to about 6 eV most of the experimental data lie on the figure diagonal, while the OPT results
lie systematically under it.

The relative difference in OPT and MBJ in bandgap is shown in Supplementary Fig. S1a. The
percentage difference in values for OPT and MBJ are calculated as:

Δ ¼ yMBJ - yOPT
�� ��

yMBJ

´ 100% ð5Þ

#Mats. MAE (a) MAE (b) MAE (c) RMSE (a) RMSE (b) RMSE (c)

OPT (All) 10052 0.11 0.11 0.18 0.29 0.30 0.58

PBE (All) 10052 0.13 0.14 0.23 0.30 0.29 0.61

OPT (vdW) 2241 0.20 0.21 0.44 0.44 0.44 0.99

PBE (vdW) 2241 0.26 0.29 0.62 0.45 0.51 1.09

OPT (non-vdW) 7811 0.08 0.08 0.11 0.23 0.24 0.39

PBE (non-vdW) 7811 0.09 0.09 0.12 0.22 0.25 0.36

Table 2. Mean absolute error (MAE) and root-mean-squared error (RMSE) in a, b and c
crystallographic directions computed for all materials in our database with respect to experimental
data (ICSD data). To facilitate comparison between the functionals, both MAE and RMSE have been
computed for all materials, only for predicted vdW bonded materials and only for predicted non-vdW bonded
materials, using Material’s project PBE and JARVIS-DFT OPT functional.
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To avoid division by very low or zero values, we calculated percentage differences for materials with OPT
gap more than 1 eV. The upper bound of the relative changes in bandgap can range from 30% up to more
than 100 %.

Similar to the bandgap data, the static refractive index in x, y and z-directions are also compared for
OPT and MBJ. The static refractive index is related to static dielectric function data as n 0ð Þ ¼ ffiffiffiffiffiffiffiffiffiffi

ε1 0ð Þp
.

The static refractive index in x, y and z directions are shown in Fig. 4b–d. Like the MBJ bandgaps, the
MBJ refractive indices are plotted against itself to give a straight line, which can be used for comparison.
A subset of OPT and MBJ static dielectric constant data is shown in Table 3 (available online only) and
compared to experiments. The MAE values of OPT and MBJ static dielectric constant in the x-direction
are 3.2 and 2.6 respectively, showing the overall superiority of MBJ compared to OPT. It is to be noted
that only interband transitions and not intraband are accounted for in our calculations, hence Drude-like
transitions are not taken into account37. It implies that our dielectric function data should be more
accurate for high bandgap materials18. Also, in cases where OPT predicts metallic behavior while MBJ
predicts semiconductor/insulating, the dielectric function and therefore the static refractive index would
be different between OPT and MBJ, because Drude like transitions are not captured in present work. As
MBJ bandgaps are more reliable than OPT, the MBJ optical data can be considered more accurate than
OPT, especially for low bandgap materials. A very high difference (more than 100%) in OPT and MBJ
refractive index was observed for materials such as ZnCoF4 (as clearly seen in Supplementary Fig. S1b-
S1d) because of the very different bandgaps obtained using OPT and MBJ. We also find that the relative
differences between OPT and MBJ refractive indexes are much smaller compared to those for bandgaps.
Interestingly, while OPT underestimates the bandgaps compared to experiments, the predicted dielectric
functions are relatively close to the experimental measurement, especially for high-bandgap materials. It
is because our methodology describes inter-band transitions well but is not suitable for intra-band
transitions. Lastly, we also observe that the MBJ static refractive index data are generally lower than the
OPT data, as noted in Table 4.

Next, in Fig. 5 we compare the OPT, MBJ and experimental imaginary part of dielectric function in
the x-direction for 5a) 1T-SnSe2 (P3m1), 5b) 2H-MoS2 (P63/mmc), 5c) Si (Fd3m), 5d) Ge (Fd3m), 5e)
GaAs (F43mÞ and 5f) InP ðF43mÞ . We carried out our experiments for dielectric functional data for 1T-
SnSe2 (P3m1) and 2H-MoS2 (P63/mmc), while other experimental data were obtained from previous
experiments by Aspnes et al.39. It is clear from Fig. 5 that for MBJ, in general, performs better than OPT
peak positions compared to experiments. For SnSe2 and MoS2, both the methodologies give similar result
compared to experiments. For 1T-SnSe2, the peaks after 4 eV are more pronounced in DFT than the
experiment, which can be attributed to the resolution power of the experiments. In Fig. 5b, the peaks

a b

c d

Figure 4. Comparison of OPT, MBJ, and experimental data. (a) fundamental bandgap, (b) static refractive

index in the x-direction, (c) static refractive index in the y-direction and (d) static refractive index in the

z-direction obtained from OPT and MBJ calculations.
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around 2 eV and 4 eV are captured well both in OPT and MBJ for MoS2; however, there is a slight shift in
the spectrum due to difference bandgap description between the two functionals at low energy range. We
are still investigating the small shift at higher energies, especially for SnSe2. We observe similar spectrum
shift due to bandgap underestimation for the cases 5c, 5d, 5e, and 5f. Moreover, peaks at low energy levels
using OPT which are absent in MBJ and experimental spectrum. This is likely because when the bandgap
is severely underestimated (such as for OPT), the theory predicts inter-band transitions (e.g., valence to
conduction band) that simply don't exist because the gap is too high in reality. Such peaks are absent in
MBJ based spectrums. It suggests that for low bandgap materials OPT can give unphysical transitions at
low energies. However, overall spectrum patterns are similar for OPT and MBJ at higher energies. As
observed in Fig. 5, the DFT intensity differs from experiment for some peaks, which can be explained
based on 1) the difference in temperature between the experimental setup (generally at room
temperature) and the DFT simulation (always at zero Kelvin), and 2) the surface roughness of the sample,

Materials SG MP# JV# OPT MBJ Experiment

MoS2 P63/mmc 2815 54 ε11 = 16.14 ε11= 15.34 ε11= 17.0

ε33= 9.59 ε33= 8.99 ε33= 8.9

MoSe2 P63/mmc 1634 57 ε11= 17.49 ε11= 16.53 ε11= 18.0

ε33= 10.95 ε33= 9.71 ε33= 10.2

MoTe2 P63/mmc 602 60 ε11= 20.73 ε11= 18.74 ε11= 20.0

ε33= 13.16 ε33= 11.66 ε33= 13.0

WS2 P63/mmc 224 72 ε11= 14.59 ε11= 13.95 ε11= 11.5

ε33= 8.96 ε33= 8.34 ε33= 8.2

WSe2 P63/mmc 1821 75 ε11= 15.79 ε11= 14.32 ε11= 11.7

ε33= 10.2 ε33= 8.96 ε33= 8.7

Al2O3 R-3c 1143 32 3.17 2.73 3.1

MgO Fm-3m 1265 116 3.1 2.54 2.95

SiC P63mc 7631 182 6.95 6.01 6.552

C Fd-3m 66 91 5.75 5.31 5.70

Si Fd-3m 149 1002 13.49 10.7 11.9

Ge Fd-3m 32 32 27.48 15.16 16.04

AgI P63mc 22894 8566 5.53 3.89 7.0

AlP F-43m 1550 1327 8.61 6.94 7.54

BN P63/mmc 984 17 ε11= 4.76 ε11= 3.72 ε11= 5.06

ε33= 3.08 ε33= 2.68 ε33= 6.85

InN P63mc 22205 1180 12.22 6.8 15.3

InP F-43m 20351 266 23.59 8.04 12.5

BP F-43m 1479 1312 9.1 7.94 11.0

GaP F-43m 2490 1393 11.59 8.33 11.11

GaAs F-43m 2534 1174 34.39 10.21 11.10

InAs F-43m 20305 97 18.13 17.95 15.15

AlSb F-43m 2624 1408 12.37 9.87 12.04

GaSb F-43m 1156 1177 22.87 13.87 15.69

ZnS F-43m 10695 1702 6.24 4.8 8.049

CdTe F-43m 406 23 13.5 6.54 10.6

HgTe P3121 358 8041 ε11= 16.77 ε11= 11.22 ε11= 20

ε33= 22.43 ε33 = 13.9 ε33= 21

ZnSiP2 I-42d 4763 2376 ε11= 10.95 ε11= 8.56 ε11= 11.15

ε33= 11.02 ε33= 8.59 ε33= 11.7

ZnGeP2 I-42d 4524 2355 ε11= 13.4 ε11= 9.02 ε11= 15

ε33= 13.6 ε33= 9.08 ε33= 12

ZnSnAs2 I-42d 5190 8080 19.18 11.67 15.6

MAE(ε11) - - - 3.20 2.62 -

Table 4. Comparison of static dielectric constant for OPT, MBJ and experiment. Experimental data
were obtained from35,49–52.
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which is not included in the calculation. Such differences in peak intensities compared to experiments are
also observed for other high-level DFT based methods46. In a nutshell, our dielectric function data can be
used to complement experimental spectra for instance to allowing to distinguish various peaks. In
addition to the peak positions, the DFT data can be used to characterize the orbital nature of the
associated electronic transitions, which can provide physical insight into a phenomena47. A detailed
investigation of all the optical transitions for all the materials will be pursued in future. Other quantities
such as refractive index, absorption coefficient, electron-energy-loss spectra (EELS), optical conductivity
can be calculated with the dielectric function data. As the dielectric function for materials can be
anisotropic, we also provide the dielectric function data in xx, yy, zz, xy, yz, and zx directions, which can
be used to calculate frequency dependent birefringence of materials.

Usage Notes
The database presented here represents the largest collection of consistently calculated optoelectronic
properties of materials using density functional theory assembled to date. We anticipate that this dataset,
and the methods provided for accessing, it will provide a useful tool in fundamental and application-
related studies of materials. Our actual experimental verification provides insight into understanding the
applicability and limitation of our DFT data. Based on the list of data, the user will be able to choose
particular materials for specific applications. Data mining, data analytics, and artificial-intelligence tools
then can be added to guide screening of materials.
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