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Here we provide the geochemical dataset that our research group has collected after 10 years of
investigation in the Sierra Nevada National Park in southern Spain. These data come from Holocene
sedimentary records from four alpine sites (ranging from ∼2500 to ∼3000masl): two peatlands and two
shallow lakes. Different kinds of organic and inorganic analyses have been conducted. The organic matter in
the bulk sediment was characterised using elemental measurements and isotope-ratio mass spectrometry
(EA-IRMS). Leaf waxes in the sediment were investigated by means of chromatography with flame-
ionization detection and mass spectrometry (GC-FID, GC-MS). Major, minor and trace elements of the
sediments were analysed with atomic absorption (AAS), inductively coupled plasma mass spectrometry
(ICP-MS), as well as X-ray scanning fluorescence. These data can be reused by environmental researchers
and soil and land managers of the Sierra Nevada National Park and similar regions to identify the effect of
natural climate change, overprinted by human impact, as well as to project new management policies in
similar protected areas.

Design Type(s) observation design

Measurement Type(s) Organic Chemistry • Inorganic Chemistry

Technology Type(s)

elemental analysis • elemental analysis isotope ratio mass spectrometry •
gas chromatography-flame ionisation detection • inductively coupled plasma
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Sample Characteristic(s) Sierra Nevada • freshwater lake biome • peatland
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Background & Summary
Arid Mediterranean ecosystems, especially alpine wetlands, are particularly vulnerable to climate
oscillations, and their management and protection requires a complete knowledge of their response to
past natural climate fluctuations and human-induced biochemical changes1–4. Recent works in the
protected Sierra Nevada National Park in southern Spain have shown that the environmental evolution of
neighbouring alpine wetlands can develop different sensitivities and long-term environmental responses
during the Holocene, regardless of similar natural forcings4–7. This feature, which is common in areas
under extreme climate conditions, supports the importance of datasets like those described here to
understand past, present and potential future behaviours of vulnerable areas under similar climate and
human pressure.

Additional climatic stresses exist for high altitude alpine wetlands in the Sierra Nevada, which are
covered by snow from ∼November to ∼April. Due to limited access, only few and irregular
meteorological records have been collected since 1960 (http://www.aemet.es/es/datos_abiertos/AEME-
T_OpenData, http://linaria.obsnev.es/). As an example, an observatory at 2500masl registered mean
annual temperatures (MAT) of ∼4.4 °C and annual precipitation of ∼750mm from discontinuous
records between 1965 and 1993 (http://www.aemet.es/es/datos_abiertos/AEMET_OpenData, http://
linaria.obsnev.es/). Meteorological data are even more scarce at higher elevations. Data collected from
~3020masl recorded a MAT of ~2.8 °C in the 2000 s (http://linaria.obsnev.es/) while additional
collections at ~3100masl registered a MAT of 2.1 °C in 2016 (http://www.mapama.gob.es/es/red-parques-
nacionales/red-seguimiento/). Although precipitation and isotopic records are rare at these elevations,
monitoring programs from 2001 to 2003 succeeded in measuring isotopes from precipitation (snow)
between 1030 and 3020masl (δD=− 111.9± 12.7‰ and δ18O=− 16.1± 1.9‰)8. These values are much
lower than the ones at lower elevations in the south of the Iberian Peninsula9. Similarly, scarce data from
the alpine lakes show mean δ18O values of −7.7± 1.8‰, although they can reach −4.5‰ due to
evaporative process in the shallowest lakes10.

Previous paleoecological studies conducted in Sierra Nevada alpine areas have mostly focused on
regional environmental and climate evolution within the context of the western Mediterranean climate
domain7,11–14. In this respect, some inorganic geochemical records preserved at these elevations are
extraordinary archives for tracking past regional and north-hemispheric scale teleconnections (e.g., Zr
content, and La/Lu ratio)4,6,15. On the other hand, despite the Pb and Hg deposition occurs widely
throughout the Northern Hemisphere, these metals also record local mining, metallurgy and industrial
atmospheric pollution sources4,16. Local alpine environmental conditions in these sites can be specifically
reconstructed by means of these and other inorganic elements related to catchment evolution, as well as
organic bulk sediment and biomarker proxies that evidence past local biogeochemical cycles4–7,17 (Fig. 1).

The most important factors controlling the local biogeochemical behaviour in Sierra Nevada alpine
wetlands are: 1) the length of the ice free season, which typically extends from May to October4,17–19, 2)
the water availability, since Sierra Nevada is located in a semi-arid region4,5, and 3) the allochthonous
nutrient inputs, as these wetlands are oligotrophic and their main nutrient input is via atmospheric
deposition18–20. In addition, human activities have had isolated impacts on the sites, especially during the
last hundred years4,21.

This data descriptor includes all the organic and inorganic geochemical data from previously studied
Holocene sedimentary records that characterise past alpine wetland environments in Sierra Nevada.
These data have been only partially published (~45% of the data) and come from four sites at different
elevations, ranging from 2497 to 3020masl. They are, from west to east: Laguna de la Mula (LdlM),
Borreguiles de la Virgen (BdlV), Laguna de Río Seco (LdRS), and Borreguil de la Caldera (BdlC) (Table 1;
Fig. 2). Each of the sites, located in former glacial valleys or cirques, are within a 1.25 km2 area, with a
maximum distance of ∼8km between the westernmost (LdlM) and the easternmost (BdlC) site (Fig. 2).
Their catchment basins consist of bare mica-schist rocks without soil development and scarce vegetation
(o20% in catchment surface)10,15 mainly concentrated around the water bodies. The main water bodies
in the wetlands are shallow lakes without thermal stratification and an almost neutral pH (from 6 to
8)17,22. There are no available pH data from peaty areas. Vegetation mainly consists of graminoid-
dominated (Cyperaceae and Poaceae) alpine meadows, although bryophytes predominate in the wetland-
pond transitions. Vegetation distribution in Sierra Nevada is primarily controlled by precipitation and
temperature, determining elevational belts. Only LdlM occurs near the local tree line (∼2500masl). The
other records are in the tundra-like zone above ∼2900masl11,23.

Methods
A multi-proxy approach based on geochemical analyses has been developed in four sedimentary cores
collected in two peat bogs and two shallow lakes facing different hillslopes (Table 1). To track the source
of the organic matter in the sediments several indices in bulk sediment samples have been selected: total
organic carbon (TOC), total nitrogen (TN), total hydrogen (TH), atomic hydrogen – carbon ratio (H/C),
atomic carbon – nitrogen ratio (C/N), and carbon and nitrogen isotopes24. The organic matter has been
also characterised more specifically by means of leaf wax (n-alkanes) indices24. In this regard, the length
of the carbon chain in n-alkanes can be related to different kinds of vegetation in the catchment basins, as
well as potential water stress: short n-alkanes are related to aquatic environments, and long n-alkanes
usually to terrestrial plants in the extreme environments of Sierra Nevada4. So, three n-alkane indices
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from leaf wax biomarkers, assessing the length of the carbon chain length, are used to constrain the
source of organic matter and the water availability in the environments: the average chain length (ACL),
the portion aquatic (Paq)25, and the carbon preference index CPI26. The potential detrital and aeolian
input in these areas are depicted by means of La/Lu6,27,28 (sources of N African aeolian dust), Zr/Th, and
Zr/Al ratios (amount of N African aeolian inputs)4,6,29 as well as Mg/Al (catchment basin runoff), among
others6,30. Mn/Al ratios are usually related to the redox conditions in aquatic environments31;
nevertheless, the complex Mn behaviour makes the reconstruction of oxygen conditions difficult based
solely on this proxy. The anthropogenic heavy metal atmospheric pollution at these high elevation
wetlands can be tracked by means of the Pb, Pb/Al and Hg records4,6,32. All these raw data along with
other unpublished geochemical data are specified in the datasets (Data Citation 1).

Sampling methods, sediment cores and age models
Four sedimentary records were extracted in the studied areas from 2006 to 2013 using a Livingstone
piston corer and an Aquatic Research corer. They are named according to the year when they were
retrieved and the number of cores extracted: Laguna de la Mula, LdlM 10-02; Borreguiles de la Virgen,
BdlV 06-01; Laguna de Río Seco, LdRS 06-01 and LdRS 06-02; and Borreguil de la Caldera, BdlC 13-01.
Their lengths were: 32.5 cm (LdlM 10-02), 169 cm (BdlV 06-01), 150 cm (LdRS 06-01+LdRS 06-02: LdRS
06-02-uppermost 10cm; LdRS 06-01- 140 cm), and 56 cm (BdlC 13-01). Only one drive was retrieved
from cores LdlM 10-02, BdlC 13-01, and LdRS 06-02 and four and seven drives were retrieved in cores
LdRS 06-01 and BdlV 06-01, respectively. Drives 01 and 02 from BdlV 06-01 and drive 01 from LdRS 06-
01 were compacted during drilling and the real coring depth in these cases has been reconstructed. This is
specified in each file (Data Citation 1). Sediment samples for the different analyses were taken from the
cores at different resolution, depending on the proxy studied (Table 2). Age models from the cores were
computed using 14C ages in LdlM 10-027, BdlV 06-0112, LdRS 06-0111, and BdlC 13-0133 as well as Cs-Pb
(LdRS 06-02)11 by means of Clam package (http://www.chrono.qub.ac.uk/blaauw/clam.html)34 for R
open-source software (https://www.r-project.org/) and the calibration curves IntCal0935 and IntCal1336

(Table 3).

Organic geochemistry
Elemental analyses in bulk sediment. Pre-weighted and freeze-dried samples were decarbonated
overnight by means of acid digestion (HCl 1M). The acid concentration was 1M because carbonate
content in the samples was low. When all the carbonate was digested, the solution was centrifuged to
remove the acid, and samples were rinsed with Milli-Q water and centrifuged five times. After reaching a
neutral pH, the obtained carbonate-free product was freeze-dried again. When samples were totally dry,
they were split in two aliquots: one for elemental analyses and another one for C and N isotope analyses.
The elemental composition of the samples was measured using a Thermo Scientific Flash 2000 elemental
analyser with He as carrier gas at the Centre for Scientific Instrumentation of the University of Granada,
Spain (hereafter CIC-UGR). A flash combustion was produced at 1000 ºC, and the obtained gas, after
passing through a reduction column with Cu, was separated by means of a chromatographic column and
quantified with a Thermal Conductivity Detector CTD (Data Citation 2, Data Citation 3, Data Citation 4
and Data Citation 5).
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Figure 1. Schematic overview of the environmental proxies analysed in Sierra Nevada alpine wetlands.

Solid lines represent environmental signals with high influence in the proxies (high sensitivity to these signals);

dashed lines represent environmental signals with medium influence in the proxies (moderate sensitivity to

these signals). Figure created by A. Garcia-Alix using Adobe Illustrator [5.5] (https://www.adobe.com/).
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Carbon and Nitrogen analyses in bulk sediment. C and N isotopes were measured in the other
aliquot of the decarbonated bulk samples by means of isotope-ratio mass spectrometry (IRMS) with a
coupled elemental analyser (EA). In this case, the obtained gases from the EA (N2 and CO2) were
analysed in the IRMS in order to obtain their isotopic composition. We used two different configurations:
Carlo Erba Ba 1500 series 2 Elemental Analyser attached to a Thermo Finnigan Delta plus XL IRMS
(Instituto Andaluz de Ciencias de la Tierra CSIC-UGR, Spain) in samples from LdlM, BdlV, and LdRS,
and an Euro EA 300 Elemental Analyser attached to an Isoprime 50 V IRMS (CIC-UGR) in samples from
BdlC. The isotopic measurements were calibrated using internal and international standards (see
Technical Validation section), and expressed using the δ notation, which relates the isotopic abundance
of an element in the sample and that of the same element in a reference material: δ ‰= [(Rsample/RRef)
−1]x1000. This reference is VPDB in the case of δ13C and AIR, in the case of δ15N (Data Citation 2, Data
Citation 3, Data Citation 4 and Data Citation 5).

Specific compound analyses. Pre-weighted, homogenized and freeze-dried samples were dissolved by
means of sonication (20 min) and temperature (38 °C for 1 hour) using DCM:MeOH (3:1) solution. The
supernatant solvent was collected after centrifuging at 3300 rpm and dried in a nitrogen stream. These
steps were repeated at least two more times to make sure that all the lipids had been extracted from the
samples. The neutral fraction of this total lipid extract was obtained by means of aminopropyl-silica gel
chromatography and a solution of 1:1 DCM:isopropanol. Afterwards, the aliphatic hydrocarbon fraction,
with the n-alkanes, was extracted using the elution of the neutral fraction with hexane trough a 230–400
mesh/35–70micron silica-gel chromatographic column. Finally, the n-alkanes were analysed at the BECS
laboratory (University of Glasgow, UK) by means of a GC-FID (Shimadzu 2010) in order to quantify
them, and a GC-MS (Shimadzu OP2010-Plus Mass Spectrometer interfaced with a Shimadzu 2010 GC)
in order to identify the compounds of the most complicated samples (Data Citation 3, Data Citation 4
and Data Citation 5).

Inorganic geochemistry
Inductively Coupled Plasma Mass Spectrometry and Atomic Absorption Analyses. About 0.1–0.2
g of sediment samples were dissolved using HNO3 (65% Panreac PA-AR)+HF (40% Suprapur) in Teflon-
lined vessels at high temperature and pressure during 150 min. Afterwards, they were completely
evaporated and re-dissolved in 100 ml of 4 vol.% HNO3. This solution was split in two aliquots. One was
analysed by means of inductively coupled plasma mass spectrometry (ICP-MS) using a Perkin Elmer
Sciex Elan 5000 (for Li, Rb, Cs, Be, Sr, Ba, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Y, Nb, Ta, Hf, Mo, Sn, Tl, U, Ce,
Pr, Nd. Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Zr, Pb, Th, and La). The other aliquot was analysed by
means of flame Atomic Absorption (AAS) using a Perkin-Elmer 5100 ZL spectrometer with an analytic
error of 2% (for Al, Mn, Ca, Fe, Mg, and K). Two different flames were used: one of acetylene/nitrous
oxide for the determination of Al and another of acetylene/air for the other elements. These inorganic
analyses were conducted at the CIC-UGR. Although row data are expressed in ppm, the concentration of
some selected paleoenvironmental proxies (Zr, Mg, Mn, Pb, among others) are normalised by refractory
elements (i.e., Al, or Th, in this case)37,38 in order to correct the dilution caused by sedimentary barren
phases of a particular element39,40 (Data Citation 6).

X-Ray fluorescence Scanner analyses. High-resolution elemental profiles (Al, Si, S, K, Ca, Ti, Fe, Zr,
Br, Rb, and Sr) at the BdlC core were obtained by means of an Avaatech X-Ray fluorescence (XRF) core
Scanner at the XRF-Core Scanner Laboratory (University of Barcelona, Spain). The core was scanned two
times with a point sensor: one at 10 s count time (10 kV X-ray voltage and 650 mA X-ray current for light
elements, such as Al, Si, S, K, Ca, Ti, and Fe), and another one at 35 s count time (30kV X-ray voltage and
1700 mA X-ray current for heavy elements, such as Zr, Br, Rb, Sr). Triplicate measurements were
analysed every 25 analyses. Results were expressed in intensities (counts per second, cps) as well as
normalized for the total sum of cps in every measure in order to avoid the influence of the water content
and the sediment surface conditions (Data Citation 7).

Site Type Record length (cm -- ky) Location Elevation (masl) Surface (ha) Orientation

Site Catchment

LdlM Lake 32.5 cm 4.1 ky 37°3’35’’N 3°25’01’’W 2497 0.10 25 NW

BdlV Bog (present) Lake (early –middle Holocene) 169 cm 8.5 ky 37º03’10’’N 3º22’43’’W 2945 0.18 30 NW

LdRS Lake 150 cm 12.0 -12.5 ky 37º03’08’’N 3º20’44’W 3020 0.42 9.9 S

BdlC Bog 56 cm 4.5 ky 37º03’02’’N 3º19’24’’W 2992 0.17 62 S

Table 1. Main features of the studied sites. Acronyms: Laguna de la Mula (LdlM), Borreguil de la Virgen
(BdlV), Laguna de Río Seco (LdRS), Borreguil de la Caldera (BdlC).
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Figure 2. Geographical setting. (a) Studied area in the western Mediterranean region, and (b) location of the Sierra

Nevada National Park (black line). (c) Situation of studied sites: Laguna de la Mula (LdlM), Borreguil de la Virgen

(BdlV), Laguna de Río Seco (LdRS), and Borreguil de la Caldera site (BdlC). Detailed pictures of (d) Laguna de la Mula,

(e) Borreguil de la Virgen, (f) Laguna de Río Seco, and (g) Borreguil de la Caldera. Data source and software: (a-c)

modified from García-Alix et al. (2017)4, (a) map created by P. Ruano using Adobe Illustrator [5.5] (https://www.adobe.

com/), (b) data from Suttle Radar Tomography Mission (SRTM-90: http://www2.jpl.nasa.gov/srtm/)47 plotted by means

of ArcMap [10.1] (http://www.esri.com/software/arcgis/arcgis-for-desktop), (c) map from Google Earth Pro [7.1.5.1557]

(https://www.google.es/earth/download/gep/agree.html) using the data provided by Google 2016 and DigitalGlobe 2016.

(d) Picture from R.S. Anderson, (e and g) pictures from G. Jiménez-Moreno, (f) picture from A. García-Alix.
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Mercury analyses. Total mercury concentrations were determined using an Advanced Mercury
Analyser (LECO AMA-254) with an absolute mass detection limit of 0.01 ng of Hg, following analogous
procedures to those reported by Diez et al., 200741 at the Institute of Environmental Assessment and
Water Research (IDAEA-CSIC, Spain). This instrumentation, originally developed by Altec, Ltd., Czech
Republic, is a single-purpose atomic absorption spectrometer for determination of mercury traces in solid
and liquid specimens without sample pre-treatment or pre-concentration. Sediment samples and quality
control materials with masses of 20 mg to 100mg were automated, introduced into a quartz combustion
tube in a nickel boat and dried at 120 °C for 50 s. Subsequently, the instrument self-seals the tubes.
Afterwards, samples were combusted in an oxygen-rich atmosphere (99.5%) and the released gasses were
transported using oxygen as carrier gas through specific catalytic converter (a Mn3O4/CaO-based catalyst
at 750 ºC), in order to obtain a complete oxidation as well as the retention of halogens, nitrogen, and
sulphur oxides. As a consequence, the different mercury species are converted into elemental Hg vapour,
which is collected in a gold-plated ceramic amalgamator. Subsequently, the mercury is released by means
of an oxygen flush for 150 s and the amalgamator heating up to approx. 700 °C. The gas is driven to a
cuvette at ~120 °C in order to prevent condensation and to minimize potential carry-over effects. The
source was a low-pressure mercury vapour lamp at of 253.65 nm wave-length, and a detector,
with a working range between 0.05 ng and 500 ng, acquired the signal. Data are expressed in ppb (Data
Citation 8).

Code availability
The database includes seven datasets stored in seven files (Data Citation 1). The files with the different
datasets are named with the acronym of the site and the data source; i.e. BdlV_organic. The files and the
information they contain are listed in Table 2. Each data file includes the following fields for each sample:

Core ID
Drive
Top sampling depth
Bottom sampling depth
Top real depth
Bottom real depth
Mean real depth
Top age Cal yr BP
Bottom age Cal yr BP
Mean age Cal yr BP
Proxy#1
Proxy#2
Proxy#n-n+1

Data from XRF scanner in the file BdlC_inorganic do not contain the fields: bottom sampling depth,
bottom real depth, mean real depth, bottom age Cal yr BP and mean age Cal yr BP since measurement
were taken with a point sensor in specific locations (top sampling depth).

Proxy units are showed between brackets when are needed. Each single data can be named as follows:
core-ID#top_real_depth/top_age#proxy, i.e., BdlV 06-01#10 cm/155 cal yr BP#δ13C. New

Site Organic analyses Inorganic analyses

Elemental Analyser EA-IRMS GC-
FID

Data files in Data Citation AAS ICP-
MS

Mercury
Analyser

XRF
scanner

Data files in Data Citation

TOC,
TN

TH C/
N

H/
C

δ13C δ15N n-
alkanes

Hg

LdlM 31 31 31 31 LdlM_organic (Data Citation 2)

BdlV 73 79 79 74 93 BdlV_organic (Data Citation 3)

LdRS 68 68 68 68 68 LdRS_organic (Data Citation 4) 68 68 LdRS_inorganic (Data Citation 6)

BdlC 81 81 82 82 56 51 50 BdlC_organic (Data Citation 5) 18 78 BdlC_inorganic (Data Citation 7)
BdlC_Hg: (Data Citation 8)

Table 2. Organic and inorganic analyses conducted in the sedimentary cores as well as number of
samples measured with the different techniques and the file name where these data are stored (Data
Citation 1). AAS data: Al, Mn, Ca, Fe, Mg, and K; ICP-MS data: Li, Rb, Cs, Be, Sr, Ba, Sc, V, Cr, Co, Ni, Cu,
Zn, Ga, Y, Nb, Ta, Hf, Mo, Sn, Tl, U, Ce, Pr, Nd. Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Zr, Pb, Th, and La;
XRF-scanner data: Al, Si, S, K, Ca, Ti, Fe, Zr, Br, Rb, and Sr. Acronyms: EA, Elemental Analyser; IRMS,
Isotope-ratio mass spectrometry; GC-FID, Gas Chromatography with Flame-Ionization Detection; AAS,
Atomic Absorption; ICP-MS, Inductively coupled plasma mass spectrometry; XRF-scanner, X-ray
fluorescence scanner.
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paleogeochemical data can be easily added to this database when they are available so that this database
will always be updated with the latest geochemical findings in these sites.

Data Records
The dataset presented in this paper shows information of the organic and inorganic content from four
alpine sites at the Sierra Nevada National Park: LdlM, BdlV, LdRS, and BdlC (Table 1). These
geochemical records have different lengths, registering the environmental evolution of these shallow lakes
and peatlands from the last 4.1 ky (LdlM, the shortest sedimentary record in the area) to the last 12–12.5
ky (LdRS, the longest sedimentary record in the area) (Table 1).

Regarding the organic data, we present the total organic carbon (TOC), total nitrogen (TN), total
hydrogen (TH), atomic hydrogen–carbon ratio (H/C), atomic carbon–nitrogen ratio (C/N), carbon

Laboratory Code Core Depth (cm) Material Dated Dating Method 14C age (yr BP) SD (± ) Calibrated Age (cal yr BP/AD)

Reference age LdlM 10-02 0.0 Present −60

DirectAMS-1203-006 LdlM 10-02 2.5 OBS 14C 834 19 739

DirectAMS-1203-007 LdlM 10-02 9.5 OBS 14C 2038 24 1990

DirectAMS-1203-008 LdlM 10-02 14.5 OBS 14C 2535 28 2624

DirectAMS-1203-009 LdlM 10-02 18.0 OBS 14C 2887 20 3018

DirectAMS-1203-010 LdlM 10-02 22.0 OBS 14C 3397 20 3650

DirectAMS-1203-011 LdlM 10-02 27.5 OBS 14C 3913 22 4356

UCIAMS81595 LdlM 10-02 30.5 OBS 14C 3720 20 4042

Reference age BdlV 06-01 0.0 Present − 56

UCIAMS-51248 BdlV 06-01 34.5 VR 14C 730 15 675

UCIAMS-69120 BdlV 06-01 44.2 VR 14C 3220 20 3428

UCIAMS-67124 BdlV 06-01 47.5 VR 14C 5435 25 6240

UCIAMS-67125 BdlV 06-01 53.96 VR 14C 5000 20 5722

UCIAMS-67126 BdlV 06-01 61.8 VR 14C 3960 20 4430

UCIAMS-51249 BdlV 06-01 72.4 VR 14C 4395 15 4941

UCIAMS-51250 BdlV 06-01 100.0 VR 14C 5410 15 6241

Beta-22171 BdlV 06-01 144.0 VR 14C 6470 40 7375

UCIAMS-51251 BdlV 06-01 159.0 VR 14C 7245 20 8052

Reference age LdRS 06-02 0.0 Present − 56

USC-LdRS 06-02-1 LdRS 06-02 5.0 BS 137Cs 1963 AD

USC-LdRS 06-02-2 LdRS 06-02 15.0 BS 210Pb 1891 AD

UCIAMS-51255 LdRS 06-01 20.0 VR 14C 1520 15 1398

UCIAMS-63003 LdRS 06-01 26.75 VR 14C 2255 20 2234

UCIAMS-51256 LdRS 06-01 40.0 VR 14C 3060 15 3295

UCIAMS-63004 LdRS 06-01 46.0 VR 14C 3525 20 3786

UCIAMS-51257 LdRS 06-01 60.0 VR 14C 4010 15 4480

UCIAMS-51258 LdRS 06-01 80.0 VR 14C 5450 30 6246

UCIAMS-63005 LdRS 06-01 83.25 VR 14C 5505 20 6298

UCIAMS-63006 LdRS 06-01 109.5 VR 14C 6550 20 7453

UCIAMS-32495 LdRS 06-01 123.5 VR 14C 8570 60 9540

Reference age BdlC 13-01 0.0 Present − 63

DirectAMS-004385 BdlC 13-01 13.7 VR 14C 388 24 469

DirectAMS-004386 BdlC 13-01 23.2 VR 14C 474 26 517

DirectAMS-004387 BdlC 13-01 36.8 VR 14C 1036 31 950

DirectAMS-004388 BdlC 13-01 46.4 VR 14C 2563 30 2725

DirectAMS-004389 BdlC 13-01 56.0 VR 14C 4066 29 4551

Table 3. Age data from the studied cores 14C ages were calibrated using IntCal09 curve35 in LdlM7, LdRS11,
and BdlV12, and IntCal13 curve36 in BdlC33. Dates in italics: old carbon ages not used in the age model.
Acronyms: OBS, organic bulk sediment; BS, bulk sediment; VR, vegetal remains; DirectAMS#, Accium
BioSciencies, Seattle, USA; Beta#, Beta Analytic, Inc. Miami, USA; UCIAMS#, University of California at Irvine
W.M. Keck Carbon Cycle Accelerator Mass Spectrometry Laboratory, Irvine, USA. USC, University of
Southern California, Los Angeles, USA.
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isotopic composition (δ13C), nitrogen isotopic composition (δ15N), and several n-alkane indices (average
change length, ACL; portion aquatic, Paq; carbon preference index, CPI), as well as the n-alkane
concentration in each sample. ACL, CPI and Paq have been worked out from the n-alkane concentrations
(Cxx) following these equations:

ACL42= (25xC25+27xC27+29xC29+31xC31 +33xC33)/ (C25+C27+C29+C31+C33) after Poynter and
Eglinton (1990).

CPI43,44= 0.5 x[(C25+C27+C29+C31+C33)/(C24+C26+C28+C30+C32)+(C25+C27+C29+C31+C33)/(C26+
C28+ C30+C32+C34)] after Bray and Evans (1961).

Paq
25= (C23+C25)/ (C23+C25+C29+C31) according to Ficken et al. (2000).

The inorganic geochemical data available are the concentrations of Al, Si, Mn, Ca, Fe, Mg, K, S, Li, Rb,
Br, Cs, Ti, Be, Sr, Ba, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Y, Nb, Ta, Hf, Mo, Sn, Tl, U, Ce, Pr, Nd. Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu, Zr, Pb, Th, and Hg, as well as the ratios Mg/Al, Mn/Al Zr/Th, Zr/Al, La/Lu,
and Pb/Al (Table 2).

All of these data are related to 1) the external mechanisms that generated the sedimentary record: i.e.
runoff, aeolian input/atmospheric deposition, or the redox conditions in water environments, which are
mainly related to the inorganic geochemical data, that eventually were boosted either by climate/
environmental or indirect human influence; and 2) the environmental responses of these extreme
environments to the climate/environmental and human pressures (mostly organic geochemical data)
(Fig. 1). We present all these raw data in the datasets (Data Citation 1); however, the interpretation of
these data in the context of our research can be found in the original publications4–7,21.

Technical Validation
Organic geochemistry
Elemental analyses in bulk sediment. The equipment was calibrated every day using a certified
Sulfanilamide standard, whose elemental composition is: N 16.27%, C 41.84%, H 4.68%, and S 18.62%.
The calculated precision of the measurements was better than ±0.1%. The CIC-UGR works under a
Quality Management System following the requirements of the UNE-EN-ISO-9001, which certifies the
technical quality of the obtained data.

Carbon and Nitrogen analyses in bulk sediment
The analyses that were conducted in the EA-Thermo Finnigan DELTA plus XL IRMS used four internal
standards EEZ14 -phthalic acid- (δ13C: -30.63‰ VPDB) and EEZ 21 -sucrose- (δ13C: -11.65‰ VPDB),
EEZ17 -urea Merk- (δ15N: −1.02‰ air), and EEZ23 -shark cartilage- (δ15N: 16.01‰ air), contrasted with
the IAEA international references NBS-22-oil- (δ13C: −30.03‰ VPDB), IAEA-CH-6 -sucrose- (δ13C:
−10.45‰ VPDB), and IAEA-N1 -ammonium sulphate- (δ15N: +0.4‰ air). The calculated precision of
the measurements was better than ±0.1‰ for δ13C and δ15N.

The analyses that were conducted in the EA-Isoprime 50 V IRMS used Certified Elemental
Microanalysis standards: Sorgo Flour Standard (δ13C: −13.68‰ VPDB and δ15N: +1.58‰ air), Wheat
Flour Standard (δ13C: −27.1‰ VPDB and δ15N: +2.85‰ air), and Casein Standard (δ13C: −26.98‰
VPDB and δ15N: +5.94‰ air). These standards were calibrated to the international standards IAEA-
CH-6 sucrose- (δ13C: −10.45‰ VPDB) and IAEA-N1 -ammonium sulphate- (δ15N: +0.4‰ air). The
calculated precision of the measurements was better than ±0.1‰ for δ13C and δ15N. The analyses were
conducted under a Quality Management System following the requirements of the UNE-EN-ISO-9001 at
the CIC-UGR.

Specific compound analyses
The reproducibility of the measurements was checked by means of an external standard with a mixture of
n-alkanes (C16, C18, C19, C20, C23, C25, C26; C28; C30, C32, C37) measured every five samples. The standard
reproducibility was better than 97%. The concentration of the n-alkanes was worked out with the C25 n-
alkane of the same external alkane mixture mentioned above. The concentration of this C25 n-alkane was
10 μg/ml.

Inorganic geochemistry
ICP analyses. Each sample was measured in triplicate. Re and Rh (25 ppb) internal standards (25 ppb)
were used to test the performance of the equipment. In addition, data were contrasted with several
reference geo-standards: UBN, PMS, WSE, BEN, BR, AGV, DRN, GSN GA and GH45. The instrumental
errors during the measurement of the sample batches were± 2% for elemental concentrations >50 ppm
and± 5% for concentrations between 50 to 5 ppm46. The technical validation of the analyses is certified
by the Quality Management System of the CIC-UGR that follows the requirements of the UNE-EN-
ISO-9001.

Atomic Absorption analyses. The Perkin-Elmer 5100 spectrometer has an analytic error lower than
2%. Certified Perking Elmer standards for AA (ISO Guide 34 and ISO 17025 – certified by A2LA) at a
concentration of 1000 μg/m in a solution of 2% of HNO3 were used for each element. Blank samples were
measured for each element to establish their detection limit, which was: o190 ppm (Mn), o5 ppm (Al),
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o200(Ca), o5 ppm (Fe), o340 ppm (Mg), and o190 ppm (K). The analyses were conducted
following the UNE-EN-ISO-9001 requirements of the Quality Management System at the CIC-UGR.

X-Ray fluorescence Scanner analyses. Measurements of the SARM4 standard of the National
Institute of Standards and Technology (NIST) were performed in order to test the stability of the X-ray
tube at the beginning and at the end of the measurement session every day. In addition, samples were
measured in triplicate every 25 analyses. The % mean error of the measurements [(stdes/mean)*100] was
3.5% (Al), 0.9% (Si), 1.4% (S), 1.1% (K), 2.6% (Ca), 1.4% (Ti), 0.6% (Fe), 2.5% (Zr), 4.3% (Br), 4.4% (Rb),
2.8% (Sr).

Mercury analyses. The absolute mass detection limit of the LECO AMA-254 was 0.01 ng of Hg. The
entire analytical procedure was validated by analysing certified reference material DORM-3 (Fish tissue,
NRCC, Canada) at the beginning and end of each set of samples, ensuring that the instrument remained
calibrated during the course of the analytical routine.
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