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Efficient water desalination with graphene nanopores obtained
using artificial intelligence
Yuyang Wang 1,4, Zhonglin Cao 1,4 and Amir Barati Farimani 1,2,3✉

Two-dimensional nanomaterials, such as graphene, have been extensively studied because of their outstanding physical properties.
Structure and topology of nanopores on such materials can be important for their performances in real-world engineering
applications, like water desalination. However, discovering the most efficient nanopores often involves a very large number of
experiments or simulations that are expensive and time-consuming. In this work, we propose a data-driven artificial intelligence (AI)
framework for discovering the most efficient graphene nanopore for water desalination. Via a combination of deep reinforcement
learning (DRL) and convolutional neural network (CNN), we are able to rapidly create and screen thousands of graphene nanopores
and select the most energy-efficient ones. Molecular dynamics (MD) simulations on promising AI-created graphene nanopores
show that they have higher water flux while maintaining rival ion rejection rate compared to the normal circular nanopores.
Irregular shape with rough edges geometry of AI-created pores is found to be the key factor for their high water desalination
performance. Ultimately, this study shows that AI can be a powerful tool for nanomaterial design and screening.
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INTRODUCTION
Single-layer graphene, as an iconic two-dimensional (2D) material,
has drawn much scientific attention in recent decades. Because of
its ultrathin thickness and outstanding mechanical properties,
graphene with artificial pores has been demonstrated to have
great potentials in many engineering applications, such as
effective hydrogen gas separator1–3, next-generation energy
storage or supercapacitor building4,5, and high-resolution DNA
sequencing6–8. Given the potential imminent global water scarcity
crisis, another important application for nanoporous graphene is
energy-efficient water desalination9,10. Equipped with nanoporous
2D material membranes like graphene, the reverse osmosis (RO)
water desalination process can expect 2–3 orders improvement in
water flux compared with traditional polymeric membranes9–14. In
RO, the geometry of nanopores in 2D materials plays a
determinant role in water desalination performance9,11. In general,
a large pore that allows high water flux is likely to perform poorly
in rejecting ions; a small pore that rejects 100% undesired ions, on
the other hand, usually have limited water flux. Thus, an optimal
nanopore for water desalination is expected to allow as high water
flux as possible while maintaining a high ion rejection rate.
However, finding the optimal nanopore geometry on graphene
can be challenging due to high computational and experimental
cost associated with extensive experiments, i.e., there are
countless possible shapes for a pore on a 4 nm × 4 nm graphene
membrane, but evaluating the water flux and ion rejection of a
single pore using 10 ns MD simulation takes roughly 36 h on a 56-
core CPU cluster. Given this time benchmark, evaluating the water
desalination performance of 1000 graphene nanopores can take
more than 4 years. Therefore, to discover the optimal graphene
nanopore for water desalination, an efficient nanopore screening
method with a fast nanopore water desalination performance
predictor (performance predictor in short) is needed. Inspired by
the recent success of deep learning15 and reinforcement learning
(RL)16, we create an AI framework consists of the combination of

the state-of-art deep reinforcement learning (DRL) algorithm with
a convolutional neural network (CNN) to solve this challenge.
The main idea of RL17 is to train an agent to find an optimal

policy that maximizes the expected return in the future through
actively interacting with the environment to achieve a goal.
Recently, DRL16,18, which models the RL agent with artificial neural
networks, has proven to be an efficient tool in material-related
engineering fields, such as material design19–21 and molecule
optimization22. In this work, we designed and implemented an
artificial intelligence framework consisting of DRL, which is
capable of creating a nanopore on a single-layer graphene
membrane to reach optimal water desalination performance. By a
series of decisions on whether or not to remove carbon atoms and
which atom to be removed, the DRL agent can eventually create a
pore that allows the highest water flux while maintaining ion
rejection rate above an acceptable threshold. Such precisely
controlled atom-by-atom removal nanopore synthesis can be
conducted by electrochemical reaction23,24. Perforation technolo-
gies can also offer the opportunities to control the formation of
pores, gaps, and bridges with nano-meter dimensions on 2D
materials such as graphene experimentally25–28. During training,
the DRL agent learns from the feedback based on the water
desalination performance (e.g. reward for high water flux and
penalty for lower ion rejection). However, conventional methods
to calculate desalination performance, like MD simulation, are too
time-consuming to be implemented in our DRL model. To
evaluate DRL-designed nanopores fast and accurately, we
implemented a CNN-based29–32 model that uses the geometry
of porous graphene membrane to directly predict the water flux
and ion rejection rate under certain external pressure. To this end,
a ResNet32 model is trained on the dataset we collected through
MD simulation of water desalination using various graphene
nanopores. With the CNN-accelerated desalination performance
prediction, the DRL model can rapidly discover the optimal
graphene nanopore for water desalination. MD simulations on
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top-performing DRL-created graphene nanopores prove that they
have higher water flux while maintaining a similar ion rejection
rate compared to the circular nanopores. Further investigation of
molecular trajectories reveals the reason that DRL-created
nanopores outperform the conventional circular nanopores and
provides insights for energy-efficient water desalination. Lastly,
our AI-driven framework can be potentially applied to various
application areas33 of 2D materials besides water desalination,
such as gas permeation and separation, battery and super-
capacitor applications, and biomolecular translocation34,35.

RESULTS
AI framework
The framework (Fig. 1) of water desalination for efficient water
desalination consists of a DRL agent and a CNN-based perfor-
mance predictor network. At each timestep, the DRL agent
generates a updated nanopore by removing at most one atom
from the graphene, and the CNN-based performance predictor
network predicts the water flux/ion rejection rate of the nanopore,
such that the DRL agent can get instantaneous feedback on its
action. Given the featurized information of the nanoporous
graphene sheet (Morgan fingerprint, Cartesian coordinates of
each atom, and geometrical features of graphene membrane from
the CNN model) and predicted water flux and ion rejection, the
DRL agent (details of DRL agent shown in Supplementary Fig. 1)
was trained to create a pore on graphene sheet with the goal to
maximize its performance in the water desalination process. The
dataset used to train CNN performance predictor is generated by
MD simulations of various graphene nanopores for water
desalination.

Graphene nanopore dataset
We consider the graphene nanopore system as illustrated in
Fig. 2a, which consists of four different sections: a graphene piston
that applies constant external pressure; a saline water section

containing potassium chloride as solute; a single-layer graphene
membrane with the pore of different geometries; and a freshwater
section which functions as a reservoir of filtered water. The
molarity of the saline water in this work is ~2.28 M, which is higher
than normal seawater for the sake of computational efficiency.
The dimension of the simulation box is approximately 4 nm ×
4 nm × 13 nm in x, y, and z-directions, respectively. A periodic
boundary condition was applied to all three dimensions.
The two major performance indicators of a membrane in water

desalination: water flux and ion rejection rate, were calculated by
post-processing the MD simulation trajectories. The slope of the
fitted least-square regression line on filtered water with respect to
the simulation time curve was calculated to be the water flux of
each membrane (Fig. 2b). The ion rejection rate of each
membrane was calculated by dividing the number of ions in the
freshwater section by the total number of ions.
The total number of different simulated porous graphene is 185.

Since the reward of DRL agent in our model was calculated based
on the water flux/ion rejection prediction of performance
predictor (Eqs. (1) and (2); Supplementary Fig. 2), highly accurate
predictions must be achieved to ensure the quality of DRL
training. A much larger training dataset was necessary for the
optimization of CNN model. The method employed in our study to
substantially increase the size of the dataset was data augmenta-
tion36,37. Given that the water desalination performance of a
graphene pore depended on its size and geometry, we could
assume that a flipped or translated pore on the same graphene
membrane would demonstrate identical water flux/ion rejection
rate of the original pore (proven by MD simulations in
Supplementary Fig. 3). Therefore, copies of original pores were
created by being flipped along x- or y-axis and/or translating in −4
to 4Å in x and y directions (Fig. 2c). The water desalination
performance of pore copies is a random variable of normal
distribution (μ= original pore performance, σ= 1% of original
pore performance). In order to improve CNN’s prediction accuracy
on the performance of pores created by the DRL agent, we
augmented DRL-generated pores 32 times. Among the other
pores, the ones with zero water flux (too small to allow water
transport) were augmented 6 times, and the rest of the pores were
augmented 24 times. The final dataset used for CNN training
contains 3937 samples (Fig. 2d). A reverse sigmoid function was
fitted to the distribution of samples to show the general
relationship between the water flux and ion rejection rates.

Water desalination performance prediction
To facilitate the efficient estimation of water desalination
performance in our AI-driven framework, a CNN model was
trained to make an instantaneous prediction of water flux and ion
rejection rates given a specific graphene nanopore. CNN is widely
known as a universal feature extractor. Given that the water
desalination performance of a graphene nanopore depends on its
geometrical features, CNN can be the most suitable model to
recognize geometrical features and make predictions based on
them. The CNN models were implemented based on VGG31 and
ResNet32, and a multi-layer perceptron (MLP) was built on top of
the convolutional layers to project the CNN-extracted features to
the predicted water desalination performance (i.e., flux and ion
rejection rate).
We compared the performance of CNN-based deep learning

models with XGBoost38, a widely used shallow machine learning
model, which was also trained to predict the water flux/ion
rejection rate. The advantage of XGBoost model is that it requires
much less time for training compared to CNN. Before the training
of the XGBoost model, the graphene membrane was featurized
into a one-hot-encoded Morgan fingerprint39 vector of dimension
1024 using RDKit package40, with a cutoff distance of 5Å. The
Morgan fingerprint vector was then fed in the XGBoost regression
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Fig. 1 Overview of AI creating nanopores for efficient water
desalination via the integration of CNN and DRL. The whole
framework runs by removing atoms sequentially. At each timestep t,
at most one candidate atom (colored as red) is removed from the
current graphene nanopore gt to generate a updated nanopore gt+1.
Any dangling atoms caused by the removal of candidate atom are
also removed from gt. gt+1 is fed into a CNN-based performance
predictor to predict water flux ft+1 and ion rejection rate it+1.
Meanwhile, the geometrical feature is extracted from the CNN. The
reward is then calculated from the predicted it+1 and ft+1. The
geometrical feature is concatenated with the fingerprint and atom
coordinates as the state st+1. Given gt+1, candidate atoms to remove
are picked from those located at the edge of the nanopore. The DRL
agent constructed upon deep Q-network takes the reward,
candidate atoms, and state as input to determine the next atom
to remove from the graphene.
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model as input. A random search was conducted on the
hyperparameter grid (Supplementary Tables 2 and 3) for model
optimization.
The mean squared error (MSE) and coefficient of determination

(R2) are used as metrics to evaluate the performance predictions of
models. The water flux and ion rejection labels are standardized
before fed into the property prediction models. Thus the metrics
tabulated are based on standardized water flux or ion rejection
rate (Table 1). Since the accuracy of performance predictor directly
influence how accurately the DRL agent is rewarded/penalized
during training, the model with the least MSE and highest R2

values was chosen to be used for reward estimation. ResNet32

significantly outperformed other models on both metrics, and the
fined-tuned ResNet50 model reaches the highest accuracy in
predicting both water flux and ion rejection rate. Therefore, a
ResNet50 (retrained using the whole dataset) is used to predict
the water desalination performance of various graphene nano-
pores to accelerate the DRL training.

DRL for discovering the optimal graphene nanopores
Our goal was to design the optimal geometry of graphene nanopore
for energy-efficient water desalination, which simultaneously
demanded high flux and high ion rejection under certain external
pressure. In order to optimize the nanopore, an agent was expected
to remove atoms sequentially until the desired pore geometry was
developed. To this end, the agent was set to interact with graphene

nanopores in a sequence of actions at, states st, and rewards rt within
an episode of length T. The goal of the agent was to select the action
such that it could maximize the future discounted return Rt ¼PT

t¼1 γ
t�1rt in the finite Markov decision process (MDP) setting. In

our case, we set the discount factor γ to be 1.
At timestep t, given the graphene nanopore Gt, the agent

observed the state st, which was composed of Morgan finger-
print39, coordinates of all the atoms, along with CNN-extracted
graphene geometrical features. The graphene geometry g0t was
fed into the flux and ion rejection predictor, respectively. The
geometrical features were the concatenation of last layer before
output of the performance predictors. Once an atom was
removed, its coordinate was set to the origin since MLP required
a homogeneous input dimension. The predicted flux ft and ion
rejection it were leveraged to compute the reward signal rt for the
agent, as given in Eqs. (1) and (2):

σðxÞ ¼ Aþ K � A

ðC þ Qe�BxÞ1ν
; (1)

rt ¼ αf t þ σðitÞ � σð1Þ; (2)

where σ(⋅) is the generalized logistic function41 and α is the
coefficient for flux term. In our setting, α was set to be 0.01, and A
=−15, K= 0, B= 13, Q= 100, ν= 0.01, C= 1 for the logistic
function. A linear term of flux reward encouraged the agent to
expand nanopores, which would allow higher water flux. Since
low ion rejection rate was not favored in water desalination, a
generalized logistic function σ(⋅) was leveraged to penalize ion
rejection term. When it was high, σ(it) was close to zero, allowing
the growth of the nanopores. However, when it was low, σ(it)
fiercely penalized the agent by outputing a large negative value
(Supplementary Fig. 2). Besides, an extra 0.05 reward was given to
the agent when it chose to remove an atom at timestep t to
encourage pore growth at an early stage. Given state st and
reward rt, the agent intended to choose the action at for next step.
However, due to the high dimensionality of possible action space
(all the atoms in the graphene fragment), it was computationally
expensive for the agent to efficiently and thoroughly explore the
possible actions and to learn an optimal design. Therefore, only a
subset of M atoms was selected as candidates ct. Atoms on the

Piston Saline water Membrane Fresh water

Original

Flip Translate Flip+Translate

(a)

(b) (c) (d)

Fig. 2 Dataset generation using MD simulation and data processing. a Graphene nanoporous membrane water desalination system in MD
simulation. b Number of filtered water molecules with respect to simulation time for pores with a different number of atoms removed. The
slope of the least-squared regression line of each curve is the water flux. c Two data augmentation techniques: flip and translation. d Water
flux and ion rejection rate distribution of the final training dataset for predictive CNN model. The blue dashed line represents a reverse
sigmoid curve fitted in terms of water flux and ion rejection rate.

Table 1. Performance of different models for graphene property
prediction.

Model Flux MSE Flux R2 Ion rejection MSE Ion rejection R2

XGBoost 0.011 0.988 0.008 0.992

VGG16 0.0448 0.957 0.0156 0.985

ResNet18 0.0024 0.998 0.0039 0.996

ResNet50 0.0022 0.998 0.0038 0.996

Values based on standardized water flux/ion rejection.
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edge of pore were picked based on the rank of their proximity to
the pore center, if the number exceeds M, only the first M atoms
closest to the center of pore were selected. However, when the
number of edge atoms was less than M, non-edge atoms closest
to the center of pore were selected as possible candidates to
maintain the size of ct. Given the state st, reward rt, and candidate

ct, the agent learned to pick the action aiming to maximize future
rewards.
We optimized the DRL agent via deep Q-learning16 with

experience replay with 10 random seeds to generate various
graphene nanopores. In the DRL agent training processes with
different random seeds (Fig. 3), the red curves indicate mean

Fig. 3 Training results for 10 DRL agents. a Summation of reward in each timestep vs. episode, where the red line is the running average of
the reward with window size 21 and the blue shadow represents the standard deviation. b Summation of reward in each timestep vs.
timestep. c Number of removed atoms vs. timestep. d Predicted water flux vs. timestep. e Predicted ion rejection vs. timestep. b–e show the
results of DRL agents after trained for 2000 episodes, where the red line indicates the mean and the blue shadow is the standard deviation.
f Evolution of a graphene nanopore designed by DRL agent.
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values and the blue shadows represent standard deviations. The
accumulated reward for each episode increases during training
the DRL agent (Fig. 3a). Initially, the policy is noisy and the
accumulated rewards are low because the DRL agent has not yet
learned to stop expanding the pore before receiving an enormous
penalty for a low ion rejection rate. During the training, the DRL
agent gradually learns a stable policy through maximizing the
rewards (balancing the trade-off between water flux and ion
rejection rate). The performance of DRL agent after 2000 episodes
of training is demonstrated in Fig. 3b–e. The DRL agent generates
the nanopore which brings a positive reward at each timestep,
and the agent also automatically learns to stop enlarging the
nanopore to avoid a low ion rejection rate (Fig. 3b, c). For example,
the evolution of a DRL-created pore (Fig. 3f, animated in
Supplementary Movie) shows that DRL stops removing atom
from the edge of graphene nanopore after 50th timestep because
it determines that higher water flux reward brought by further
removing atoms is not worth the penalty for low ion rejection rate.
Based on the prediction of the performance predictor, the DRL-
created graphene nanopores have averaged ~40 # ns−1 water flux
and ~96% ion rejection rate (Fig. 3d, e).

Investigation on DRL-created graphene nanopores
The collection of both DRL-created graphene nanopores
(7999 samples) and nanopores in the training dataset (3937 sam-
ples) is visualized using t-SNE42 algorithm (Fig. 4). t-SNE maps the
high-dimensional features (1000 dimension) extracted from
trained CNN models to the low-dimensional domain while
preserving the similarity between data points as the relative
distance in 2D. In other words, CNN features that are more similar
to each other will have a higher tendency of being clustered. In
this work, using CNN-extracted features from each graphene
membrane, t-SNE successfully clusters samples with similar water
flux or ion rejection. Also, as illustrated in Fig. 4, graphenes with
different nanoporous structures are far from each other in the plot
while those with similar structures are shown close. The results
indicate that our CNN model successfully learns to extract features
that strongly correlate the water desalination performance (i.e.,
water flux and ion rejection) with the geometry of the nanopores.
The water desalination performances of all nanopores, including

DRL-created and those in the training dataset, are compared in
Fig. 5a. Comparison between permeation rate of nanopores

(Supplementary Fig. 4) shows the water flux different normalized
of the external pressure. It is worth noting that the process of
generating 7999 nanopores using DRL and predicting their water
flux/ion rejection rate takes less than a single week; however,
evaluating the performance of the same amount of nanopores
using MD simulation will take ~33 years (average 36 hrs on each
sample, using one 56-core CPU node). Among the nanopores with
the same level of ion rejection rate, some nanopores discovered
by DRL allow much higher water flux. One common feature shared
by those high-performance nanopores is the semi-oval geometry
with rough edges. We set 90% ion rejection rate as the threshold
to determine if a nanopore can effectively reject ions. The water
flux histogram (Fig. 5b) shows that given the baseline ion rejection
rate as 90%, DRL can extrapolate from the training dataset and
discover graphene nanopores that generally allow higher water
flux.
Further MD simulations are conducted with DRL-created

graphene nanopores that show high predicted performances to
evaluate how the DRL helps in discovering the optimal graphene
nanopore for water desalination (simulation process recorded in
Supplementary Movie). Although DRL-created pores generally
have lower water flux compared with circular pores with the same
area, they have a much higher ion rejection rate (Fig. 5c, 90%
threshold of ion rejection rate is marked by a red dashed line). For
example, when the pore area is 113Å2, DRL-created nanopore
maintained over 90% ion rejection rate while the circular pore
rejects only approximately 65% of ions. A pore with high water
flux but a very low ion rejection rate is not desirable in water
desalination application. Moreover, the comparison between
113Å2 DRL-created nanopore with 88Å2 circular pore shows that
DRL-created pore can reject more ions when achieving the same
water flux: they both have approximately 125 # ns−1 water flux
while 113Å2 DRL-created pore can reject approximately 7% more
ions. The comparison between simulation results proves that DRL
tends to prioritize the ion rejection rate over water flux, which
makes it capable of maximizing the water flux of nanopores while
maintaining a valid ion rejection rate. Nanopores with a larger area
result in higher pore density on the graphene membrane. The
pore density of the graphene membranes with the above-
mentioned nanopores are tabulated in Supplementary Table 4.
In real-world experiments or applications, the graphene

Fig. 4 Visualization of 2D t-SNE embedding of CNN features. a 2D t-SNE embedding of features extracted from water flux prediction CNN
model, where each point is colored by its predicted water flux. b 2D t-SNE embedding of features extracted from ion rejection rate prediction
CNN model, where each point is colored by its predicted ion rejection. Each axis represents a dimension of the t-SNE embedding. Dot and X-
marks represent graphene nanopores from DRL and the training dataset, respectively. Several graphene nanopores from the training dataset
are shown in black and DRL-created membranes are shown in blue.
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nanopores can be stabilized by adding passivation such as
hydrogen to the edge of the pore43.
To gain a deeper understanding of the reason behind the high

ion rejection rate of DRL-created pores, distribution of water
molecules and ions inside of 113Å2 DRL-created pore and 88Å2

circular pore have been visualized (Fig. 5d). From the ion
distribution (marked by red dots), we can observe that ions can

traverse the circular pore evenly through the entire central area of
the pore. The distributions of water molecules (marked by aqua
blue color) and ions in the circular pore are in a homogeneous
pattern. However, the corners inside of DRL-created nanopore are
small enough to block the passage of ions while being large
enough to accommodate the transport of water molecules. With
the knowledge that ions are covered by hydration shell during the

Circular, 88 Å2 DRL, 113 Å2

(a) (b)

(c) (d)

(e)

Fig. 5 Analysis of DRL-created graphene nanopores. a Predicted water flux (ns−1) and ion rejection rate (%) of all graphene nanopores (7999
DRL-created+ 3937 in training dataset). Zoom-in window shows the geometries of high-performance nanopores. b Histogram of water flux of
nanopores with >90% ion rejection rate. c Comparison of water desalination performance (under 100 MPa pressure) of circular and DRL-
created graphene nanopores. Each data point is obtained by averaging the ion rejection and water flux of 4 MD simulations. The error bars
represent one standard deviation. d Distribution of water molecules (aqua blue) and ions (red) when they are inside of the nanopores (left:
circular, area= 88Å2; right: DRL-created, area= 113Å2). e Schematic showing how ions are blocked by DRL-created pore due to the steric
effect. Ions with their hydration shell (blue dashed circle) are too large to pass through the corner area (red dashed circle) in the DRL-created
pore, thus rendering that area an ion-free zone.
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transport through the nanopore, it can be seen that ion-free zones
(corners) inside of DRL-created nanopore obstruct the traversing
of ions with hydration shell by steric effect (Fig. 5e). The
perimeter/area ratio can be used as a shape parameter to
quantitatively evaluate the influence of geometry on the water
desalination performance of nanopores. Due to the rough edges,
the comparison of the perimeter/area ratio of DRL-created and
circular pores (Supplementary Fig. 6) shows that DRL-created pore
generally have higher perimeter/area ratio (Supplementary Table
4). Higher perimeter/area ratio enables DRL-created pores to
achieve higher ion rejection rate compared with circular pores
with similar water flux or permeation rate. This is the reason why
high-performance nanopores (zoom-in Fig. 5a, more high-
performance DRL-created pores shown in Supplementary Fig. 7)
all have rough edges. Discovers and utilizes this special geometry,
DRL identifies nanopores that can reject most ions while allowing
high water transport.

DISCUSSION
In this work, we propose an AI framework that combines the DRL
and CNN performance predictor to discover the optimal graphene
nanopore for water desalination. The DRL agent takes the current
graphene geometrical features and the candidate atoms as inputs
to determine which atom to remove at each timestep. Trained
with the DQN algorithm, the agent learns to generate nanopores
that allow high water flux while maintaining high ion rejection.
ResNet50, a widely used CNN model, is trained on a graphene
nanopore dataset to instantly predict the water flux and ion
rejection rate under certain pressure. Such prediction by the
ResNet50 enables the real-time interaction between the DRL
agent with the graphene nanopores, as well as the online
optimization of the DRL agent. CNN-accelerated DRL training
significantly expedites the exploration of graphene nanopores:
7999 different nanopores are created and evaluated for water
desalination performance during 1-week training of DRL. Evaluat-
ing the same amount of graphene nanopores using MD
simulation can take approximately 33 years with a 56-cores CPU
cluster. When we set the baseline ion rejection rate to be 90%,
DRL shows the capability of extrapolating from the existing
training dataset to discover nanopore with higher water flux.
Further MD simulations confirm that DRL-created nanopores
outperform circular nanopores in terms of ion rejection rate when
they have approximately the same water flux. The better water
desalination performance of DRL-created pores can be attributed
to DRL’s utilization of rough edges and small corners to increase
the perimeter/area ratio of pores and to block ions with the
hydration shell. In conclusion, DRL shows the capability of
discovering optimal graphene nanopores for water desalination.
Moreover, with only minor modifications, this framework can be
directly extended to many other fields concerning nanomaterial
design. With a well-trained machine learning property predictor,
the DRL can automatically learn to discover the optimal material
structure effectively and efficiently.

METHODS
MD simulations
MD simulations were conducted using LAMMPS package44, where porous
graphene membranes simulated were either created using Visual
Molecular Dynamics45 or automatically generated by DRL agent (samples
from the early stage of training). All water molecules in this work were
simulated using SPC/E model46, with SHAKE47 algorithm to constrain the
bond length and angles. Lennard–Jones (LJ) potentials (Supplementary
Table 1) along with long-range Coulombic electrostatic potentials were
adopted as interatomic potentials in the MD simulation. The cutoff for the
interatomic potentials was set to be 12Å. Lorentz–Berthelot rules were
employed for the calculation of LJ potentials between different kinds of

atoms. Particle-particle particle-mesh (PPPM) Ewald sovler48 with 0.005
root-mean-squared error was used for long-range Coulombic potential
correction. The porous graphene membrane and piston were each
regarded as an entity during the simulation (internal interatomic potentials
were not calculated) in order to reduce the computational cost.
In the first stage of each individual simulation, the internal energy of the

system was minimized for 1000 iterations. The system then ran for 5 ps
under the NPT (isothermal–isobaric) ensemble at 300 K after the velocities
of molecules were initialized based on Gaussian distribution. After the
equilibrating, the system under NPT ensemble, the system was switched to
NVT (canonical) ensemble to run for another 10 ns. The temperature was
maintained at 300 K by Nosé–Hoover thermostat49,50 with a time constant
of 0.5 ps. At this stage, a z-direction constant external pressure of 100MPa
was applied on saline water by the piston to mimic the RO process in water
desalination. Since the relationship between water flux and external
pressure in the RO process was generally linear9,11–13, the performance of
pores under 100MPa could be extrapolated to lower pressures. Therefore,
we chose to run simulations under 100 MPa external pressure to rapidly
collect meaningful data. Molecular trajectories of each simulation were
collected every 5 ps for data processing. Data augmentation was
conducted using the Atomic Simulation Environment (ASE) package51.
Area and perimeter of the graphene nanopores are calculated using
computer vision methods (details in Supplementary Fig. 5).

CNN water desalination performance predictor
There were two steps in the CNN modeling, including extracting features
from the geometry of graphene nanopore and making predictions through
an MLP regression model. First of all, the geometrical features of a
graphene nanopore were extracted to a 380 × 380 pixels representation.
Color was applied on top of each atom, and all geometrical features were
resized to the dimension of 224 × 224 pixels. The processed geometrical
features were then fed into a CNN. Multiple CNN models, including
ResNet18, ResNet50 (ref. 32), and VGG16 (ref. 31) with batch normalization,
were benchmarked based on the MSE and R2 of their resulting water flux/
ion rejection rate predictions. An extracted feature vector with the
dimension of 1000 was output from the CNN model. Finally, given the
feature vector, the MLP was able to make predictions of flux and ion
rejection rates. The MLP used in this work consisted of two layers with 256
and 64 neurons in the first and second layers, respectively. A residual
block32 and ReLU52 activation function were added after each layer of MLP.
Two CNN models were trained: one for the prediction of water flux and the
other for ion rejection rate.
The CNN models, including VGG31 and ResNet32, were implemented

based on PyTorch library53 and pre-trained on the ImageNet dataset54 to
learn the robust CNN feature extractor. A random-initialized MLP was built
on top of the convolutional layers to project the CNN-extracted features to
the predicted water desalination performance (i.e., flux and ion rejection
rate). In training the deep learning models on our graphene dataset, we
used gradient-based Adam optimizer55 with the learning rate 0.0001 and
0.001 for pre-trained convolutional layers and the MLPs, respectively. The
whole graphene dataset was split into a training set and a test set with the
ratio of 4:1, and the models were trained only on the training set for 600
epochs and evaluate on the test set. The model which reached the best
performance (i.e., lowest MSE in predicting the flux/ion rejection rate) on
the test set was selected as the water desalination performance predictor
in the DRL framework. These strategies in CNN training maintains the
robust and informative CNN feature extractors in the pre-trained CNN
models and avoided the model from overfitting the graphene dataset.

DRL agent
To train the agent, deep Q-learning 16 with experience replay was
implemented. Our task only considered deterministic environment, namely
given the pair (s, c) and the action a, ðs0; c0Þ at the next timestep was
determined. Based on Bellman equation17, the optimal action-value
function Q*(s, c) in the deterministic environment was defined as

Q�ðs; cÞ ¼ r þ γmax
c0

Q�ðs0; c0Þ (3)

To model the Q function, the Q-network parameterized by θ and target
network parameterized by θ0 , two fully connected networks with identical
architecture were built. During training, only the parameters θ in the Q-
network were updated through backpropagation from the loss function.
The parameters θ0 in the target network were updated with θ every
10 steps and are kept fixed otherwise. The input to the network was the
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pair of graphene state and action candidates, (s, c), and the output was the
Q values of all the actions in the candidate. The agent then picked the
action with the highest Q value. In addition, the agent’s experience
ðs; c; r; s0Þ in the episodes were stored to a replay buffer D16, such that the
experience can be leveraged to update the network parameters multiple
times. During training, a mini-batch of samples was drawn uniformly at
random from the replay buffer ðs; c; a; r; s0Þ � UðDÞ. The loss function
(Eq. (4)) measured the difference between the target Q value Q�ðs0; c0; θ0iÞ
and the prediction of current Q-network Q(s, c; θi):

LiðθiÞ ¼ Eðs;c;r;s0 Þ�UðDÞ½ðr þ γmax
a0

Qðs0; c0; θ0iÞ � Qðs; c; θiÞÞ2� (4)

In our setting, we use an Adam optimizer55 with learning rate 0.001. The
replay buffer is of capacity 10,000 and batch size is set to 128.

DATA AVAILABILITY
The graphene nanopore desalination performance dataset generated during the
current study are available in the Github repository (https://github.com/BaratiLab/
Graphene-RL/tree/main/data).

CODE AVAILABILITY
The code accompanying this work can be found at https://github.com/BaratiLab/
Graphene-RL.
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