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Increasing selection gain 
and accuracy of harvest 
prediction models in Jatropha 
through genome‑wide selection
Adriano dos Santos1, Erina Vitório Rodrigues2, Bruno Galvêas Laviola3, 
Larissa Pereira Ribeiro Teodoro4, Paulo Eduardo Teodoro4* & Leonardo Lopes Bhering5

Genome-wide selection (GWS) has been becoming an essential tool in the genetic breeding of long-
life species, as it increases the gain per time unit. This study had a hypothesis that GWS is a tool that 
can decrease the breeding cycle in Jatropha. Our objective was to compare GWS with phenotypic 
selection in terms of accuracy and efficiency over three harvests. Models were developed throughout 
the harvests to evaluate their applicability in predicting genetic values in later harvests. For this 
purpose, 386 individuals of the breeding population obtained from crossings between 42 parents 
were evaluated. The population was evaluated in random block design, with six replicates over three 
harvests. The genetic effects of markers were predicted in the population using 811 SNP’s markers 
with call rate = 95% and minor allele frequency (MAF) > 4%. GWS enables gains of 108 to 346% over the 
phenotypic selection, with a 50% reduction in the selection cycle. This technique has potential for the 
Jatropha breeding since it allows the accurate obtaining of GEBV and higher efficiency compared to 
the phenotypic selection by reducing the time necessary to complete the selection cycle. In order to 
apply GWS in the first harvests, a large number of individuals in the breeding population are needed. 
In the case of few individuals in the population, it is recommended to perform a larger number of 
harvests.

In recent decades, there has been exponential growth in demand for energy sources, which is linked to population 
expansion. It is estimated that the world population in 2050 will be 9.7 billion people, compared to approximately 
7.3 billion people in 2015, i.e., the population will increase by about 32%1. This scenario has imposed challenges 
on society, as pertinent questions arise: How to increase the production of food to meet society’s demand and 
still meet the environmental sustainability goals? In this context, science is the main ally, since it is possible to 
develop innovation and technologies to improve yields and restore natural balances throughout the food system 
simultaneously2.

Energy from fossil fuels is still crucial in the energy sector, but it is also known to be the primary source of 
greenhouse gas emissions and a finite source3. Renewable energy has grown fast in recent years, driven by policy 
support, advances in technology, and sharp reductions in production costs, and is at the heart of the transition to 
a less carbon-intensive and more sustainable energy system. In this context, using renewable energy is impera-
tive in the world energy matrix. It is worth mentioning the use of biofuels, which has shown economic viability 
and some advantages compared to fossil fuels since they are non-toxic, biodegradable, and do not pollute the 
environment, have flash point and can be added to diesel due to similar properties4.

In Brazil, there are several potential sources of oilseeds for biodiesel production. Given the vast diversity of the 
national ecosystem, soybean (Glycine max L. Merril) presents highlight and supremacy as feedstock for biodiesel 
production, representing 69.8% of the Brazilian energy matrix5. Thus, there is a limitation in the number of raw 
materials composing the energy matrix. However, Brazil has the potential to expand the production of biofuels 
and other vegetable oil derivatives to meet both the domestic and global markets. One of the effective ways to 
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increase the limited quantity of traditional raw materials and their high prices is to invest in the improvement 
of biodiesel production from inedible vegetable oil6, such as Jatropha (Jatropha curcas L.).

Jatropha has been the target of several studies as a potential source for biodiesel production7,8, since it has high 
oil production (30–48%)9,10, rusticity11,12 and simple spread10. Due to these characteristics, Jatropha qualifies as 
a potential candidate for the sustainable production of biofuels13. Despite the enormous potential, this species 
is in a domestication stage in Brazil, and because it is perennial, it needs several years to complete a breeding 
cycle. One of the objectives of the perennial plant breeders is to shorten the selection cycle. For this purpose, an 
alternative that has been used with considerable success is Genome-Wide Selection (GWS), which is one of the 
promising tools to increase selection efficiency, reduce costs in the launching of cultivars, reduce the breeding 
cycle through early selection, and increase the genetic gain between breeding generations14,15. For crops like 
Jatropha, it is estimated that GWS could shorten the breeding cycle14, which would have a high impact on the 
release of new cultivars for planting.

However, few studies have reported the use of GWS in Jatropha worldwide. A pilot evaluation of predictive 
model accuracy using only one harvest and demonstrated the potential of GWS in Jatropha breeding16. However, 
these authors recommended that the study should be validated over the years and by progeny evaluation. This 
research had a hypothesis that GWS is a tool that can decrease the breeding cycle in Jatropha. Thus, the objectives 
of this study were (1) to use the Jatropha training population evaluated in multiple harvests, and (2) to develop 
models for predicting breeding values between harvests. This paper presents unprecedented results in validating 
GWS in Jatropha for biofuel production.

Results
Initially, we estimated heritability in the restricted sense (h2

a) for grain yield in the three harvests, to assess the 
extent to which phenotypic variation is genetically controlled and genomic selectable. Heritabilities ranged from 
0.18 to 0.20 for the first and third harvests, respectively, and 0.25, when the average grain yield was considered 
(Table 1).

Low selective accuracy was observed based on phenotypic information (ryy) on all harvests. Even using the 
mean of harvests, high magnitude accuracy values were not obtained17. The values varied from 0.17 to 0.37 for 
the first and third harvests, respectively.

On the other hand, the GWS (Table 2) accuracies were from low to high magnitude, ranging from 0.20 to 0.83 
for the first and third harvests, respectively. As for the GWS analysis efficiency regarding phenotypic selection, 
when we apply genomic selection in the second year, gains of 66.74% become possible. Likewise, when genomic 
selection is performed in the third year, gains of 346% in relation to phenotypic selection are achieved.

Regarding the estimate of the number of individuals required to obtain the desired selective accuracy 
(Table 3), it is observed the need to evaluate a larger number of individuals when larger estimates of selec-
tive accuracy are sought. In an antagonistic way, a smaller number of individuals will be necessary when the 
number of harvests to obtain accuracy is increased. Regarding the estimate of 0.8, which is considered as high 
magnitude17, it will be necessary to evaluate 1239 and 256 in the first and third harvests, respectively.

In this case, it can be observed that to obtain high accuracy in GWS requires a large number of individu-
als. However, this fact is only justified if the trait under study has low heritability, however, if the trait has high 
heritability, the number of individuals can be reduced. This is evident when we look at Eq. (5), in which a direct 
relationship between the desired accuracy of GWS and heritability can be seen.

Predictive ability estimates of genomic selection (ryg) ranged from 0.27 to 0.57 for the first harvest and for 
average grain yield, respectively (Fig. 1). Jatropha demands at least 4 to 7 harvests for phenotypic selection with 

Table 1.   Narrow-sense heritability (h2
a), phenotypic selection accuracy (ryy), predictive ability (ryg), and 

average grain yield (µ).

Harvests h2
a ryy µ (g plant−1) ryg

I 0.18 0.17 173.76 0.22

II 0.19 0.20 760.85 0.24

III 0.20 0.37 1075.52 0.54

Average grain yield 0.25 0.37 667.09 0.57

Table 2.   Accuracy and efficiency of genomic selection compared to selection only with phenotypic data in 
Jatropha. IRPS: Increase relative to phenotypic selection.

Harvests GWS accuracy Efficiency IRPS (%)

1 0.20 – –

2 0.31 1.667 66.74

3 0.83 4.464 346.45

Average grain yield 0.80 4.303 330.31
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adequate accuracy. To verify if this time is also necessary for developing prediction models, we evaluated the 
accuracy of the models generated for fruit yield based on data collected in the first and second harvests, but 
validated in the same population, in the second and third harvests (Fig. 2).

Regarding the models developed for grain yield based on data collected in the first harvest and validated in 
the same population at 2 and 3 years old (second and third harvest, respectively), it can be observed that in the 

Table 3.   Number of individuals required to obtain the desired accuracy of GWS in the Jatropha population for 
grain yield.

Desired accuracy

Number of individuals required

Harvest 1 Harvest 2 Harvest 3 Average grain yield

0.40 207 175 43 51

0.50 310 263 64 77

0.60 465 394 96 115

0.70 723 613 149 179

0.80 1239 1051 256 307

0.90 2788 2364 576 692

Figure 1.   Scatterplots of genomic estimated breeding values (GEBVs) by RR-BLUP and unregressed 
phenotypes observed for grain yield. rgy: predictive ability of genomic selection. The package used of R to create 
this Figure was ggplot2 (v0.3.3, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ggplo​t2/​index.​html).

https://cran.r-project.org/web/packages/ggplot2/index.html
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validation of the second harvest data the accuracy reduced more than 50% (Fig. 2A) in relation to the accuracy 
of the second harvest (Table 1). The same result can be observed when models estimated in the first harvest 
were validated based on data from the third harvest (Fig. 2B). However, moderate precision was verified when 
models estimated in the second harvest were used and validated based on data from the third harvest (Fig. 2C).

Discussion
Based on narrow-sense heritability estimates (Table 1), the selection of superior Jatropha genotypes for grain 
yield based on phenotypic values will not provide selection gain for the next generation, since approximately 
80% of the phenotypic variation is from a non-genetic origin. Grain yield, the main trait to be improved for 
biodiesel production, is very influenced by the environment. Other studies with Brazilian Jatropha genotypes 
have also found low heritability estimates over the harvests18–21. Thus, more accurate methodologies must be 
used to predict genetic effects. Therefore, GWS becomes more appropriate to select superior Jatropha genotypes 
than conventional methods based only on phenotypic data because this technique can efficiently capture small 
genetic differences between families.

However, even if the GWS allows adequate prediction of genetic effects, the heritability has importance 
in the model, because the lower the trait heritability the lower the phenotypic data accuracy and, therefore, 
lower the heritability of marker effects. Consequently, the lower will be the ability to reliably predict the pheno-
types of individuals not sampled to compute the model. Several authors have demonstrated this theory through 
simulations22–24, in which increased trait heritability has resulted in increased GWS accuracy.

However, even with the impact of the low grain yield heritability throughout the harvests on selection, we 
can note that the predictive models performed well. This result corroborates those obtained by22, where accuracy 
increased only by 10–20% as heritability increased from 0.2 to 0.6, regardless of population size. Thus, unlike 
marker-assisted selection, GWS is efficient in selecting superior individuals even for low heritability traits as 
reported by25.

The observed values of accuracy based exclusively on phenotypic data showed low magnitude. This reveals 
that selection based only on phenotypic data has low accuracy in the first and second harvests, and moderate 
accuracy in the third harvests26. Similar findings were obtained by27, who found low accuracy for grain yield in 
Jatropha.

As for the GWS accuracy, low values were found in the first and second harvests, but the accuracy value was 
high in the third harvest. We highlight that these estimates were also obtained using genomic heritability as a 
proportion of phenotypic heritability, considering the efficiency of markers in capturing QTLs, i.e., considering 
the degree of imperfection of the linkage disequilibrium26.

The genomic selection efficiency depends on the correlation between the predicted and the actual genotypic 
value, i.e., the predictive capacity26. There was an increase in this correlation throughout the harvests, suggesting a 
higher additive genetic variation for this trait in this reproductive population. These findings show that rgy values 
were higher for the harvests with the highest h2

a estimates. This indicates that phenotypes for low heritability 
traits contain higher environmental noise and hence will be less predictable by genomic models.

One of the principles of genomic selection is using a large number of markers able to cover the entire genome 
of the species to maximize the number of QTLs in linkage disequilibrium (LD) with at least one marker, allow-
ing the maximization of the genetic variance explained by the QTLs28. However, the use of 811 SNPs allowed a 
satisfactory predictive ability. This result is consistent with those found by29 when assessing a Jatropha breeding 

Figure 2.   Accuracy of estimated prediction models in crop 1 validated in crop 2 (A), crop 1 validated in crop 3 
(B), and crop 2 validated in crop 3 (C). The package used of R to create this Figure was ggplot2 (v0.3.3, https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​ggplo​t2/​index.​html).

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
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population by GWS. These authors concluded that training models with 800 and 1000 markers are sufficient to 
capture the maximum genetic variation and hence the maximum predictive ability for grain yield in Jatropha 
families. In addition, not just the number of SNPs, but high LD with QTLs is the important factor in GWS success.

In genomic selection, the genotyping step is the costliest and often makes it impossible to apply genomic selec-
tion. However, given the results found here, as previously reported by20, reveal the possibility of using a small set 
of SNP markers in Jatropha breeding will enable significant gains in the short-term and at relatively low cost. The 
predictive ability of genomic selection (ryg) shows the potential of molecular information to consistently predict 
a phenotype30. The magnitudes obtained here were similar to those reported in forest species24 and coffee crop31.

Likewise32, by using canola as a model, reported that low-density marker sets comprising only a few hundred 
markers allow high accuracy of genomic prediction in breeding populations with strong linkage disequilibrium. 
The authors also mentioned that the breeder could obtain a significant advantage in selection by using reduced 
marker density, even when the prediction accuracy is lower than a high-density chip. This strategy provides 
substantial cost savings and thus enables phenotyping resources to be focused on pre-selected genotypes that, 
even with lower selection accuracy, will still allow significant gains for the breeding program.

Throughout the evaluation of the Jatropha harvests, many alleles will be acting with more or less expression 
on the expression of phenotypes. However, we do not know if the major effect alleles for grain yield in the first 
harvest will keep pronounced effect over the next harvests, i.e., over advanced ages. In this sense, considering 
that genomic selection requires phenotypic data for its calibration, a high correlation between the marker effects 
representing the alleles at different ages of the plant will allow the phenotype to be predicted earlier for prediction 
at future harvests. This would enable the early selection of superior genotypes by GWS.

Thus, grain yield was evaluated over three harvests, allowing the development of prediction models for 
each harvest. We tested how the models developed on the first harvest act in the prediction of phenotypes on 
the second and third harvests. However, the models developed for the first harvest showed limited accuracy in 
phenotype prediction in the second and third harvests. Given this result, we infer that there is a low genetic 
correlation between the first harvest and the second and third harvests. This low correlation is attributed to the 
lower yield stability of the Jatropha in the first harvest, since a significant part of the individuals in the population 
is still growing, making it impossible to express their productive potential.

When evaluating the agronomic performance of jatropha33, observed an increase in grain yield from 322 to 
1972% from the first to the third harvest. On the other hand, the accuracy of the models developed based on the 
grain yield data of the second harvest was higher in the measurements of the third harvest, and there may be a 
higher genetic correlation between these harvests. Genotype by harvest interaction can affect the transferability 
of models between harvests when the first harvest is used. Therefore, the results obtained are essential to facilitate 
the ongoing use of genetic selection in Jatropha breeding programs.

Regarding the efficiency of wide-genome selection, considering the 50% reduction in the selection cycle, we 
observed an increased gain with GWS compared to the phenotypic selection of 66.74 and 346.45% for the sec-
ond and third harvests, respectively. Our findings reveal that the use of GWS in Jatropha in an early manner is a 
reality to be explored. This strategy makes the applicability of GWS even more significant since late phenotyping 
would reduce the gain by time unit, i.e., the selection gain already achieved simply by conventional breeding.

By selecting superior individuals early through GWS analysis, the breeder will focus on potential genotypes 
and eliminating undesirable ones. For this reason, the costs of maintaining breeding populations in the field can 
be reduced. Furthermore, the early genomic selection makes it possible to carry out breeding populations with 
higher agronomic performance, which will maximize the genetic gains.

This possibility, as reported by15 and34, is due to the fact that genomic prediction and selection of superior 
genotypes can be performed at the seedling stage, and thus GWS becomes more time-efficient. Similar results 
were reported by several studies in pinus35, eucalyptus15, citrus34, and coffee31. An increase in breeding efficiency 
by using simulated data was also reported36.

Due to the significant population growth, the demand for energy sources, especially renewable energy, is 
intensified, since the use of energy from oil or coal is finite. Thus, encouraging the use of renewable energies, 
especially biofuels, has become one of the alternatives faced with the issue of global warming. Several studies 
have been carried out to consolidate new crops for biodiesel production.

In this sense, the use of Jatropha as a renewable energy source becomes a great alternative. However, to con-
solidate Jatropha as a new source of biodiesel, it is necessary to implement techniques able to assist the breeders 
in obtaining new cultivars, since the species is poorly improved. Genetic breeding programs have been started 
in several countries using conventional approaches to increase the grain and oil yield in Jatropha. However, by 
using conventional breeding, Jatropha yields are still low to make profitable and sustainable its growing10,37.

In this sense, clearing and using GWS allows access to genetic information, which is potentially useful to 
Jatropha breeding programs. Our study showed one of the first worldwide applications of GWS in a Jatropha 
breeding program. As Jatropha is a perennial crop, this tool becomes one of the most promising ways to promote 
the development of the crop for biodiesel production.

Conclusions
The wide-genome selection proved to be promising for Jatropha breeding since it allows the accurate obtention 
of GEBV and higher efficiency in relation to phenotypic selection, making it possible to reduce the time needed 
for selection cycle.

In order to apply genomic selection in the first harvests, a large number of individuals in the breeding 
population are needed. In the case of few individuals in the population, it is recommended to carry out a higher 
number of harvests.
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Material and methods
Breeding and genotyping population.  A total of 386 individuals from the Jatropha breeding popu-
lation, which comes from the crossing between 42 parents, were evaluated. The population was evaluated in 
random block design with six replicates, three plants per plot, and a spacing of 4 × 2 m. The parents come from 
the Active Germplasm Bank (BAG) of Embrapa Agroenergia, which was composed of genotypes from several 
regions. The grain yield (g plant-1) was evaluated in the years 2015, 2016, and 2017, corresponding to 1, 2, and 
3 years old, respectively.

The DNA extraction was performed from fully expanded young leaves, according to the protocol of the manu-
facturer’s manual NucleoSpin Plant II (Macherey–Nagel), with modifications. The quantification and quality of the 
samples were performed using the NanoDrop Aspectrophotometer to evaluate the A260/A280 wavelength ratio, 
which represents the amount of nucleic acids by the amount of protein in the sample. Samples with A260/A280 
between 1.80 and 2.10 were considered adequate, indicating a low amount of protein and RNA in the samples. 
The samples were genotyped using the Axiom myDesign Genotyping Arrays platform, using a chip developed by 
Embrapa Agroenergia based on Affymetrix’s Axiom technology (Axiom ENERCHIP) selected for species with 
bioenergetic potential. SNPs were filtered based on multiple criteria that included: (1) consensus sequence size, 
(2) minimum and maximum reading depth, (3) SNP quality score, (4) Minor allele frequency (MAF), (5) pres-
ence of other SNPs in the adjacencies, (6) SNPs present in various populations (if they were sampled), (7) SNPs 
present in coding regions, coverage of genes of interest (in this case genes related to biotic and abiotic stresses, 
acidification and oil biosynthesis) and (8) coverage at the genomic level (assessed by the distribution of SNPs 
in the reference genome).

Genomic data corresponding to 12,598 SNPs were submitted to an initial quality control (QC), where the 
marker exclusion criteria were: Call Rate = 0.95 and MAF = 0.04. The Call Rate is used to eliminate markers with 
a large amount of lost values, whereas MAF is related to the polymorphism of marker loci in the population. The 
critical level for the MAF parameter was obtained through the equation, MAF = 1√

2N
 , where N refers to the 

number of genotypes in the population 38. After the QC, 811 SNPs were obtained that met the exclusion 
criteria.

Predicting the genomic model and cross‑validation.  Genomic selection analyses were performed 
using the RR-BLUP random regression method39. All statistical modeling was performed using software R. RR-
BLUP was performed using the rrBLUP package (mixed.solve function). For estimating the marker effects by 
RR-BLUP methodology, the following mixed linear model was used:

wherein: y is the vector of phenotypic observations; β is the vector of fixed effects; a is the vector of random 
marker effects; ε is the vector of random residuals; X and Z are the incidence matrices for β and a. The structure 
of means and variations in this model is described as defined by40:

The genomic mixed model equations for predicting a by the RR-BLUP method is equivalent to:

wherein σ 2
g  is the total genetic variance of the trait.; σ 2

e  is the residual variance; n: number of markers. The predic-
tion of the individual’s genomic breeding value (GBV) is given by:

The Z matrix was constructed from the number of alleles observed in each SNP marker (0, 1, or 2) and was 
standardized to have zero mean and variance 1, as described by41.

The k-fold cross-validation method was used. The set of observations was randomly divided into groups. 
In the analysis process, random samples of N1 = (9⁄10) × NT were used as the training population, while the 
remaining individuals in the population N2 = (1⁄10) × NT were used as the validation population, in which NT 
is the total number of individuals in the population. This process was repeated ten times (k = 10), using a differ-
ent set of individuals as the validation population at a time. Thus, each fold did not overlap with the others, and 
at the end of the process (10 folds), all individuals had their phenotypes predicted by the genomic selection, as 
previously described by 42,43.

Accuracy and efficiency of genomic selection.  The accuracy of genomic selection was estimated 
according to26, in which it considers genomic heritability as a proportion of phenotypic heritability, thus con-
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sidering the efficiency of markers in capturing QTL, i.e., it considers the degree of imperfection of linkage dis-
equilibrium:

wherein ryg is the predictive ability of GWS, obtained through the correlation between predicted breeding values 
and observed phenotypic values; h2a : is narrow-sense heritability, was obtained based on the following equation 
h2a = σ̂ 2

a /σ̂
2
p ) ; and h2g is the genomic heritability, was calculated as the ratio of the additive variance σ̂ 2

a  to the 
phenotypic variance σ̂ 2

p  , (h2g = σ̂ 2
a /σ̂

2
p ).

The estimate of the number of individuals to be evaluated to achieve the desired accuracy was obtained by 
the expression:

where in rgĝ  it is GWS accuracy; nqtl is the number of QTLs controlling each trait given by 

 N is number of individuals in the population and h2 genomic heritability40.
The selective efficiency of GWS compared to selection based on phenotypes only was calculated using the 

expression:

wherein rgĝ  is selective accuracy of GWS; Tf  is the average time for the selection cycle based exclusively 
on the phenotypes; ryŷ  is the accuracy based on phenotypic selection, obtained through the equation: 

ryŷ = (1− PEV/σ 2
g )

1/2 , where σ 2
g  is the genotypic variation of the population and PEV is the variance of the 

prediction error; TGWS is the average time for the selection cycle based on GWS35.

Validating the models between harvests.  The GWS models developed in each harvest were evaluated 
for accuracy in predicting breeding values, among other harvests. For this analysis, the accuracy was calculated 
by the correlation between GEBV derived from data collected in the first two harvests and EBV in the second 
and third harvests. As the same plant is compared between ages (harvests), there is a dependency between one 
plant on two different harvests. Therefore, tenfold cross-validation was performed as described previously. All 
analyses were performed in the R software 44.

Statements.  The authors are allowed to do research with Jatropha curcas in Brazil.
The handling of plants were carried out in accordance with relevant guidelines and regulations.
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