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Robustification of GWAS 
to explore effective SNPs 
addressing the challenges 
of hidden population stratification 
and polygenic effects
Zobaer Akond1,2,4,5, Md. Asif Ahsan1,5, Munirul Alam3 & Md. Nurul Haque Mollah1*

Genome-wide association studies (GWAS) play a vital role in identifying important genes those is 
associated with the phenotypic variations of living organisms. There are several statistical methods 
for GWAS including the linear mixed model (LMM) which is popular for addressing the challenges of 
hidden population stratification and polygenic effects. However, most of these methods including 
LMM are sensitive to phenotypic outliers that may lead the misleading results. To overcome this 
problem, in this paper, we proposed a way to robustify the LMM approach for reducing the influence 
of outlying observations using the β-divergence method. The performance of the proposed method 
was investigated using both synthetic and real data analysis. Simulation results showed that the 
proposed method performs better than both linear regression model (LRM) and LMM approaches in 
terms of powers and false discovery rates in presence of phenotypic outliers. On the other hand, the 
proposed method performed almost similar to LMM approach but much better than LRM approach 
in absence of outliers. In the case of real data analysis, our proposed method identified 11 SNPs that 
are significantly associated with the rice flowering time. Among the identified candidate SNPs, some 
were involved in seed development and flowering time pathways, and some were connected with 
flower and other developmental processes. These identified candidate SNPs could assist rice breeding 
programs effectively. Thus, our findings highlighted the importance of robust GWAS in identifying 
candidate genes.

One of the major challenges in recent genetics research is to explore the biomarker genes that are linked to 
complex traits of interests in living organisms. Trait variations in living organisms are related to genetic varia-
tions in genes. These variations are observed largely at physiological, developmental, and morphological stages. 
Identification of important genetic basis such as causal genetic variants for such distinction in phenotypic traits 
is identifiable at single nucleotide polymorphism (SNP) levels. The techniques to explore the SNP contribution 
in phenotypic variation are termed as Genome-Wide Association Studies (GWAS). SNPs, however, are usually 
tested for relationship study through the whole genome with the characters of important trait of interest. The 
SNPs identified by GWAS can be used for the treatment and prevention of certain complex traits in living organ-
isms. A very large set of SNPs along with a very large number of accessions are simultaneously studied using 
different GWAS methods to uncover the significant relationship between genomic latent factors and phenotypic 
variations of interest1.

Linear regression model (LRM) is a popular approach in GWAS. It is implemented through PLINK software 
for detecting important SNPs associated with quantitative trait2. The PLINK tool focused on parametric or 
nonparametric-based linear regressions which do not control population stratification. Population stratification 
is one of the main concerning issues when extensive genome-wide association analysis with numerous subjects 
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is in consideration3–5. Some unidentified new population structures are probable to exist due to a large number 
of subjects that may perhaps liable for regular dissimilarities being selected in SNPs amongst cases and controls4. 
Due to the higher false discovery rate (FDR), it is imperative to correct the observed population stratification 
in GWAS4,6. There are, however, several statistical methodologies proposed earlier for GWAS to address the 
effects of population stratification. The most commonly used statistical methods to avoid the bias of population 
stratification (PS) or genetic relatedness are genomic control7, structured association8, and principal component 
analysis9,10. The genomic control (GC) method adjusts the statistical relationship by a common element concern-
ing the whole set of SNPs for precise correction of PS4. If the consequence of population structure increases, the 
power of GC approach decreases9,11–14. The structured association (SA) analysis technique suggests locating the 
samples to separate subpopulation groups for collecting signs of a relationship in each group8. SA method is only 
useful for small datasets4. Principal Component Analysis (PCA) approach is also used to overcome the influ-
ence of population stratification in GWAS by using several topmost principal components (PCs) as covariates4,9. 
But none of the methods mentioned above can handle the influence of the polygenic effect. To overcome these 
issues, the linear mixed model (LMM) was proposed which is one of the most popular approaches in GWAS. It 
is widely using through several computer software such as TASSEL13, EMMA 15, EMMAX16, rrBLUP17, GAPIT18, 
and GAPIT Version 219.

However, all the methods as early discussed are very much sensitive to phenotypic outliers. So, they can 
produce misleading results in presence of outlying observations. To overcome these issues, an attempt is made 
to robustify the LMM based GWAS by using a new type of outlier modification rule based on the minimum 
β-divergence method20,21. The performance of the proposed approach has been investigated using both simulated 
and real rice genome datasets related to flowering time.

Results and discussion
We investigated the performance of the proposed method compare to two popular approaches (LMM and LRM) 
using both synthetic and real data analysis as discussed below:

Results and discussion based on a complete simulation.  To investigate the performance of SNPs 
detections with the synthetic datasets, we considered two original clean simulated datasets that were generated 
with heritabilities 0.2 and 0.3 respectively, as described in the materials and method section. We contaminated 
1%, 2%, 3%, 4%, and 5% phenotypic observations by outliers to generate five contaminated datasets with each 
clean dataset to investigate the performance against the phenotypic outliers. Before going to the performance 
comparison, first, we would like to discuss the preprocessing steps for the proposed method as follows.

Outlier detection and modification of phenotypic observations by the proposed method.  To 
analyze these datasets by the proposed method, at first, we identified phenotypic outliers by using the β-weight 
function for each genotypic group and then replace the outlying phenotypic observations with the correspond-
ing group mean computed by the minimum β-divergence method. To show how β-weight function detects 
outliers, we plotted β-weight corresponding to each phenotypic observation in the Supplementary Fig. S1 (a-b). 
Supplementary Fig. S1a consists of two panels, where the left panel plotted the original phenotypic observations 
and the right panel plotted their β-weights. Similarly, Supplementary Fig. S1b consists of two panels, where the 
left panel plotted the phenotypic observations including the 5% contaminated observations (red color), and the 
right panel plotted their β-weights. To select the outlying observations, we used the threshold value τj = pth quan-
tile value of the empirical distribution of Wβ(yli|θ̂l,β) as introduced in Eq. (7). We observed that the β-weight 
function correctly identified the outlying observations. Now we would like to discuss the consequence of outliers 
in the classical and proposed approaches by decomposing phenotypic variations as follows.

The consequence of outliers on the partition of total phenotypic variations.  To discuss the con-
sequence outliers on the partition of total phenotypic variations for both classical and proposed approaches, 
we considered the original clean dataset including two contaminated datasets based on 2% and 5% outlying 
observations. Table 1 shows the consequence of outliers on the partition of total phenotypic variations for both 
classical and proposed approaches.

We observed that variance proportions with respect to the genetic effect gradually decrease as increases the 
rate of outlying observations in the dataset by the classical approach, while the variance proportions with respect 
to the genetic effects are almost stable for each level of outlying rates in the dataset by the proposed approach. 
Therefore, the heritability (h2*) in presence of outliers becomes smaller than the heritability (h2) in absence of 
outliers by the classical approach, while the heritability ( h2∗β  ) in presence of outliers is almost similar to the herit-
ability (h2) in absence of outliers by the proposed approach.

Performance comparison for SNPs detection.  At first, we identified important SNPs by applying each 
of LRM, LMM, and the proposed methods on each of six datasets with each of two distinct genetic heritabilities 
0.2 and 0.3 corresponding to the respective rates 0%, 1%, 2%, 3%, 4% and 5% of outliers. Then we computed 
statistical power and false discovery rate (FDR) for each of the methods to investigate the performance of the 
proposed method in a comparison of the classical LRM and LMM approaches. We computed average power and 
FDR based on 1000 replication of each dataset. Figure 1 showed the effect of outliers on statistical power and 
FDR with each of two distinct genetic heritabilities 0.2 and 0.3. It is observed from Figs. 1(a, c) that the power of 
the proposed method slowly decreased compare to the LMR and LMM approaches with the increasing rates of 
outliers. In absence of outliers, both the proposed and LMM approaches produced almost identical powers but 
much larger than the power of LRM. For example, in absence of outliers, the power of LRM, LMM and proposed 
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methods were 67.55, 74.55 and 73.00 respectively for the dataset with heritability 0.2 (Fig. 1a), while 72.35, 89.95 
and 88.65 respectively for the heritability 0.3 (Fig. 1c). However, with the increasing rates of outliers, the power 
of LMM approach decreased dramatically faster than the LRM approach. For example, in presence of 5% outliers 
with the phenotypic observations, the power of LRM, LMM and proposed methods were 58.35, 38.95 and 62.65 
respectively for the dataset with heritability 0.2 (Fig. 1a), while 60.15, 49.10 and 83.90 respectively for the herit-
ability 0.3 (Fig. 1c). Thus the, the proposed method produced much higher powers than both LRM and LMM 
for both scenarios of heritabilities in presence of outliers. The above two examples also indicated that the power 
of all three methods increase as the increasing of heritabilities in the datasets.

Figures 1(b,d) showed that FDRs of the proposed and LMM methods were almost same and close to zero in 
each rate of phenotypic outliers. However FDR for LRM was too high due to the influence of outliers along with 
the population stratification and polygenic effects22. Thus we may conclude that both LRM and LMM approaches 
are very much sensitive to phenotypic outliers compare to the proposed method. This results also supported by 
the decomposition of phenotypic variations described in Table 1, since power of any method decreases as the 
increasing of computational heritabilities.

Performance comparison with some other robustification techniques.  The proposed robustifica-
tion technique was also compared with other two robustification techniques based on7-sigma rule ( y ± 7σ ) and 
inverse-normal transformation (INT)23,24 by the same datasets that were used in Fig. 1. We detected phenotypic 
outliers by the 7-sigma (7σ) rule and remove them before going to the analysis by LMM model. In the case of 
INT approach, we performed inverse-normal transformation on the phenotypic observations before going to 
the analysis by LMM model. In GWAS of quantitative traits/phenotypes, INT is commonly applied when the 
traits are distributed non-normally24. Figure 2 showed that the proposed method produces slightly higher power 
compare to 7σ and INT techniques for all cases of heritabilities and outliers. We also observed that the power of 
INT method is slightly higher compare to 7σ method in presence of outliers, but smaller in absence of outliers. 
There is one drawback with INT approach for the weak performance compare to the proposed method. The INT 
approach normalized the traits globally assuming the unimodal trait/phenotypic observations, while proposed 
method modified outliers corresponding to the genotypic groups assuming the multi-modal trait/phenotypic 
observations. Actually, phenotypic observations follow 3 modal distribution due to its 3 genotypes. There are 
two drawbacks with 7σ approach for the weak performance compare to both INT and the proposed methods. 
This method detected the outlying observations by assuming the unimodal distribution of phenotypic observa-
tions like INT approach and reduced the sample size by removing the outlying observation before going to the 
SNP detection by LMM model. The small sample size decreased the power significantly, which is satisfied by 
the previous study result25. Thus, the proposed robustification works well compare to 7σ and INT approaches.

Performance comparison based on real SNP genotype and simulated phenotype data on rice 
flowering time.  We also investigated the performance of the proposed method in a comparison of LRM and 
LMM based on partial simulation with the real SNP genotype and simulated phenotype data on rice flowering by 
considering the same condition like Fig. 1. The top four significant SNPs (id2005919, id2005983, ud2000772 and 

Table 1.   Consequence phenotypic outliers on the partition of total variations with the classical and proposed 
approaches. The bold text indicates the partition of total variation for the clean dataset.

Sources of variations (SV) Total phenotypic variation
Main genetic effect variation 
(Heritability) Polygenic effect variation Error variation Rate of phenotypic outliers

var(y)
var

(
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akxk

)
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∑

k=m1+1

bkZk

)

var(ε)

In the case of Scenario-1

Partition of total variation with the classical approach in presence of phenotypic outliers

100% 20% 40% 40% 0% (clean data)

100% 14.55% 26.34% 59.11% 2%

100% 6.94% 12.56% 80.50% 5%

Partition of total variance by the proposed approach in presence of phenotypic outliers

100% 20% 40% 40% 0% (clean data)

100% 19.87% 39.27% 40.86% 2%

100% 20.85% 41.37% 37.78% 5%

In the case of Scenario-2

Partition of total variance by the classical approach in presence of phenotypic outliers

100% 30% 40% 30% 0% (clean data)

100% 12.37% 12.44% 77.19% 2%

100% 7.72% 11.90% 80.38% 5%

Partition of total variance by the proposed approach in presence of phenotypic outliers

100% 30% 40% 30% 0% (clean data)

100% 29.64% 45.66% 24.70% 2%

100% 28.99% 42.66% 28.34% 5%
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ud7002027) identified in real data analysis (See Table 2) were considered as main effect with the true effect size 
(ak). From the rest SNPs, we randomly selected 1996 SNPs as polygenic variants (effects). Finally the phenotypic 
observation were generated using Eq. (9).

The Fig. 3 shows that the proposed method produces much larger power compare to both LRM and LMM 
which is supported by the results displayed in Fig. 1. However, with the increasing rate of phenotypic outliers, a 
slow decreasing rate of power was observed for the LMM method compared to LRM in Fig. 1. Again, with the 
increasing rate of phenotypic outliers, a decreasing trend of FDR for the LRM method was observed like Fig. 1d. 
This result could be due to the increase of outlier; the effect of population structure on the phenotype become 
weak. This result advocating that LMM method can control the confounding due to population stratification but 
not the outlier, whereas LRM method fail to control both the confounding and outlier. Thus, it may be concluded 
that the proposed method shows much better performance than the LRM and LMM in presence of phenotypic 
outliers; otherwise, it keeps the almost equal performance of LMM.

Genome‑wide association analysis of rice flowering time by the proposed method.  We have 
analyzed the rice flowering time trait to identify the loci influencing this complex trait. Previous study by Zhao 
et al.1 on the same trait identified only 2 loci which motivated us to reanalyze the trait using our proposed robust 
GWAS (rGWAS) method. We have identified 11 significant SNPs using the proposed method (rGWAS) for rice 
flowering time with the threshold p < 9.99× 10−5                (Fig. 4). From the Manhattan plot it is observed that 
among the identified 11 SNPs, six SNPs lie in chromosome 2; one SNP marker belongs to each of the chromo-
some 6 and 7 and the rest three SNP markers belong to chromosome 8. However, these 11 SNPs did not overlap 
with the previously identified 2 SNPs. Zhow et al. used the genotype data with missing values as input in EMMA 
that omit the individuals with missing corresponding to the testing SNP. As a result the sample size was reduced 

Figure 1.   Results computed by LRM, LMM and the proposed methods based on complete simulation (a) plot 
of statistical power against the rate of phenotypic outliers at heritability h2 = 0.2 and at the cutoff p-value 10–5. 
(b) Plot of FDR against the rate of phenotypic outliers at h2 = 0.2 and at cutoff = 10–5. (c) plot of statistical power 
against the rate of phenotypic outliers at h2 = 0.3 and cutoff 10–5 (d) plot of FDR against the rate of phenotypic 
outliers at h2 = 0.3 and cutoff 10–5.
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that is responsible to decrease the detection power25–27. Moreover, the analyzed trait contained seven phenotypic 
outliers (Supplementary Fig. S2) that also responsible to reduce the statistical power (Fig. 1–2). A QQ-plot was 
also constructed using whole genome p-values of the proposed method. QQ-plot showed that the observed 
values correspond to the expected values are on or near the middle line between the x-axis and the y-axis (Sup-
plementary Fig.  S3) indicating that no genomic inflation has occurred in this analysis as well as population 
stratification is sufficiently controlled.

Genomic information and characteristics of the candidate genes.  To investigate the biological 
significance of the identified 11 SNPs, we validated these SNPs by using literature review and gold benchmark 
data. The corresponding chromosome and position of the identified SNPs were used to annotate and find the 
candidate genes comparing with the reference genome from the Rice Genome Annotation Project (RGAP) 
(http://​rice.​plant​biolo​gy.​msu.​edu/) database and collecting necessary genomic information given in Table 2 and 
Supplementary Table S1.

The SNP id2005644 was identified that located near the gene LOC_Os02g21070 which encodes pentatri-
copeptide repeats (PPR) domain-containing protein, and is assumed to take part in the biological molecule 
variation28. Plastid-localized pentatricopeptide repeat protein was reported in a study that is required for both 
pollen development and plant growth in rice29. A recent study in Arabidopsis showed that PPR containing protein 
affects flowering time30. Another variant id2005743 located in chromosome 2 and in the gene LOC_Os02g21880 
was identified. The gene encodes coiled-coil domain-containing protein. This protein acts as the regulator of 
protein positioning in the cell during cell division by splitting and organizing signaling paths sequentially and 
spatially31. A coiled-coil domain containing protein in rice, PAIR1, was reported to express in the early stages of 

Figure 2.   Plot of statistical power against the rate of phenotypic outliers based on the same dataset as used 
in Fig. 1 computed by three methods 7-sigmarule, inverse normal transformation (INT) and the proposed 
methods.

Table 2.   Identified 11 SNPs and the candidate genes of rice flowering time.

ID p-value Chr Locus Description

id2005644 2.44E-05 2 LOC_Os02g21070 PPR repeat domain-containing protein, putative, expressed

id2005743 4.62E-05 2 LOC_Os02g21880 coiled-coil domain-containing protein, putative, expressed

id2005919 2.63E-07 2 LOC_Os02g24134 Sec1 family transport protein, putative, expressed

ud2000772 1.82E-06 2 LOC_Os02g24770 retrotransposon protein, putative, Ty1-copia subclass, expressed

id2005983 4.88E-07 2 LOC_Os02g24780 retrotransposon protein, putative, unclassified, expressed

id2006587 8.89E-06 2 LOC_Os02g27750 transposon protein, putative, unclassified, expressed

wd6000761 3.44E-05 6 LOC_Os06g18000 protein kinase domain-containing protein, expressed

ud7002027 8.82E-06 7 LOC_Os07g45950 expressed protein

id8000022 2.11E-05 8 LOC_Os08g01070 retrotransposon protein, putative, unclassified, expressed

id8004076 4.92E-05 8 LOC_Os08g25040 expressed protein

id8004083 3.14E-05 8 LOC_Os08g25060 BSD domain-containing protein, putative, expressed

http://rice.plantbiology.msu.edu/
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flower development32. Other four candidate genes (LOC_Os02g24770, LOC_Os02g24780 and LOC_Os02g27750, 
LOC_Os08g01070) were identified those encodes the retrotransposon and transposon transposable elements 
(TEs). Several studies have reported that these TEs can be induced by heat and cold stress in plants33. For 
example, Ty1-copia like retrotransposon ONSEN was found to be activated by heat stress in Arabidopsis34. 
Temperature and photoperiod are also found as two key regulatory factors associated with the flowering time 
in plants including rice35.

The detected SNPs were also mapped in the region of 100 kb of the genes those involved in the rice flower-
ing time and seed development pathway36 and found five SNPs comprised of four genes involved in the two 
pathways (Supplementary Table S2). These results are suggesting the potential role of robust GWAS in detecting 
novel genes.

Functional enrichment analysis of the candidate genes.  GO analysis is one of the major bioin-
formatics techniques for better understanding the underlying biological processes (BP) of the candidate 
genes along with their molecular functions (MF) and the cellular component (CC) of the genes37,38. There-
fore, to more characterize the candidate genes, we have performed GO enrichment analysis and the results 
are shown in Fig. 5a and Supplementary Fig. S4a-c. The most important pathways or GO terms involving the 
candidate genes are highlighted with light yellow color in the rectangular boxes (Supplementary Fig. S4a-c). 
Flower development (GO:0,009,908), abscission (GO:0,009,838), signal transduction (GO:0,007,165), cell death 
(GO:0,008,219), cellular process (GO:0,009,987), response to stress (GO:0,006,950), and cellular protein modi-
fication (GO:0,006,464) were found as the most important pathways activated by the identified candidate genes 
in rice. Among the identified BPs, flower development (GO:0,009,908) is one of the crucial pathway that play 

Figure 3.   Results computed by LRM, LMM and the proposed methods based on partial simulation with the 
real dataset (a) plot of statistical power against the rate of phenotypic outliers at heritability h 2= 0.2 and at the 
cutoff p-value 10–5. (b) Plot of FDR against the rate of phenotypic outliers at h2 = 0.2 and at cutoff = 10–5. (c) plot 
of statistical power against the rate of phenotypic outliers at h2 = 0.3 and cutoff 10–5 (d) plot of FDR against the 
rate of phenotypic outliers at h2 = 0.3 and cutoff 10–5.
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the role for early and healthy grain development in rice39,40 and it is functionally linked to both the reproductive 
process (GO:0,022,414) and developmental process (GO:0,032,502) of rice plant (Fig. 5a and Supplementary 
Fig. S4a). Regulation of rice flowering time is delayed by several independent pathways and significantly influ-
enced by prompt vegetative growth and reproductive process41. GO analysis showed that the shoot development 
(GO:0,048,367) and reproduction stages such as post-embryonic development (GO:0,009,791) are functionally 
related to rice flower development (Supplementary Fig. S4a).

Abscission, a part of a multicellular organism (GO:0,007,275), in GO enrichment analysis showed that it is 
directly related to the developmental process (GO:0,032,502) in rice. Earlier studies showed that seed shattering 
is controlled by the development of the abscission layer pathways in rice that allows offspring dispersal in the 
natural environment42. Signaling components via signal transduction (GO: 0,007,165) chain activate the different 
plant steroid hormones namely Brassinosteroids to regulate various growth and developmental programs, includ-
ing cell differentiation and elongation, reproductive development, senescence, skotomorphogenesis (seedling 
development in the dark), and vascular differentiation43–45. The hormonal signal transduction pathways are also 
responsible to control several yield-related traits, including leaf angle, plant height, tiller number, and grain size 
in rice43,44,46,47. The predicted metabolic routes in this study may execute metabolism activities to convert food to 

Figure 4.   Manhattan plot using robust GWAS (rGWAS) on the trait of rice flowering time. The x-axis is the 
genomic position of the SNPs in the genome, and the y- axis is -log10 of the p-values. Each chromosome is 
colored differently. The grey horizontal line represents the minimal significant level at the cutoff.

Figure 5.   Expression map of GO and SCL for the 11 candidate genes. (a) Represents the expression map of the 
functional pathways viz., biological process (BP), molecular function (MF), and cellular component (CC) of the 
six candidate genes. (b) Represents the predicted subcellular location (SCL) of candidate genes in 10 molecular 
organs viz., cytosol (cytos), endoplasmic reticulum (ER), extracellular (extra), golgi apparatus (golgi), membrane 
(membr), mitochondria (mito), nuclear (nucl), peroxisome (pero), plastid (plast) and vacuole (vacu).
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energy to run cellular processes, to build blocks for proteins, lipids, nucleic acids, and some carbohydrates48,49. 
Some enzyme-catalyzed reactions may allow rice plants to grow and reproduce, maintain their structures, and 
respond to various stresses. The GO pathway, response to stress (GO:0,006,950) is predicted to play the role for 
controlling cellular activity in terms of movement, secretion, enzyme production, gene expression for the result 
of exogenous disturbance, temperature, humidity in rice plants.

Subcellular location of the candidate genes.  The cytosol is the place where the occurrence of the 
maximum different metabolisms in plants and most of the proteins in the cell are localized50,51. The predicted 
result of subcellular localization (SCL) of the candidate genes implied that nine genes out of eleven are localized 
in cytosol (Fig. 5b and Supplementary Data S1). Plastid is an important molecular organ found in plant cells 
mostly involve in photosynthesis and other gene expressions52. Photosynthesis is the key physiological param-
eter in rice that relates ultimately in many aspects to increase rice productivity53. Increase photosynthesis rate 
can utilize the solar radiation properly which leads to creating early flowering time because flowering signals are 
produced in leaves41,54. This gene expression in plastid likely to enhance the photosynthesis process, which regu-
lates the leaf anatomy for earlier flowering in rice. Four candidate genes LOC_Os02g27750, LOC_Os06g18000, 
LOC_Os07g45950, and LOC_Os08g25040 were found in the plastid (plast). Out of the four genes the latter two 
genes were predicted to be located in extracellular (extra) and membrane (membr) of which LOC_Os07g45950 
was predicted for vacuole (vacu) (Fig. 5b). It is also observed that three genes named LOC_Os02g21070, LOC_
Os02g21880, and LOC_Os08g01070 are predicted to located in nuclear activity. However, no candidate genes 
were predicted to belong from the cellular locations viz., endoplasmic reticulum (ER), peroxisome (pero), and 
mitochondria (mito) (Fig. 5b).

Expression profile of the candidate genes.  The expression level of the candidate genes in different 
organs or tissues such as seedling, vascular cell, root, leaves, post-emergence, pre-emergence, seed, endosperm, 
embryo, shoots, anther, pistil, and panicle were extracted from the database Rice Genome Annotation Project 
(RGAP)55 (Supplementary Data S2). Heatmap presented in Fig. 6 exhibits the expression levels of the candidate 
genes through the organs or tissues. From the figure it was observed that the genes LOC_Os02g21880 and 
LOC_Os02g24134 showed high-level expression in seedling, root, shoot, and panicle in rice while these two 
genes exhibited only high-level expression in the vascular cell at 14DAP (Fig. 6). Moreover, seedling, vascular 
cell at 14DAP and shoots specific expressions were maximum for the gene LOC_Os06g18000. The genes LOC_
Os02g21880, LOC_Os02g24134, LOC_Os08g01070 and LOC_Os08g25060 were found with high expression 
in panicle. The earlier study also suggested that leaves, shoot, and panicles have significant roles in regulating 
flowering time41,56. Our results obtained from real data analysis also consistent with earlier outcomes1,22,31,57–59.

Figure 6.   Heatmap showing the expression pattern of the identified 11 candidate genes. The heatmap 
represents the expression in various organs (seedling, vascular cell stage, root, leaves, post, and pre-emergence 
inflor, seed, endosperm, embryo, shoots, anther, pistil, and panicle) of rice. The color scale bar of the figure 
represents log2 transformed FPKM values.
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Conclusion
The GWAS is a powerful tool to explore the novel biomarker genes at the SNP level. The LMM approach has 
been considered as the leading statistical procedure to address the two main challenges of embedded population 
structures and genetic relatedness among individuals when GWAS is performed. It was however observed that 
this LMM approach is very much sensitive to phenotypic outlier that leads to misleading results. Therefore, in 
this article, we discussed a way to robustify the LMM procedure for controlling the outlying effect and reducing 
the puzzling effects of the population stratification and genetic relatedness in GWAS by using the minimum 
β-divergence method. This method introduced the β-weight function, which played a key role in the robustifica-
tion procedure. For the convenience of the presentation, we call this method robust GWAS (rGWAS). Simula-
tion results showed that the average power of correct identification of SNPs by LMM and the proposed method 
is almost the same and greater than 80%, which is much larger than the power of the linear regression model 
(LRM), in absence of outliers at heritabilities 0.2 and 0.3. The average power of LRM and the proposed method 
were slowly decreasing as gradually increasing the rate of phenotypic outliers with heritabilities 0.2 and 0.3, 
while the power of LMM was decreasing sharply and significantly. The false discovery rate (FDR) of LMM and 
proposed methods are almost the same and much smaller than the FDR of LRM in all cases of our simulation 
study. Thus, the proposed method outperformed the LRM and LMM in presence of outliers; otherwise, it shows 
the almost equal performance of LMM which is much better than LRM in absence of outliers. The demonstra-
tion of the proposed method with the real genome dataset against rice flowering time identified 11 important 
SNP makers. To investigate the biological significance of the identified 11 SNPs, we validated these SNPs by 
using literature review and gold benchmark data. We performed GSEA for the identified 11 SNP makers and 
SCL analysis to detect more valid SNPs out of 11 that have a significant association with the flowering time and 
other trait variations in rice. We also studied their expressions in various organs in rice to find the link with the 
flowering time. From GO analysis, it is observed that the gene LOC_Os06g18000 might play functional roles in 
flower development and response to stress in rice. Amongst the 11 genes, LOC_Os02g21880, LOC_Os06g18000, 
LOC_Os02g24134 exhibited larger expression in seedling, vascular cell, root, shoot, and panicle. Also, the gene 
LOC_Os08g25060 is predicted to provide maximum expression in vascular cell, root, and panicle. SCL results 
support that the cytosol contains the maximum number of genes. Plastid is an important molecular organ found 
in plant cells mostly involve in photosynthesis and other gene expressions. In our study, SCL analysis shows that 
the expression of the gene LOC_Os06g18000 in plastid may act as a flowering promoter. This gene expression in 
plastid likely to enhance the photosynthesis process which regulates the leaf anatomy for earlier flowering in rice. 
In GO analysis, it is also observed that this gene expression is associated with flowering in rice. Finally, it can be 
concluded that phenotypic outliers may significantly affect the analysis results in GWAS. Our proposed robust 
method outperforms the existing LRM and LMM methods in presence of outliers and the genomic information 
presented may however provide a basic platform for further biological investigations. To implement the proposed 
rGWAS method, the R-code and necessary instructions are available at the website.

Materials and methods
Robustification of LMM based GWAS by using the outlier modification rule (proposed).  The 
linear mixed model (LMM) approaches are extensively applied for genome-wide association studies (GWAS) for 
observable phenotypic variations in eukaryotic groups. If we consider that, there are m genotypes with n meas-
urements of a phenotype. Efficient mixed-model association (EMMA)15 is such a model generally expressed by 
the following :

where y = (y1, y2, ..., yn)
′ is the n × 1 vector of phenotypic observations, and X = (xij) is an n × q matrix of fixed 

effects including mean, SNPs, and other confounding variables.a is a q × 1 vector representing coefficients of the 
fixed effects. Z = (zij) is an n × m incidence (design) matrix mapping each phenotype to one of the m genotypes. b 
is the vector of random polygenic effects which follows N(0,σg

2K), where σg
2 is the polygenic variance component, 

and K = (kjt) is the m × m genomic relationship matrix. The genomic pairwise relationship coefficient between 
two individuals, j and t, is defined as follows

where Tϕ is the total number of SNPs, xijand xit measure the numbers (0, 1, 2) of the minor allele(s) for the ith 
SNP of the jth and tth individuals respectively, and fi is the frequency of the minor allele. ε is the vector of random 
error which follows N(0,σε

2I), where σε
2 is the error variance component and where I is the n × n identity matrix. 

The overall phenotypic variance–covariance matrix can be represented as V = σ 2
g ZKZ

′ + σ 2
ε I.

where I is the n × n identity matrix. The variance components for polygenic effects and errors were estimated 
by restricted maximum likelihood (REML) using spectraldecomposition instead of the iterative expectation–max-
imization algorithm (EM algorithm)15. The full-likelihood function is maximized when â = (X ′H−1

X)−1
X
′
H

−1
y 

and the optimal variance component is σ̂ 2
F = R/n for full-likelihood and σ̂ 2

R = R/(n− q) for restricted likeli-
hood, where R = (y − Xa)′H−1(y − Xa) is a function of δ as well and H = σ−1V = ZKZ + δI is a function 
of δ, defined by δ = σ 2

ε /σ
2
g , σ = σg . When the maximum likelihood (ML) or restricted maximum likelihood 

(REML) variance component V̂ = σ̂ 2
g ZKZ

′ + σ̂ 2
ε I is estimated, the classical F-statistic for testing the null hypoth-

esis Ma = 0 for an arbitrary full-rank p × q matrix M13,60.

(1)y = Xa + Zb + ε

(2)kjt =
1

Tϕ

Tϕ
∑

i=1

(xij − 2fi)(xit − 2fi)

2fi(1− fi)
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with p numerator degrees of freedom and n-q denominator degrees of freedom. The Satterthwaite degrees of free-
dom are calculated to avoid computationally intensive matrix operations. Both ML and REML estimators are very 
much sensitive if one or more phenotypic observations in y are outliers. Thus, LMM based F-statistic in Eq. (3) 
produces misleading results to test the null hypothesis in presence of outliers. In this study, we, therefore, con-
sider the robustification of LMM based F-statistic in Eq. (3) by using the outlier identification and modification 
rule. There are some procedures for the identification of outliers in the literature; those are suitable when usual/
clean data follows the unimodal distribution. However, in the current problem, phenotypic observations follow 
the multimodal distribution. So, conventional procedures cannot be used to identify the outlying observations 
properly. Therefore, in this paper, an attempt is made to propose a new outlier identification and modification 
rule by using the minimum β-divergence methods20,61 as follows:

(i) Select the top-ranking significant SNP associated with the phenotypic variations by using the minimum 
β-divergence based robust ANOVA62.

(ii) Divide the phenotypic data into m groups corresponding to the m genotypic labels of the selected most 
significant SNP. For example, let

be the partition of phenotypic observations corresponding to the selected SNP, where, n = n1 + n2 + …….. + nm.
(iii) Detect the outlying observations from the lth (l = 1,2,….,k) group using the β-weight function defined by

where i = 1, 2, ... , nl
The minimum β-divergence estimators θ̂l,β = (µ̂l,β , σ̂

2
l,β) of the parameters θl,β = (µl,β , σ

2
l,β) are calculated 

iteratively by using the following formulas:

and

The notation θt+1 denotes the update of θt in the (t + 1)th iteration. The robustness of these estimators has 
been discussed in the background of influence function20 and their reliability61. It is noteworthy that the mini-
mum β-divergence estimators θ̂l,β = (µ̂l,β , σ̂

2
l,β) reduce to the classical maximum likelihood estimators (MLEs) 

θ̂l = (µ̂l , σ̂
2
l ) when β = 0.

It is considered that the MLEs of a Gaussian distribution are consistent and asymptotically efficient in absence 
of outlying objects63. Therefore, in this article, an effort has been provided to develop a robust linear mixed 
model (LMM) method in which the classical MLEs θ̂l are used in absence of outlying objects and minimum 
β-divergence estimators θ̂l,β stated in Eq. (5) and (6) are used in presence of outliers for estimation of θl in 
the mixed model. The minimum β-divergence method suggests two approaches for combining the robustness 
and efficiency of estimation in LMM. The tuning parameter β is selected through the cross-validation (CV) 
technique20. CV process produces β = 0 for the minimum β-divergence method estimators and is then equivalent 
to the classical estimators. When there are outlying subjects in the phenotypic traits, the technique generates 
β > 0 for the minimum β-divergence estimators. To overcome the challenges of outlying observations in GWAS, 
an alternative approach that is the β-weight function mentioned in (4) has been proposed with β = 0.2 for outlier 
detection. This weight function imposes smaller weights (≥ 0) to outlying observations and larger weights (≤ 1) 
to uncontaminated/usual objects.

An outlying phenotypic observation yli in the lth group is defined based on the β-weight function mentioned 
below:

where the threshold value τl is the pth quantile value of the empirical distribution of Wβ(yli|θ̂l,β).
(iv) Then replace the outlying phenotypic observations of lth group by its robust mean µl,β(l = 1, 2,…,k), where 

m is the number of genotype in the selected SNP.
(v) After that apply an efficient mixed-model association (EMMA) to the modified dataset discussed in the 

previous step.

(3)F =
(Mâ)′(M(X ′V̂−1X)−1M ′)−1(Mâ)

p

y = (y1, y2, ..., yn)
′ = (y11, .., y1n1 , ..., ym1, .., ymnm)

′

(4)Wβ(yli|θ̂l) = exp

{

−
β

2σ 2
li

(yli − µ̂l)
2

}

(5)µl,t+1 =

nl
∑

i=1
Wβ(yli|θl,t)yli

nl
∑

i=1
Wβ(yli|θl,t)

(6)σ 2
l,t+1 =

nl
∑

i=1
Wβ(yli|θl,t)(yli − µl,t)

2

(β + 1)−1
nl
∑

i=1
Wβ(yli|θl,t)

(7)Wβ(yli|θ̂l,β) =

{

> τl , if yli is not an outlier

≤ τl , if yli is an outlier
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Simulated data generation.  To investigate the performance of the proposed algorithm in a comparison 
of the conventional algorithms, we generated both the genotypic and phenotypic data as follows:

Genotype simulation.  To explore how the proposed method performs, a set of synthetic geno-
type and phenotype data were generated. A synthetic genotype dataset was simulated that reflects popula-
tion structure. For this purpose, m* = 2000 SNPs were generated for n = 1000 individuals, and these indi-
viduals were taken from k = 3 distinct population by considering different minor allele frequencies (MAFs). 
To do this, first, a set of latent vectors {v1, v2, …..vm*} was generated from a multivariate normal distribu-
tion with mean zero and variance–covariance matrix Cov(vj,vk) = ρ|j-k|64,65. In our simulation, we considered 
ρ = 0.5 to avoid the linkage disequilibrium (LD) between the SNPs. Finally, two cutoff values s1 and s2 were 
used to convert the design matrix V = [v1, v2, …, vm* ] = [vij] of latent vectors to the genotypic score matrix 
xij(i = 1, 2, ..., n, j = 1, 2, ...,m1) and zij(i = 1, 2, ..., n; j = 1, 2, ...,m2) as follows:

where s1 and s2 determine the minor allele frequency.

Phenotype simulation.  Phenotypic datasets were produced by considering several factors including 
genetic variation, error variation, and population stratification. To generate phenotype data, two distinct situa-
tions were considered in terms of two heritability rates 0.2 and 0.3. In every situation, m1 = 4 SNPs were consid-
ered as causal variants and the remaining m2 = m*-m1 = 1996 SNPs were allocated as polygenic variants (effects). 
The quantitative trait/phenotypic values were simulated using Eq. (1) which can be re-written as

The total phenotypic variation was decomposed by assuming all three sources of variations in Eq. (8) are 
independent each other as

Then the contribution of main genetic effect in the total phenotypic variation (known as heritability) was 
defined by the ratio of main genetic variance over the phenotypic variance and it is written as

The genomic outcomes of the SNPs were simulated from a normal distribution such that it satisfies a certain 
proportion of genetic variance for different genetic effects as given in Table 3.

To check the performance of the proposed method in a comparison of LRM and LMM approaches in pres-
ence of different rate of outliers, we contaminated 1%, 2%, 3%, 4%, and 5% of phenotypic data randomly by using 
theoutlying observations to generate five different contaminated datasets. We replicated these five contaminated 
datasets including original clean dataset 1000 times. Tthe outlying phenotypic observations was generated 

(

y∗
j

)

 
satisfying 2×max(y) < y∗j < 5×max(y).

Consequence of phenotypic outliers on the partition of total variations.  Let y* be the modified 
phenotypic response variable which is generated by replacing 5% observation of y by the outlying observations. 
Then var(y*) > var(y) obviously, which implies

xij , zij =











0, vij < s1

1, s1 ≤ vij ≤ s2

2, vij > s2

(8)yj = µ+

m1
∑

k=1

akxkj +

m2
∑

k=m1+1

bkzkj + εj

(9)var(y) = var

�

m1
�

k=1

akxk

�

+ var





m2
�

k=m1+1

bkzk



+ var(ε)

(10)
h2 =

var

(

m1
∑

k=1

akxk

)

var(y)

Table 3.   Distribution of different genetic variation in the phenotype.

Scenario Genotype data

Main effect variation Polygenic effect variation

Total genetic variation

Error variation

var

(

m1
∑

k=1

akxki

)

var

(

m2
∑

k=m1+1

bkzk

)

var(ε)

Scenario I
Simulated

20% 40% 60% 40%

Scenario II 30% 40% 70% 30%

Scenario I
Real

20% 40% 60% 40%

Scenario II 30% 40% 70% 30%
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where c > 0. Now we can write the following equation similar to the Eq. (8) as

by assuming the same genetic effects but changed to the error variations. Then

Combining Eq. (9), (11) and (13), we get

Thus, error variance in presence of outliers must be larger than the error variance in absence of outliers. 
Conversely, the heritability (h2*) in presence of outliers must be smaller than the heritability (h2) in absence of 
outliers as follows.

Therefore, both LMM and LRM approach losses the SNPs identification power in presence of phenotypic 
outliers. However, in the case of the proposed method, the error variance in presence of outliers must be almost 
same to the error variance in absence of outliers. Similarly, the heritability h∗β in presence of outliers must be 
almost same to the heritability (h2) in absence of outliers, since

where var
(

y∗
β

)

 is the variance of total phenotypic variations after the preprocessing of phenotypic observations 
by the proposed method. Therefore, the power of the proposed method must be larger than the power of both 
LMM and LRM methods in presence of phenotypic outliers.

Performance measures
To investigate the performance, the statistical power and FDR of 3 methods were calculated by using the formula, 
Power = (PT/PC) × 100 and FDR = [PF/(PT + PF)] × 100, respectively, where PT measures the truly detected SNPs 
and PC measures total causal variants and PF is the number of falsely detected SNPs. For each situation, 1000 
replications were performed to account for the average value of the power and FDR for comparison.

Real genotype and phenotype data on rice flowering time.  We applied the proposed rGWAS 
method to explore the potential SNPs influencing rice flowering time. The genotypic and phenotypic data used 
to carry out the analysis for investigation were collected from the rice diversity database (www.​riced​ivers​ity.​org). 
The data set contain 413 accessions along with 36,901 SNPs of Oryza Sativa1. All selected SNPs were taken into 
consideration in the analysis with call rate > 70% and minor allele frequency (MAF) > 0.051. Missing genotypes 
were imputed with weighted k-Nearest-Neighbors method66 based on the five weighted nearest varieties. To 
compute the kinship matrix (using Eq. (2)), LD-pruned set of variants was used with an R2 greater than 0.9 in a 
200 variant sliding window of size 1000. The individual with missing observation in the phenotypic dataset was 
not considered in this study. Experimental data on flowering time were obtained as the number of days until the 
inflorescence was 50% emerged from the flag leaf calculated from the day of planting. The phenotypic data used 
in this analysis for the flowering time were recorded at Faridpur district in Bangladesh.

SNP annotation and candidate gene identification.  11 SNPs were identified through whole genome 
association analysis by using rGWAS. Rice Genome Annotation Project (RGAP) Release 7 (http://​rice.​plant​biolo​
gy.​msu.​edu/) database was used to annotate the identified SNPs. Among the identified genes, six were annotated 
with protein-coding genes and the rest five were non-coding (Supplementary Table S1). For the non-coding 
SNPs, the nearest genes were considered as candidate gene and used for further functional characterization. We 
also aligned the significant SNP tags against the genes those involved in rice flowering time and seed develop-
ment pathway36. Region within 100 kb were searched for the pathway genes (Supplementary Table S2). The QQ-
plot were generated using qqmath function in the R package lattice67.

Gene‑set enrichment analysis.  To characterized the candidate genes/SNPs that may have a significant 
association with the phenotypic variations, we performed gene ontology (GO) enrichment analysis of the can-
didate genes in terms of biological process (BP), molecular function (MF), and cellular component (CC) were 
performed using the on-line tool QuickGO (https://​www.​ebi.​ac.​uk/​Quick​GO). A gene set was considered as 

(11)var
(

y∗
)
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(

y
)

+ c,

(12)y∗
j = µ+
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∑
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m2
∑
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(13)var
�
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�
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�
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�
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


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�
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
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∑
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var(y∗)
= h

2∗

var
(

y∗
β
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,
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https://www.ebi.ac.uk/QuickGO
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significantly enriched for GO terms if p < 0.05 . The heatmap of the GO corresponding to the candidate genes 
was plotted using R package ComplexHeatmap68.

Prediction of the subcellular location.  An online-based tool called Plant Subcellular Localization Inte-
grative (PSI) predictor69 was used for predicting the subcellular locations of the candidate genes in the plant cell. 
The predicted subcellular location corresponding to the candidate genes were visualize by using the R package 
corrplot70.

Tissue‑specific expression.  We explored the expression profile of the candidate genes in different tis-
sues. Tissue-specific expression of the genes were obtained from the database Rice Genome Annotation Project 
(RGAP)55. The heatmap of the expression level of the genes was created via R package ComplexHeatmap68.

Data availability.  To implement the proposed method, the necessary codes in R can be downloaded from 
the repository:http://​www.​ru.​ac.​bd/​biorg​ru/​softw​are/r-​code-​robus​tgwas-​zip/
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