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Comparing physiological responses 
during cognitive tests in virtual 
environments vs. in identical 
real‑world environments
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Immersive virtual environments (VEs) are increasingly used to evaluate human responses to design 
variables. VEs provide a tremendous capacity to isolate and readily adjust specific features of an 
architectural or product design. They also allow researchers to safely and effectively measure 
performance factors and physiological responses. However, the success of this form of design-
testing depends on the generalizability of response measurements between VEs and real-world 
contexts. At the current time, there is very limited research evaluating the consistency of human 
response data across identical real and virtual environments. Rendering tools were used to precisely 
replicate a real-world classroom in virtual space. Participants were recruited and asked to complete 
a series of cognitive tests in the real classroom and in the virtual classroom. Physiological data were 
collected during these tests, including electroencephalography (EEG), electrocardiography (ECG), 
electrooculography (EOG), galvanic skin response (GSR), and head acceleration. Participants’ accuracy 
on the cognitive tests did not significantly differ between the real classroom and the identical VE. 
However, the participants answered the tests more rapidly in the VE. No significant differences were 
found in eye blink rate and heart rate between the real and VR settings. Head acceleration and GSR 
variance were lower in the VE setting. Overall, EEG frequency band-power was not significantly altered 
between the real-world classroom and the VE. Analysis of EEG event-related potentials likewise 
indicated strong similarity between the real-world classroom and the VE, with a single exception 
related to executive functioning in a color-mismatch task.

Virtual environments (VEs) have been widely used by designers and researchers over the past three decades as 
a tool for testing products and studying human behaviors. The increasing realism of these environments pro-
vides a safe and immersive testing site in which specific design variables can be easily isolated and adjusted1–5. 
In addition to the value of precise environmental manipulation for creating rigorous study protocols, the use of 
VEs as a research tool can help to achieve larger study population sizes6,7, and can have significant cost benefits 
in comparison to physical prototyping8–12. The safety benefits of VEs compared to real-world environments can 
promote the inclusion of populations that might not be able to participate in real-world studies, such as elderly 
individuals or those with cognitive impairment13.

The use of VEs as a research tool supports an overall trajectory in the field toward rigorous evidence-based 
design. However, for this approach to be effective, it must produce ecologically valid findings that are transfer-
able to real-world settings. One of the most significant concerns in regard to VE studies is the extent to which 
human behaviors, physiological responses, and psychological states seen in virtual contexts are comparable to 
those in natural settings.

There is evidence suggesting that particular forms of behavior and some specific physiological measure-
ments (especially those related to stress) may be similar during virtual vs. real-world experiences7,14–19. In one 
influential study, researchers evaluated the conduct of everyday office-related activities in a physical environ-
ment vs. a closely similar VE and found no significant differences in task performance7. In another experiment, 
users’ perceptions of a real daylight environment and its equivalent representation in VR were evaluated by a 
self-report questionnaire, and no significant differences were found between the responses to real-world vs. 
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virtual presentations of these environments20. The sense of presence in virtual environments has also been 
extensively studied, showing that a strong body-transfer illusion can be reliably produced by currently available 
VE technologies21–25.

Despite the promising research outlined above, the extent of this evidence is extremely limited. More bench-
marking work is needed to compare, in particular, different types of physiological responses in virtual environ-
ments vs. analogous real-world conditions26,27. Previous studies have revealed some notable aspects of perception 
and experience that may affect how participants respond within VEs. For example, significant graphical distor-
tions have been shown to pass entirely unnoticed by VE users, which may indicate that perceptual biases and 
expectations play a stronger role in virtual experiences compared to the real world28. Additionally, researchers 
have shown that participants who occupy a fixed position or follow a pre-determined path in virtual spaces are 
likely to struggle with accurate depth perception and shape perception in regard to their virtual surroundings29–32. 
In regards to learning performance, evidence has shown that VEs created a strong sense of presence, but learning 
performance decreased and mental working load increased compared with a 2D computer-based simulation 33. 
These studies should provide a strong caution against overly enthusiastic assumptions of generalizability from 
VE settings to natural ones.

To the best of our knowledge, no prior experiment has simultaneously evaluated the physiological and behav-
ioral performance of a set of participants using active cognitive tests in identically constructed real and virtual 
environments. The current study was conducted to help fill this gap, by comparing multimodal response data col-
lected in a real classroom setting against equivalent data collected in a 3D-scanned immersive virtual representa-
tion of the same classroom (Fig. 1). The participants were asked to complete standard memory and attention tests 
in these environments, including the Benton Test, Visual Pattern Test, Stroop Test, Digit Span Test, and arithmetic 
puzzles. As they were completing these tests we recorded physiological responses using electroencephalography 
(EEG), electrooculography (EOG), electrocardiography (ECG), and galvanic skin conductance (GSR). The EEG 
data allowed us to compare a variety of metrics related to electrical activity in the brain, including frequency 
band-power features, and latency and amplitude in time-locked event-related potentials (ERPs). The other sen-
sors provided data about eye blink rate, heart rate, head acceleration, and changes in skin perspiration, all of 
which are widely used correlates of stress.

Figure 1.   (A) Virtual-reality headset along with EEG, EOG, EKG, and GSR sensors, as worn by a study 
participant. The participants engaged in a series of cognitive tasks in (B). the real classroom and in (C). an 
identical virtual classroom. The image on the computer screen in (D). shows a two-dimensional capture from 
the actual immersive 3D experience that is conveyed through the headset.
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Our primary hypothesis was that the participants’ average performance on the cognitive tests, as well as their 
group-level physiological responses, would be consistent between the real-world classroom and the identical 
virtual classroom. The ERPs were expected to differ in latency and amplitude for each of the tests performed since 
the tests have different levels of difficulty and require different types of cognitive activity; but within each test, we 
did not expect the ERP waveforms to differ significantly between the real-world and identical virtual classroom.

The choice of a classroom setting for this experiment was not merely for the sake of convenience. Among 
all of the various settings in which VEs are currently being applied (entertainment, medical rehabilitation, 
manufacturing and design industries, etc.), the educational context is one of the fastest-growing sectors34,35. 
At universities and in adult training programs there is growing excitement about the potential of virtual class-
rooms for enabling distance learning, and as a platform to integrate multiple modes of educational technology 
and presentation36–39. The rapidly increasing trend toward virtual classrooms, made even more relevant by the 
global Covid-19 pandemic, raises important questions about how students experience these environments and 
what effect they might have on stress, cognitive performance, and learning outcomes. The current study cannot 
provide a definitive answer to these overarching questions, but it offers some initial rigorous comparative evi-
dence about participants’ performance on technical cognitive tests and physiological responses in a real-world 
classroom vs. an identical virtual classroom.

Results
To compare human behavioral and physiological responses during cognitive tasks completed in identical physical 
and virtual environments, we precisely recreated a physical classroom in high-immersive virtual reality, including 
the room dimensions, furniture placement, colors, and lighting. Twenty-five participants engaged in five tests of 
working memory and executive functioning within each of these environments. The participants rated the real-
ism of the virtual reality experience at 6.2 ± 1.5 using a Likert Scale where 1 indicated the experience was “not 
realistic,” and 10 indicated that the experience was “very realistic.” Their level of comfort with the EEG and VR 
head mounted display was 3.8 ± 2.2, on a Likert Scale where 1 was “uncomfortable,” and 10 was “comfortable.” 
Their test performance and physiological responses were evaluated in the real and the immersive VR environ-
ments for each of the five cognitive tests. The results are summarized in Table 1.

The participants were asked to report their fatigue levels and stress levels after completing all five tests in 
each environment, using a 10-point Likert scale. No significant differences were found between the physical and 
virtual environments in regard to these self-reported mental fatigue [t(47) = 1.10, p = 0.27, power = 0.17, ci = 
[− 0.44 1.53], d = 0.37] and stress levels [t(47) = 0.36, p = 0.71, power = 0.06, ci = [− 0.74 1.06], d = 0.10] (Fig. 2A).

Table 1.   Summary of statistical differences between the real-world and VR environments (test performance 
and physiological responses for all five cognitive tests). Full statistics are reported in-text for the EEG 
features. The effect sizes for significant differences are reported with the t-statistic and degrees of freedom in 
parenthesis: a positive number indicates that the metric was higher for the real-world environment. Statistical 
significance as indicated using the Kruskal–Wallis test: * p < 0.05; ** p < 0.01. Confidence intervals for the 
corresponding significance threshold: “ci.” Statistical power: “power.” Cohen’s d: “d.” Comparison not available 
due to experimental design: “–.”

Digit Span Benton Stroop Visual pattern Arithmetic

Test performance metric: accuracy

Test performance metric: time for comple-
tion

**
t(46) = 5.53
power = 0.98
ci = [77.7 22.2]
d = 1.61

**
t(51) = 4.78
power = 0.95
ci = [5.2 18.5]
d = 1.31

–

**
t(48) = 6.89
power = 0.99
ci = [14.5 33.0]
d = 2.59

–

Test performance metric: number of 
responses – –

**
t(50) = -2.78
power = 0.82
ci = [-12.8 -0.2]
d = -0.77

*
t(53) = 2.15
power = 0.80
ci = [-0.77 7.09]
d = 0.58

**
t(53) = -2.43
power = 0.90
ci = [-5.84 0.27]
d = -0.66

Heart beats per minute

Eye blinks per minute

GSR standard deviation

**
t(54) = 3.73
power = 0.79
ci = [0.28 1.73]
d = 0.99

**
t(54) = 2.71
power = 0.59
ci = [0.01 1.11]
d = 0.72

Head acceleration standard deviation

**
t(54) = 3.33
power = 0.38
ci = [0.11 0.02]
d = 0.89

**
t(54) = 2.74
power = 0.42
ci = [0.00 0.23]
d = 0.73

**
t(54) = 2.87
power = 0.32
ci = [0.02 0.45]
d = 0.77

**
t(54) = 2.67
power = 0.25
ci = [0.00 0.40]
d = 0.71

**
t(53) = 3.14
power = 0.36
ci = [0.04 0.58]
d = 0.85

EEG: frequency band-power
FC6. 1–4 Hz
F8. 1–8 Hz
AF8. 1–8 Hz

**

IC-based ERP **
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Cognitive test performance.  Comparing the mean accuracy scores on the cognitive tests in the physical 
classroom vs. the virtual classroom revealed no significant differences between these two environments for any 
of the five tests (Fig. 2B): Digit Span Test [t(34) =  − 0.96, p = 0.34, power = 0.18, ci = [− 14.18 5.09], d = − 0.33], 
Benton Test [t(34) =  − 0.51, p = 0.61, power = 0.07, ci = [− 11.52 6.90], d = − 0.18], Stroop Test [t(34) = 1.32, p 
= 0.19, power = 0.99, ci = [− 2.58 12.25], d = 0.46], Visual Pattern Test [t(34) =  − 1.53, p = 0.13, power = 0.27, 
ci = [− 10.13 1.41], d = − 0.54], Arithmetic Test [t(34) =  − 1.47, p = 0.15, power = 0.36, ci = [− 15.25 2.42], d = 
− 0.52]. This indicates that the participants scored equally well on the tests regardless of whether they were taken 
in the real-world environment or in the VE.

However, significant effects were found for the amount of time required to complete the tests. The Digit 
Span Test [t(46) = 5.53, p < 0.001, power = 0.98, ci = [77.7 22.2], d = 1.61], Benton Test [t(51) = 4.78, p < 0.001, 
power = 0.95, ci = [5.2 18.5], d = 1.31], and Visual Pattern Test [t(48) = 6.89.10, p < 0.001, power = 0.99, ci = 
[14.5 33.0], d = 2.59] were completed significantly faster in the virtual environment (Fig. 2C). The Stroop Test 
and Arithmetic Test were of fixed duration.

A significant effect was also found for the total number of responses given by the participants during the 
Stroop Test [t(50) =  − 2.78, p = 0.01, power = 0.82, ci = [− 12.8 − 0.2], d = − 0.77], the Arithmetic Test [t(53) 
=  − 2.43, p = 0.02, power = 0.90, ci = [− 5.84 0.27], d = − 0.66], and Visual Pattern Test [t(53) = 2.15, p = 0.04, 
power = 0.80, ci = [− 0.77 7.09], d = 0.58]. In the first two (time-limited tests), the total number of responses was 
significantly greater in the virtual classroom compared to the real-world classroom, indicating better perfor-
mance. The Visual Pattern Test showed a significant decrease in number of responses submitted, indicating that 
there were fewer errors committed (Fig. 2D). No statistical difference with high statistical power was found for 
the Digit Span Test [t(53) = 2.05, p = 0.05, power = 0.33, ci = [− 11.3 − 1.81], d = − 0.77] and Benton Test [t(52) 
= 1.08, p = 0.28, power = 0.97, ci = [− 0.25 0.83], d = 0.29].

Physiological responses: EOG, ECG, and GSR data.  The analysis of the vertical eye-movement 
(EOGv) data revealed no significant differences in the average number of eye blinks per minute in the physical 
classroom vs. the virtual classroom, for any of the five cognitive tests (Fig. 3A): Digit Span Test [t(42) = − 0.22, p 
= 0.83, power = 0.06, ci = [− 5.55 4.46], d = -0.07], Benton Test [t(25) = − 0.34, p = 0.73, power = 0.07, ci = [− 6.76 
4.81], d = − 0.12], Stroop Test [t(26) = − 0.15, p = 0.88, power = 0.05, ci = [− 8.24 7.13], d = − 0.05], Visual Pattern 

Figure 2.   Cognitive test performance in the physical classroom environment vs. the identical virtual classroom. 
The color bars indicate the median scores in each environment, with the first and third quartiles shown as error 
bars. (A)  Self-reported fatigue and stress levels after completing the tests, (B) the ratio of correct responses to 
total number of responses given by the participants, (C) the time required to complete each test, and (D) the 
total number of responses given by the participants in each tests.
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Test [t(33) = − 2.32, p = 0.20, power = 0.031, ci = [− 10.35 2.27], d = − 0.51], Arithmetic Test [t(30) = − 0.87, p = 
0.39, power = 0.015, ci = [− 9.53 3.84], d = − 0.33].

The ECG analysis revealed no significant differences in the average number of heart beats per minute in the 
physical classroom vs. the virtual classroom, for any of the five cognitive tests (Fig. 3B): Digit Span Test [t(19) = 
− 0.79, p = 0.44, power = 0.12, ci = [− 6.59 6.28], d = − 0.02], Benton Test [t(21) = 0.02, p = 0.98, power = 0.05, ci 
= [− 7.68 3.73], d = − 0.22], Stroop Test [t(18) = 0.51, p = 0.61, power = 0.09, ci = [− 4.04 6.92], d = 0.16], Visual 
Pattern Test [t(18) = 0.40, p = 0.70, power = 0.07, ci = [− 7.33 4.35], d = − 0.16], Arithmetic Test [t(14) = 0.52, p 
= 0.61, power = 0.09, ci = [− 6.39 5.71], d = − 0.04].

In regard to the GSR data, there was a statistically significant decrease in the variability of the per-participant 
standardized GSR signal in the virtual environment for the Digit Span Test, and the Benton Test (Fig. 3C). For 
the Stroop Test, Visual Pattern Test, and the Arithmetic Test no significant difference in GSR variability between 
the physical and virtual environments: Digit Span Test [t(54) = 3.73, p < 0.001, power = 0.79, ci = [0.28 1.73], d 
= 0.99], Benton Test [t(54) = 2.71, p = 0.01, power = 0.59, ci = [0.01 1.11], d = 0.72], Stroop Test [t(54) = 0.32, p 
= 0.75, power = 0.07, ci = [− 0.35 0.49], d = 0.08], Visual Pattern Test [t(54) = 1.22, p = 0.23, power = 0.17, ci = 
[− 0.16 0.68], d = 0.33], Arithmetic Test [t(53) = − 0.17, p = 0.87, power = 0.05, ci = [− 0.47 0.40], d = − 0.05].

Head acceleration showed a marked decrease in magnitude in the VR environments, among all cognitive tests 
(Fig. 3D): Digit Span Test [t(54) = 3.33, p = 0.002, power = 0.38, ci = [0.11 0.02], d = 0.89], Benton Test [t(54) = 
2.74, p < 0.01, power = 0.42, ci = [0.00 0.23], d = 0.73], Stroop Test [t(54) = 2.87, p = 0.01, power = 0.32, ci = [0.02 
0.45], d = 0.77], Visual Pattern Test [t(54) = 2.67, p < 0.01, power = 0.25, ci = [0.00 0.40], d = 0.71], Arithmetic 
Test [t(53) = 3.14, p < 0.003, power = 0.36, ci = [0.04 0.58], d = 0.85].

Physiological responses: EEG band‑power features.  The EEG frequency band-power was compared 
between the physical and virtual classrooms, within each cognitive test. A statistically significant effect (p < 0.01) 
was observed in three frontal electrodes (F8, AF8, FC6) exclusively in the Delta (1–4 Hz) and Theta (4–8 Hz) 
bands during the Benton Test. Electrodes F8, AF8, and FC6 were found to have a significant measured increase 
in power in the Delta band [respectively, t(48) =  − 3.45, power = 0.84, ci = [− 5.10 − 0.64], d = − 0.98; t(46) =  
− 2.88, power = 0.53, ci = [− 5.97 − 0.21], d = − 0.83; t(48) =  − 2.54, power = 0.55, ci = [− 4.25 0.12], d = − 0.72]. 
In the Theta band, an increase in power was observed for electrodes F8, and AF8 in the VR environment com-
pared to the real-world environment [respectively, t(48) =  − 3.33, power = 0.81, ci = [− 3.98 − 0.43], d = − 0.94; 

Figure 3.   Physiological responses in the real-world classroom environment vs. identical virtual classroom. The 
color bars indicate the median scores in each environment, with the first and third quartiles shown as error bars. 
(A) Number of eye blinks per minute per cognitive test, as derived from the EOG sensors, (B) number of heart 
beats per minute, as derived from the ECG sensors, (C) relative standard deviation of tonic GSR data, and (D) 
relative standard deviation of the head acceleration magnitude.
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t(46) =  − 2.89, power = 0.56, ci = [− 4.43 − 0.16], d = − 0.83]. All other electrodes were not found to measure a 
difference in power for the five frequency bands analyzed among any of the cognitive test performed.

The F8, AF8, and FC6 electrodes measured an increase between 15 and 80 µV2, corresponding to 100–200% 
change, in mean band-power in the virtual setting compared to the real-world classroom. The differences in band-
power were observed only in the lower frequency bands (1–8 Hz) in frontal electrodes. These differences are not 
found across the cognitive tests within these same electrodes. A Bonferroni correction for multiple comparisons 
(p < 7E-6) showed no significant differences in EEG frequency band-power features.

Physiological responses: EEG Event‑related potentials (ERPs).  ERPs were analyzed to evaluate the 
elicited waveforms in the physical and virtual environments. The researchers analyzed the ERPs corresponding 
to spatial clusters of equivalent dipoles projected from Independent Component Analysis (ICA). Seven such 
clusters were identified (Fig. 4A), localized near the medial prefrontal cortex (Clust. 1), the cingulate cortex 
(Clust. 2), the left superior frontal gyrus (Clust. 3), the right middle frontal gyrus (Clust. 4), the left Fusiform 
gyrus (Clust. 5), the right Lingual gyrus (Clust. 6), and the center of the brain projection (Clust. 7).

Visual inspection of the ERP grand averages revealed major positive deflections at the cingulate cortex (Clust. 
2), and Fusiform and Lingual gyri (Clust. 5 and Clust. 6) (Fig. 4B). The largest effect of the two environment 
conditions on ERP amplitude was found in Clust. 2, where the magnitude of the ERP corresponding to the 
immersive virtual reality setting was more pronounced in comparison to the real-world setting.

The power spectral density, a relative measure of the average strength of each constituent frequency within the 
ERP, was calculated for each frequency from 1 to 50 Hz, across the 1500 ms window for the ERPs in each of the 
two environments (Fig. 4C). Clust. 1, Clust. 3, and Clust. 4 showed alpha power suppression and a comparatively 
higher beta power for both environmental conditions. Clust. 2, Clust. 5, and Clust. 6 contain ICs with alpha 
power activation at the cingulate cortex and parietal regions.

A closer analysis was carried out to characterize the ERPs in the medial cortical cluster (Clust. 2). This cluster 
was chosen for detailed examination because it included a comparable number of components and trials from 
each of the two environmental datasets (Fig. 4B), it showed clear ERP patterns, and because the cognitive tests 
that the participants completed in this study have been reported to involve activation of the cingulate cortex in 
well-replicated findings using PET and fMRI scans40–46. Furthermore, previous high-density ERP studies have 
found independent sources in the cingulate cortex associated with error-detection and target monitoring47, and 
as a crucial component of response selection21,47.

Figure 4.   EEG group data analysis for equivalent dipoles corresponding to the ICs from all participants, in the 
real-world environment vs. the virtual environment. Seven IC clusters were obtained, indicated as Clust. 1–7, 
with their data shown in each column. (A) Projected equivalent dipole locations. (B) ERP waveforms obtained 
from the corresponding correct-response inputs. (C) ERP Power spectral density, averaged for each condition.
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Figure 5 shows the ERPs that were obtained from the ICs located in Clust. 2 for each cognitive test, time-
locked to the participants’ correct responses on the tests. The ERP patterns show specific cognitive functions 
recruited by the participants for each test that they performed. For the most part, these ERPs displayed very simi-
lar patterns between the real-world classroom environment and the immersive virtual environment. The overall 
ERP pattern found in Clust. 2 included positive peaks at 50 ms and 180–200 ms after stimulus onset, negative 
peaks at 130–150 ms and 270–300 ms, and then a slowly growing positive potential that peaked at 450–600 ms 
(Fig. 5B). The amplitude and latencies of these patterns varied in each of the cognitive tests performed: The 
Digit Span Test23 and the Benton Test22 showed a sustained late positive ERP component after 600 ms; while 
the Arithmetic Test presented a large negative potential at 270–300 ms followed by a late positive potential after 
600 ms26,48. Significant differences in the ERP waveform between the two environments were seen during the 
Stroop Test, where the participants showed much greater negative peaks at 130–150 ms and 270–300 ms in the 
virtual environment compared to the real-world classroom (Fig. 5C). Two major ERP components have been 
previously described for the Stroop Test: an early effect of medial dorsal negativity around 350–500 ms, and a late 
effect of a positive component at 500–800 ms over the left superior temporo-parietal scalp electrodes24, with two 
dipole sources from a cluster at the cingulate cortex; consistent with the present study. Larger negativity peaks 
between 350 and 500 ms, as were found in the virtual classroom environment, have been previously linked to 
identified incongruency in the color and the meaning of the words displayed49,50.

Discussion
In the COVID-19 era, many interactions and experiences that normally take place in the physical world have 
been ported to the digital realm, and thus understanding the psychological effects of simulated environments is 
more important than ever. Beyond the current widespread use of digitally mediated meetings and instruction, 
there is also a growing interest in using immersive virtual environments combined with rigorous physiological 
response-testing to evaluate the effectiveness of architectural and urban designs. This article presents behavio-
ral, neural, and electrophysiological evidence supporting the primary hypothesis that certain types of cognitive 
performance mostly do not differ between a real-world classroom and an immersive virtual copy of that class-
room. Specifically, cognitive test performance metrics (accuracy of completed tests), EEG ERP patterns (except 
for the Stroop test), EEG frequency band-power features, and several other physiological metrics did not differ 
significantly between the real and virtual conditions.

The overarching similarity in behavioral, neural, and physiological response data that was found between 
the real and virtual environments is belied in only a few measures. Statistically different effects of the virtual 
classroom (compared to the real-world classroom experience) included: (a) an increase in amplitude for an early 
100–300 ms ERP in the medial cortical source cluster during the Stroop Test; (b) a decrease in GSR standard 
deviation; (c) a decrease in head acceleration; and (d) a greater response frequency on the test questions.

A notable aspect of the study design is that it used a fixed condition order, with all participants first experienc-
ing the physical environment and then afterward experiencing the virtual environment. The reasons for using 
a fixed task order were logistical; this analysis was part 1 of a larger experiment block, the subsequent parts of 
which were all conducted using the virtual display. This made it infeasible to counterbalance the order of the 
conditions in the study. The use of a fixed condition order, however, raises concerns about potential habituation 
and trial-order effects.

Figure 5.   EEG data analysis, showing the ERP characterization of IC Clust. 2 across all cognitive tests. (A) 
Projected equivalent dipole location of the ICs in Clust. 2. (B) Scalp map representation of the averaged cluster 
IC. (C) Average waveform for all ERPs in Clust. 2. (D) Clust. 2 ERP waveforms for each individual cognitive test. 
Red marks at the bottom indicate statistically significant difference between environments (p < 0.01).
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Condition order effects could hypothetically cause the preponderance of null results, and an essential next 
step is to replicate these findings with a counterbalanced design. However, an order effect does not seem very 
plausible given the current data. For example, one might argue or hypothesize that entering a virtual environ-
ment should lead to decreases in frontal alpha EEG band-power (due to the increased effort needed to process 
the novelty of immersive media), and that a counteracting process should occur as participants become more 
fatigued, causing frontal alpha EEG band-power to increase with drowsiness. Since the virtual environment 
always followed the physical environment in this study, task-induced fatigue might counteract the stimulating 
effects of entering a virtual environment, leading to what seems to be a null effect. It does not seem plausible, 
however, that this counteracting process could cause a null effect both in the alpha band (which is inversely 
related to levels of neural activity), and in the beta band (which is usually positively related with levels of neural 
activity). Additionally, self-reported fatigue and stress did not differ significantly between the conditions.

An alternative explanation for the present findings might be that habituation/practice effects should be 
expected to lead to improved accuracy and decreased cognitive effort in the later (virtual) condition, but that 
the virtual environment also impaired cognitive ability due to increased cognitive load, leading to an overall null 
effect on task accuracy. This explanation is again not very plausible, because participant task accuracy was shown 
to suffer from a ceiling effect in both conditions, and because such practice effects on response frequency are 
typically observed to develop over hundreds of trials51–53 rather than the roughly two dozen trials that occurred 
in the current study. There is no evidence that a practice effect would begin to form so quickly for any of the 
tasks used here. In fact, practice effects in the Stroop task are not typically observed at all for response accuracy 
except in older adults54. For the Digit Span Task, a previous months-long investigation of practice effects found 
no significant task improvement55. Practice effects have been previously documented for the arithmetic task, 
but only over hundreds of trials52. These long-term practice effects do also affect neural correlates of task per-
formance, which typically shift from greater central-executive prefrontal cortex activity during early learning 
to more specialized parietal cortex activity as practice leads to expertise56. Again, however, to the best of the 
researchers’ knowledge there is no prior evidence for these effects emerging over the limited number of trials 
that was used in the current experiment.

The participants may have visually explored the virtual classroom less because they were already familiar with 
its contours and features after spending time in the identical real-world classroom. This could potentially explain 
the lower number of head movements that were observed in the virtual environment57. The added weight and 
a possible sensation of an impeded range of motion due to the VR headset cables may have also contributed to 
decreased head-movements in the virtual condition, although some researchers have found that using immersive 
HMDs can actually increase visual search compared to a static display58. Other work has found that wearing 
mock HMDs that replicate their field of view and weight (but do not produce a virtual visual display) does not 
fully account for perceptual distortions common to user experience in VR, such as the distance distortion effect59. 
It cannot yet be concluded that simply wearing an HMD has a meaningful impact on perception and behavior.

The lower GSR variability in the virtual classroom may indicate less experiment-induced arousal, which typi-
cally decreases as habituation to an environment increases60,61. However, there is some prior evidence that the 
first-person immersion in virtual environments can reduce GSR-based correlates of negative affect62 and stress 
levels62,63.Given the short duration of the tasks, and the lack of a difference in self-reported stress or fatigue, the 
GSR data do not support the claim that the environments lead to different affective states. Future extensions 
of this research that are able to randomize the order of the experimental conditions will be able to produce 
more definitive conclusions about these behavioral and physiological differences that were noted in some of the 
experimental measures.

The greater post-response ERP in the medial cortical cluster during the virtual classroom Stroop task is less 
likely to be the result of the habituation phenomenon, since it only occurred with a single task and was not seen 
in the other classroom activities. The condition difference in GSR variability was not observed in the Stroop task, 
which suggests that this task may have been uniquely demanding for participants. However, mean accuracy in the 
Stroop task was perhaps highest of all tasks; so if the task difficulty led to SNS arousal, participants were able to 
self-regulate and meet the challenge. In our implementation of the Stroop Test, the words were presented using 
a projector and screen in the real-world classroom, while in the virtual classroom these words were displayed as 
part of the VR interface. It is possible that the differences observed in the amplitude of negative components in 
the ERPs could be a consequence of variations in the sharpness of the color displayed in each setting. This could 
indicate that visual processing of colors during the Stroop Test was more effective in the virtual environment 
compared to the real-world classroom due to higher color legibility64. However, this does not explain why the 
GSR levels were relatively higher in the VR Stroop test compared to the other VR tests.

No significant differences were found in the EEG frequency band-power data between the real-world class-
room and the virtual classroom when using Bonferroni correction for multiple comparisons. However, before 
this family-wise error correction, occasional differences between conditions were found in frontal electrodes in 
the Delta and Theta bands (1–8 Hz), for F8, AF4, and FC6. The location of these electrodes suggests that the dif-
ferences could have been due to pressure applied by the VR headset as it rested on the EEG cap. However, these 
differences were observed almost exclusively for the Benton Test, making it unlikely that the HMD caused an 
artifact that affected all EEG data in the virtual condition. Our ERP results did not suggest condition differences 
associated with the Benton test. Furthermore, given that the statistical differences at p < 0.01 were found for less 
than 0.4% of all EEG band-power comparisons, the results suggest that these EEG features remained mostly 
unaffected by the transition to a virtual environment.

The findings of the current study conflict with a few results that have been produced by other researchers. In a 
recent PC-based STEM learning task study by Makransky and colleagues33, EEG correlates of cognitive workload 
were found to be higher in the immersive VR version of the task, while learning performance was lower than in 
a non-immersive version33. Nevertheless, the participants in that study reported enjoyed the immersive version 
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more than the PC-based version. Whether this hedonic quality is a function of the novelty of the VR experience, 
the different sense of presence compared with normal waking life, or some other set of qualities remains to be 
determined. In other work by this group, using different tasks, virtual/immersive-based training actually led to 
improved learning performance compared to in person or desktop-PC (2D) training65. Further work will need 
to be done to replicate cognitive workload results and further examine the effects of virtual environments on 
learning performance before reaching strong conclusions.

It should also be noted that the current study examined only a small range of learning-related activities, 
specifically cognitive tests of visual memory, concentration, and mathematical reasoning. In other research, 
participants have been asked to interact with and manipulate virtual “objects,” which may lead to entirely differ-
ent forms of physiological response, subjective feelings, and learning outcomes66,67. Other work has focused on 
the effects of immersive environments on sense of presence and embodiment, when a visualized avatar is part 
of the experience68,69. However, the current work offers a simple baseline comparison of virtual and physical 
environments, with no manipulations of embodiment or object interaction. Further work should measure these 
activities, and many other forms of learning and engagement, while comparing physical environments to visually 
identical virtual environments. These findings provide evidence for neural-based features that can be reliably 
generalized from virtual spaces to real ones. In the educational context, further longitudinal studies are needed 
to evaluate long-term learning experiences and outcomes in physical vs. virtual environments.

The results of the current study are contingent upon the particular type of environment that was examined 
(a small windowless classroom), the profile of the study participants, and the types of cognitive tests performed. 
Nonetheless, the data collected during the study support the conclusion that VEs have a strong potential for use 
as a research tool, and that many of the findings obtained in VEs may be transferrable to real-world settings. 
The study also tentatively supports the conclusion that virtual classrooms can allow for similar student comfort 
and outcomes compared to real-world classrooms, at least in the context of short-term measurements of fatigue, 
stress, and cognitive performance on technical tests. By further understanding the transferability of various 
types of human response data between virtual environments and real ones, researchers will be able to establish 
standardized VE testing as a source of “big data” for the design industry, with behavioral and physiological 
measurement capabilities integrated into an inexpensive and effective research platform.

Materials and methods
The study protocol was reviewed and approved by the Institutional Review Board at the University of Houston, 
and all participants provided written informed consent to participate in the study. Informed consent for publica-
tion of identifying images in an online publication was obtained for the study. All experiments were performed 
in accordance with relevant guidelines and regulations.

In the current experiment, we scanned the texture of the materials in the real classroom, then imported this 
data into the Unreal Engine (www.​epicg​ames.​com) to create a high-dynamic-range (HDR) immersive virtual 
rendering. The detailed 3D scan allowed for the real classroom’s spatial dimensions, colors, lighting, furniture 
placement, and all other features to be precisely replicated in the VE. The researchers created a widget that would 
allow the cognitive tests to be displayed on a projector screen, which was included both in the real classroom 
and in the virtual classroom (Fig. 1B,C).

The virtual experience was presented to the research participants using an Oculus Rift head-mounted display, 
which uses a 1920 × 1080 pixel low persistence organic light-emitting diode display with a refresh rate up to 
75 Hz, resulting in a resolution of 960 × 1080 pixels per eye. The headsets are lightweight, comfortable for the 
user, and have a strong market share with ongoing development. The participants interacted with the VE using 
a handheld controller: a joystick was used to toggle between multiple-choice answers for the cognitive tests, and 
a button-press indicated the selection of the answer (Fig. 1A).

We selected physiological sensors and associated software that could be easily integrated and that would 
allow for rigorous data collection. An important consideration was that the sensor components should allow 
a wide range of head motion, as is necessary for VR-headset use, while still providing robust data outputs. The 
selected unit was a 63-channel actiCHamp (Brain Products GmbH). 57 electrodes were used for EEG record-
ings, 4 electrodes were used to collect EOG data (two placed laterally 1 cm outside the eyes, and two vertically 
from the right eye), and the final two were used for ECG measurement. A GSR module (Brain Products GmbH) 
was used to record skin conductance (Fig. 1A), and a tria-axial accelerometer was used to collect head accelera-
tion. All physiological and acceleration metrics were synchronized through the actiCHamp, and the participant 
responses were synchronized with the rest of the data through Lab Streaming Layer70. The BrainVision Recorder 
software package was used for all electro-physiological data-recording, and EEGLAB71 software was used for 
data cleaning and analysis.

Participants.  An a-priori analysis of the required sample size was conducted using G*Power (Version 
3.1.9.3.). For an effect size of dz = 0.55, a 0.05 probability of error, and a power of 0.80, the necessary sample size 
was 27. The effect size of dz = 0.55 was estimated from Makranksky and colleagues’33 effect size for frequency 
band-power based cognitive load change comparing a PC display vs. immersive VR. Technical recording issues 
discovered early in the data-collection process led to four participants being excluded from the study, but the 
researchers were able to recruit replacements to reach the intended sample size of 27. During the subsequent 
EEG data-analysis two additional participants were discovered to have severe data quality issues that also neces-
sitated exclusion, resulting in a final sample size of 25.

The ages of the 25 participants ranged from 18 to 55 years (M = 25.67, SD = 7.47). Fourteen reported as male 
and 11 reported as female. All participants had normal or corrected-to-normal vision. Each participant gave 
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informed written consent before participating in the experiment, and was compensated with a $25 gift card after 
completing the tasks.

Research protocol.  The research protocol consisted of four stages. In Stage 1, each participant was pro-
vided with an introduction to the study and its goals, asked to sign a consent form and complete the demo-
graphic questionnaire, was fitted with the relevant sensor devices and allowed to “play” with the virtual headset, 
and then sat still for a short time without the VR headset so that resting-state EEG data could be collected: one 
minute of rest with eyes open and one minute of rest with eyes closed. In Stage 2 the participants completed 
cognitive tests in the physical classroom environment (without using the VR headset), and then rated their level 
of fatigue on a Likert scale from 1 to 10. In Stage 3 they donned the VR headset and completed the same cogni-
tive tests in the virtual classroom environment, and then again rated their level of fatigue. Finally, in Stage 4 the 
sensor equipment was removed and the participants completed an exit interview. Participants were asked at this 
time to provide feedback about their overall experience in the VR environment, and they used Likert Scales to 
rate the realism of the VE (from 1 = “not realistic” to 10 = “very realistic”) and the comfortableness of the EEG 
headset (from 1 = ”uncomfortable” to 10 = ”comfortable”).

Cognitive tests.  The cognitive activities used in the study included five standard memory and attention 
tests.

The Digit Span Test is part of the Weschler Adult Intelligence Scale-Revised (WAIS-R)72. It was used to assess 
the participants’ working memory, attention, encoding, and auditory processing. The test consisted of the par-
ticipants listening to sequences of digits and then repeating those digits back to the researcher in the correct 
order. The study used two sequences of four digits, one sequence of six digits, and finally one sequence of seven 
digits. The participants received visual and auditory feedback indicating correct or incorrect answers. There was 
no time limit for this test.

The Benton Visual Retention Test73,74 is a measure of visual perception, visual memory, and the capacity for 
visual discrimination. In this test, the participants observed a complex visual stimulus for three seconds, followed 
by a set of four visual options. One of the options was identical to the original stimulus, whereas the other three 
options had subtle differences from the original. The participants were asked to select the figure that matched 
the original stimulus. This test was conducted eight times, using a variety of different visual stimuli. As per the 
test protocol, no feedback was given about correct or incorrect answers, and there was no specific time limit.

The Stroop Color Interference Test is one of the most extensively studied metrics in cognitive psychology75. 
This task consisted of identifying the color of a word presented on the screen. Sometimes the word matched its 
color (e.g., the word “blue” presented in blue ink); whereas other words conflicted with their color (e.g., the word 
“blue” presented in black ink). The congruent and incongruent words were presented randomly, with a new word 
appearing immediately after every answer. The participants received visual and auditory feedback for correct or 
incorrect answers and were asked to try to get as many correct answers as possible within 45 s.

During each trial of the Visual Pattern Test, the participants were presented for 2 s with a grid consisting 
of light and dark squares76, which was then was replaced by a blank (all-light-colored) grid. The participants 
were asked to fill out the grid by selecting the correct dark squares to match the original that they had previ-
ously seen. Four iterations of this test were conducted—two iterations using a 3 × 3 grid with four randomly 
darkened squares, and then two more iterations using a 4 × 4 grid with seven randomly darkened squares. The 
participants received visual and auditory feedback for correct or incorrect answers. There was no specific time 
limit for this test.

The Arithmetic Test consisted of evaluating two simple arithmetic statements (e.g., 9 + 12 and 7 + 20). The 
participants had to choose which of the two statements was greater, or else select that both statements were 
equal. After a participant selected an answer, a new set of arithmetic statements was immediately presented. 
The participants received visual feedback for correct or incorrect answers, and were asked to try to get as many 
correct answers as possible within 45 s.

The cognitive test results were evaluated according to the relevant scoring metrics for each test. For example, 
scores on the Digit Span Test were recorded as the total number of correct digits out of a maximum of 22 pos-
sible inputs (4 digits + 5 digits + 6 digits + 7 digits). Although no specific time limit was given for this test, the 
time of completion was recorded and was used as part of the scoring matrix (as per the standard Digit Span Test 
protocol). The Stroop Test, in contrast, was scored according to the ratio of correct answers to the total answers 
submitted (again as per the standard test protocol). The participants’ scores on the cognitive tests were analyzed 
at the group level, by looking for significant differences between the average scores in the real classroom and the 
average scores in the identical virtual classroom. A Kruskal–Wallis statistical test was used with a significance 
level of p < 0.05 and p < 0.01.

EEG data processing.  The EEG data were analyzed using the EEGLAB software package71. Raw .xdf data 
files were imported at their original sampling rate of 500 Hz. They were low-pass filtered at 100 Hz, high-pass fil-
tered at 0.1 Hz, and then run through the Cleanline algorithm, which selectively filters out the 60 Hz power-line 
noise using an adaptive frequency-domain (multi-taper) regression technique. Artifactual time-windows and 
channels were deleted using manual inspection, by research team members blind to the order of the trials. The 
data were then run through an independent component analysis (ICA) using the extended Infomax algorithm, 
and a dipole-fitting step using the Dipfit package, with the source-space warped to fit a template MNI space77,78. 
Artifactual components representing eye-movements, head movements, and other gross non-brain components 
were removed by visual identification.
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One of the primary EEG metrics evaluated in the study was the frequency band-power features. This meas-
urement indicates how strongly a particular frequency or frequency range contributes to an EEG time-series 
signal, typically over a selected time window. Frequency band-power features were computed using 40-s windows 
beginning at the start of each cognitive test. The Multitaper power spectral density estimate function79 in Matlab 
was used to calculate the band power, with a time-half-bandwidth product of 4. The log-transformed (dB) EEG 
power was analyzed for all statistical comparisons. The band power features were calculated for five typical EEG 
frequency bands: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz), and Gamma (30–40 Hz).

The frequency band-power features were analyzed at the group level by comparing the frequency band-
power distribution from all participants in the VR and real conditions. For each cognitive test, the distribution 
of frequency band-power from all participants in the VR condition was compared to the distribution in the real 
classroom. A Kruskal–Wallis test was used for each EEG electrode and each frequency band, with a significance 
level of p < 0.01. A Bonferroni correction for multiple comparisons (5 cognitive tests, 5 frequency bands, and 57 
channels), yields a statistical significance level of p < 7E-6.

The second EEG metric evaluated in source space was event-related potentials (ERPs). Epochs of EEG data 
were time-locked using button-presses whenever the participant answered, over the range of – 500 to 1000 ms 
after the button-press. Only correct trials were included for the analysis, and the resulting averaged cluster 
ERPs were then smoothed by taking a 20-point moving average. We compared cluster ERP amplitude between 
environment conditions as described in the Statistical Analysis section below. The ICA activations from this 
ERP data were taken for analysis, calculated separately for each participant and environment condition. An 
equivalent dipole was calculated for each IC using a boundary element head model based on the MNI brain as 
implemented by DIPFIT routines80. ICs for which the dipole location estimation explained less than 20% of the 
variance in that IC’s activity were excluded. By using the EEGLAB pre-clustering function, distances between 
all ICs were calculated with their equivalent dipole model locations, with the standard weighting of 1. The IC 
equivalent dipoles were clustered into seven groups using k-means as implemented in EEGLAB, which clustered 
components from different subjects based on Euclidean distance from within the common MNI brain structure. 
IC equivalent dipoles that were further than three standard deviations from a cluster centroid labeled as outliers 
and omitted from further analysis. Seven clusters were generated (in addition to an 8th for outliers)—this number 
of clusters was chosen by a manual inclusion heuristic—seven was a low enough number to maximize the number 
of participants who had components recruited to each cluster, while high enough to prevent distinct brain signals 
from being aggregated together into overall general clusters81–83. MNI coordinates were converted to Talairach 
using the Tailarach Client 2.4.3 (ICBM), which was also used to identify the Brodmann areas in which each 
cluster centroid was putatively located. Average ERPs were computed for each task, for each cluster, from − 500 
to 1000 ms time-locked to the correct responses within each task, for each cluster, for both environments. The 
trial amplitudes were baselined to − 500 to 0 ms in the ERP time window. The ERP plots were compared using a 
two-tailed t-test between each data point to identify any significant differences between the two environments.

EOG data processing.  Ocular electrodes were placed above and below the left eye to measure the vertical 
EOG data, and left and right temples to measure the horizontal ocular movement. Eyeblink occurrences were 
identified with the BLINKER toolbox EEGLAB extension implementation84, with default parameters using fron-
tal channels the upper and lower EOGv, Fp1, F1, Fp2, Fz, Fpz, F3, F4, and F2 as candidate signals. Horizontal 
EOG electrodes were used to record saccades and lateral eye movements but were not used in this analysis. Eye 
blinks are of interest in this experiment because of their prevalence as the main source of artifact contamination 
in EEG recordings85. Furthermore, as a physiological measurement in virtual and real environments, the rate of 
eye-blinking can be an index of several affective and cognitive states or changes, including stress, fatigue, and 
engagement86. The eye-blink data were analyzed at the group level, by using a Kruskal–Wallis test to compare the 
average rate of eye-blinks across participants between the two environments.

ECG data processing.  Two electrodes were placed on the chest and used as ECG sensors, following the 
standard locations for RA-LA in the Einthoven I derivation87. The purpose of collecting ECG data was to meas-
ure the heartbeats per minute. The ECG data were filtered between 4 and 10 Hz using a fourth-order Butter-
worth filter, and then the heartbeats per minute were calculated using the Heart Rate Variability toolbox88,89. The 
heartbeats per minute data were analyzed at the group level to identify any significant differences between the 
participant averages in the real classroom vs. the virtual classroom.

GSR data processing.  The GSR data was obtained with an Ag/AgCl electrode pair on the tip of the index 
and middle fingers from the non-dominant hand of the participants. The GSR data was de-trended by remov-
ing the best straight-line fit for each participant. Changes between the real and the virtual environments were 
analyzed by extracting the GSR signal from the first 40 s of each cognitive test, for each participant. The extracted 
data was standardized (z-score) per participant, by subtracting the mean and dividing by the standard deviation. 
The variability of the obtained z-scores was compared statistically (Fig. 5C) between environments.

Head acceleration.  The head acceleration data was collected from an integrated tri-axial accelerometer, 
synchronized with the electrophysiological data through the actiCHamp module. The acceleration magnitude 
was obtained by calculating the square root of the squared components. In a similar analysis as for the GSR data, 
changes between the real and the virtual environments were analyzed by extracting the acceleration signal from 
the first 40 s of each cognitive test, for each participant. The data was then standardized per participant, by sub-
tracting the mean and dividing by the standard deviation. The variability of the obtained z-scores was compared 
statistically (Fig. 5D) between environments.
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Statistical analysis.  The statistical significance for each comparison was obtained using the nonparametric 
Kruskal–Wallis test with a significance level of p < 0.05 and p < 0.01. Additionally, the statistical power for each 
comparison was calculated post-hoc90, given the number of samples, mean, and standard deviations in the dis-
tributions for a two-sampled, unpaired t-test comparison. The statistical results are given for each comparison 
that produced significant differences by showing the t-statistic followed by the degrees of freedom in parenthe-
ses, statistical power, confidence intervals for the significance level threshold reported, and Cohen’s d. The data 
distributions are shown as boxplots in Figs. 2 and 3. The 95% confidence interval endpoints are represented by 
a notch in the boxplots.

Data availability
All data and analysis scripts related to this paper will be made available in the Open Science Framework (https://​
osf.​io/).
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