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Descriptor selection for predicting 
interfacial thermal resistance 
by machine learning methods
Xiaojuan Tian1* & Mingguang Chen2*

Interfacial thermal resistance (ITR) is a critical property for the performance of nanostructured devices 
where phonon mean free paths are larger than the characteristic length scales. The affordable, 
accurate and reliable prediction of ITR is essential for material selection in thermal management. In 
this work, the state-of-the-art machine learning methods were employed to realize this. Descriptor 
selection was conducted to build robust models and provide guidelines on determining the most 
important characteristics for targets. Firstly, decision tree (DT) was adopted to calculate the descriptor 
importances. And descriptor subsets with topX highest importances were chosen (topX-DT, X = 20, 
15, 10, 5) to build models. To verify the transferability of the descriptors picked by decision tree, 
models based on kernel ridge regression, Gaussian process regression and K-nearest neighbors were 
also evaluated. Afterwards, univariate selection (UV) was utilized to sort descriptors. Finally, the top5 
common descriptors selected by DT and UV were used to build concise models. The performance of 
these refined models is comparable to models using all descriptors, which indicates the high accuracy 
and reliability of these selection methods. Our strategy results in concise machine learning models for 
a fast prediction of ITR for thermal management applications.

Interfacial thermal resistance (ITR) plays an important role for thermal management of ultra-fast electronics and 
thermoelectric materials1–6. When heat is transferred through an interface, temperature discontinuity exits. The 
ratio of the temperature discontinuity to the heat flux through the interface is named as ITR. There is a minia-
turization trend of electronic devices in recent decades. In terms of nanostructured devices, the ITR become a 
dominant factor for device performance because the phonon mean free paths are larger than the characteristic 
length scales under such circumstance7. Screening materials with desired ITR is significant for electronics fabrica-
tion. For example, materials system with low ITR helps to reduce the energy consumption of electronics, while 
high ITR materials system is required for excellent thermoelectrics. There are a great number of factors affecting 
ITR, such as the intrinsic properties of materials and their differences, roughness of surfaces, crystal impurities, 
binding energy and thickness of films etc8,9. Thus, the accurate prediction of ITR is a high-dimensional problem 
and difficult to solve with regular mathematic equations.

Traditional models predicting ITR include acoustic mismatch model (AMM) and diffuse mismatch model 
(DMM)10. AMM assumes that there is no scattering of photons at the interface, which works well only under 
ideal conditions at low temperature. The DMM model is built based on the assumption of complete elastic 
diffusing mismatch, which makes it not suitable for non-elastic circumstances. An improved model named 
scattering-mediated acoustic mismatch model (SMAMM) incorporates phonon scattering into the original AMM 
and realizes prediction of ITR in a wide temperature range11. Still, the prediction accuracy of SMAMM model 
is restricted by the Debye approximation and the reliability of experimental data used to fit the parameters12. 
Besides, Foygel’s model based on Monte Carlo simulations and percolation theory has been widely adopted to 
predict the thermal conductivity in carbon nanotube composites13–17. This model simplifies nanotubes as pen-
etrable, rigid and straight cylinders and ignores the waviness and 3D entanglement of carbon nanotubes18–20. 
Molecular dynamics (MD) simulation is also applied to ITR prediction. Originally, MD simulation is used to 
analyze the physical movements of atoms and molecules. When it comes to a system of interacting particles, 
the system properties are predicted by numerically solving empirical or semi-empirical equations defined by 
classical Newton’s law of motion. The interactive forces between different particles are calculated following a 
potential function (eg. Lennard–Jones potential, tight-binding potential), which is an approximate function at 
a certain level of accuracy. The results of MD simulation are valid only when the input atomic interactions are 
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consistent with the forces in real situations. In some simple cases, this assumption can be fulfilled by carefully 
select the potential functions. For example, Lennard–Jones potential can be selected for the non-bonded interac-
tion between two particles21, while other potentials or methods such as embedded atom model22, environment 
dependent interatomic potential23, or tight-binding second moment approximation potentials24 can be adopted 
for many-body systems. However, it can be extremely hard to mimic forces between real atoms when quantum 
effects25,26, time27 and size limitations28,29 need to be taken into account in biologically important processes. 
Besides, MD simulation is computationally expensive and time-consuming, which limits its applications as 
screening tools for specific materials. Lately, machine learning methods have been applied to predict composite 
thermal conductivity, ITR between graphene and boron nitride, and thermoelectric conversion efficiency30–38. 
Specifically, Xu group8 applied machine learning algorithms as regression tree ensembles of LSBoost, support 
vector machines, and Gaussian regress processes to build ITR prediction models. Descriptors with a total amount 
of 35 including property descriptors, compound descriptors, and process descriptors were selected as input. All 
three models show better prediction accuracy than traditional AMM and DMM, which indicates the prospect 
of machine learning methods for predicting physical properties. However, it’s still very hard for researchers to 
consider all the 35 descriptors when designing thermal management systems with novel materials. In light of 
this, we focused on evaluating the 35 descriptors further by machine learning methods and screening minimum 
but most significant descriptors for ITR prediction.

For data set with modest size, descriptor selection is critical for reaching a robust machine learning model and 
provide insight on which characteristics are most important for the target39,40. In this work, descriptor selection 
was firstly conducted according to their importances calculated by decision tree (DT). The importances are the 
scores assigned to each input feature of a predictive model that indicates its relative contribution to the predicted 
results. And descriptors with topX(X = 20, 15, 10, 5) highest importances were selected (topX-DT). To verify the 
transferability of the selected subsets, kernel ridge regression (KRR), Gaussian process regression (GPR) and 
K-nearest neighbors (KNN) algorithms were used to build models besides DT. R2 and root-mean-squared-error 
(RMSE) of models built from descriptors subsets by all three algorithms were calculated. The metrics for model 
evaluation were acquired from shuffled and grouped cross-validation. Datasets were randomly split under shuf-
fled cross-validation. Considering identical interface system may exist in both validation set and training set 
when shuffled, datasets were also grouped by substrate/interlayer/film system to exclude the potential interfer-
ence on feature importance. It is shown that the performance of all algorithms are stable with descriptor size 
decreasing to top10-DT. DT has a relatively good performance even when the descriptor size reduces to top5-
DT, while the performance of KRR, GPR and KNN is not satisfying. To obtain a more reliable feature subset, 
univariate selection (UV) was introduced. And the subset selected by UV is named as topX-UV. As a result, there 
are 15 common descriptors selected by both top20-DT and top20-UV (Top15-DTUV). Meantime, 5 common 
descriptors exist in both top10-DT and top10-UV (Top5-DTUV). It is confirmed that the model performance 
is more robust under descriptors selected both by DT and UV than that from descriptors only picked by DT. 
Besides, descriptors selected by DT and UV has a high overlap with the descriptors used for AMM and DMM 
and factors testified from previous experimental studies. Thus, the selected descriptors work well for building 
machine learning models and are valid on the physical point of view. Descriptor selection methods presented in 
this work are transferrable to predict other materials properties beyond ITR.

Methods
Dataset collection.  Original dataset for this study was the experimental data collected from 85 published 
papers. Xu group organized them and introduced descriptors for predicting ITR by machine learning method8,9. 
Details of the developed descriptors and collected ITR were explained in the previous work41. And data could 
be found in the file named “training dataset for ITR prediction.xlsx” and downloaded directly from https​://doi.
org/10.5281/zenod​o.35641​73.

Dataset preprocessing.  Descriptors were scaled before feeding into models. According to distribution of 
descriptors, min–max scale and standard scale were applied. Min–max scale is to transform features by scaling 
each feature to a given range, e.g. between zero and one. For each descriptor, min–max scale is conducted by the 
following equation, where X.max and X.min are the maximum and minimum value of the descriptor.

The descriptors transformed by min–max scaler include fthick, fmelt, fdensity, sdensity, fAC1x, fAC1y, fAC2x, 
fAC2y, fIPc, fIPa, smelt, sAC1x, sAC1y, sAC2x, sAC2y, sIPc, and sIPa.

Standard scale is to standardize features by removing the mean and scaling to unit variance. Centering and 
scaling happen independently on each feature by computing the relevant statistics on the samples in the training 
set. For each descriptor, standard scale is conducted by the following equation, where µ and s are the mean and 
standard deviation of the descriptor.

The descriptors transformed by standard scaler are T, fmass, fEb, sEb, and smass.

Algorithms and models.  Decision trees (DT) are a non-parametric supervised learning method for clas-
sification and regression42. It creates a model to predict target by learning with a set of simple if–then-else rules. 

Xscaled =
X − X.min

X.max − X.min

Xscaled =
X − µ

s
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It is a white box model simple to understand, interpret, and visualize. A representative decision tree algorithm 
is classification and regression tree (CART), introduced by Leo Breiman43. CART is based on a binary recursive 
partitioning procedure. The objective of partitioning is to minimize dissimilarity in the terminal nodes for clas-
sification and mean-squared-error for regression. The dissimilarity is measured by the loss functions, typically 
Gini index or cross-entropy for classification trees44,45. For the regression trees applied in our work, each par-
titioning is made to maximize the reduction in root-mean-squared-error (RMSE)46. After all the partitioning 
has been done, a decision tree is obtained where each branch is a split in a predictor and each end node gives a 
prediction for the outcome variable. The feature importances in CART could be determined in one shot during 
training, which is computationally efficient compared with greedy search methods.

KRR is an algorithm combining Ridge regression (linear least squares with l2-norm regularization) with 
the “kernel trick”47,48. Actually, KRR is a special case of support vector regression. It takes advantage of inte-
gral operator kernel functions to map principal components in high-dimensional feature spaces to input space 
nonlinearly49–51. Radial basis function (RBF) was applied as kernel in our work.

GPR implements Gaussian processes for regression purposes. It can find a probabilistic distribution of new 
output given the training data and new input data52–55. Both KRR and GPR learn a target function by the “kernel 
trick”. However, KRR learns a linear function in the space induced by the respective kernel which corresponds 
to a non-linear function in the original space49. While, GPR uses the kernel to define the covariance of a prior 
distribution over the target functions and uses the observed training data to define a likelihood function. Here, 
we also applied radial basis function (RBF) as the kernel for the GPR56.

Besides descriptor importances from decision tree, feature selection was conducted by selecting the best 
descriptors based on the UV statistical tests for dimensionality reduction purpose. Here, F-test was adopted to 
estimate the degree of linear dependency between descriptor and target57,58. Briefly, F-test of equality of variances 
is a test for the null hypothesis that two normal populations have the same variance59. In this situation, F value 
is the ratio of descriptor variance over target variance. It has an F-distribution if the null hypothesis of equality 
of variances is true. If F value is either too large or too small, the null hypothesis will be rejected60,61. The built-in 
function f_regression of sklearn library computes the correlation between the descriptor and target, and converts 
it to an F value automatically. Then the F values are used for descriptor selection.

Algorithm evaluation.  Models built by different algorithms and descriptor subsets were evaluated by R2 
and RMSE.

R2 computes the coefficient of determination. It is calculated by

And RMSE is calculated by

where n, yi , ui , and −u are number of data, experimental ITR, predicted ITR, and average experimental ITR values, 
respectively.

The datasets were handed by shuffled cross-validation and grouped cross-validation for training and model 
evaluation, as seen in Fig. 1. In terms of the shuffled cross-validation, the original dataset was split into training 
and cross-validation set (80%) and holdout set (20%) randomly. Models were built by training set and optimal 
hyperparameters were picked through grid search with fivefold cross-validation. The holdout set was seen and 
used only once for model evaluation. Thus, the holdout set was named as test data. Under circumstances that 

R2
= 1−

∑n
i=1(yi − ui)
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Figure 1.   Schemes for (a) shuffled cross-validation and (b) grouped cross-validation.
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the train and test set follow the same probability distribution, the holdout method can provide the most accu-
rate metrics for unseen data, since the metrics obtained from validation set contain bias from hyperparameter 
optimization62. Besides shuffled cross-validation, the dataset was grouped by unique interfaces (film-interlayer-
substrate). Every group contain ~ 20% dataset with some specific interfaces, which is different among these 
groups. Thus, no identical interface exists in more than one groups. In such case, data among these groups may 
follow different probability distribution. So the fivefold cross-validation was applied to evaluate model perfor-
mance. R2 and RMSE were used as metrics in cross-validation.

Table S1 and S2 in supporting information summarize the grid search space and final hyperparameters picked 
for various models. Please refer to the github link (https​://githu​b.com/descr​iptor​-selec​tion-ITR/Descr​iptor​-Selec​
tion-for-Predi​cting​-Inter​facia​l-Therm​al-Resis​tance​-by-Machi​ne-Learn​ing-Metho​ds) for more details. Fivefold 
cross-validation was selected because our original dataset was less than 1000 samples. For such small datasets, 
fivefold cross-validation generally gives better results. Lower fold cross-validation can’t train the models well, 
while higher fold cross-validation allocates few data to test set, making testing results not representative. R2 and 
RMSE of predictions from test set were used to evaluate the performance of models.

All analysis were conducted in Scikit-lean package63. The StandardScaler and MinMaxScaler package was 
used for data preprocessing, DecisionTreeRegressor, KernelRidge, and GaussianProcessRegressor package for 
the three algorithms mentioned above, and SelectKBest and f_regression for univariate descriptor selection.

Results and discussion
Descriptors selected by decision tree.  Dataset was treated firstly by shuffled cross-validation with an 
ideal assumption that all data follow the same probabilistic distribution, as seen in Fig. 1a. Descriptor selection 
plays a critical role in building robust and computationally-cheap models. For dataset whose size is not large, 
descriptor selection is helpful to prevent overfitting and provide insight into which properties are most impor-
tant for targets. Here, decision tree (DT) was applied to train an ITR prediction model and get the descriptor 
importances. Figure 2a shows the descriptors with the top10 highest importances (Top10-DT), which occupy a 
total importance of more than 98%. Among them, the film melting point has a high importance of 51%, and the 
top4 descriptors possess importance around 88%. Table 1 presents all the descriptors and their corresponding 
importances. Interestingly, only 20 out of 35 descriptors are selected by decision tree, indicating the existence 
of uninformative inputs. The descriptors for traditional AMM and DMM include temperature, density, speed 
of sound (longitudinal and transverse), and unit cell volume. It is worth noting that temperature, density and 
unit cell volume are all in the Top10-DT. Meanwhile, speed of sound (longitudinal and transverse) has a Pearson 
correlation coefficient as high as 0.71 with the melting point9, while melting point is the most important descrip-
tor according to decision tree. Therefore, useful descriptors confirmed by AMM and DMM are all selected as 
important descriptors by decision tree successfully. As shown in Fig. 2a, heat capacity and film thickness also act 
as significant descriptors. The relationship between film thickness and ITR has been observed by experiments 
and simulations in previous studies64,65. The reason that heat capacity was selected is attributed to the relation-
ship between heat capacity and density. Figure 2b shows the correlation between experimental values and pre-
dicted values of test data from DT. It is observed that there are same predicted values for multiple experimental 
data (horizontal series of data in Fig. 2b). This phenomena occurs since decision tree takes the mean of samples 
located at the same leaf node as prediction. Thus, the data assigned to the same leaf node has the same predicted 
value. It is indicated that the DT built from all descriptors and top10-DT have comparable performance.

To verify the transferability of the descriptors selected by DT, kernel ridge regression (KRR), Gaussian process 
regression (GPR) and K-nearest neighbors (KNN) models were also built under different descriptor subsets. 
These subsets were named as topx-DT, presenting the descriptors with topx highest importances from DT, as 
shown in Table 1. Here, top20-DT, top15-DT, top10-DT, and top5-DT were applied as inputs together with all 
descriptors. Shuffled cross-validation was applied here. R2 and RMSE of the test data (holdout set) served as 

Figure 2.   (a) Descriptors with the highest 10 importances (Top10 descriptors). (b) Correlation between the 
experimental values and values predicted by all descriptors (violet dots) and top10 descriptors (red dots).

https://github.com/descriptor-selection-ITR/Descriptor-Selection-for-Predicting-Interfacial-Thermal-Resistance-by-Machine-Learning-Methods
https://github.com/descriptor-selection-ITR/Descriptor-Selection-for-Predicting-Interfacial-Thermal-Resistance-by-Machine-Learning-Methods
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the metrics for model evaluation. It is believed that the performance on holdout set is the most close to that of 
unseen data, since hyperparameter optimization may result in overfitting to validation set. Commonly, a higher 
R2 and lower RMSE indicate a better performance. The R2 and RMSE for both training set and test set could be 
found in Table S3 in supporting information. As seen in Fig. 3, DT with all descriptors shows a R2 of 0.85 and a 
RMSE of 11, which is comparable to the previous results8. Notably, the performance of DT doesn’t degrade with 
the reduction of descriptors. In terms of KRR and GPR, the performance is as good as DT until top10-DT. When 
the descriptors size decreases further to 5, the performance of KRR and GPR degrades sharply. The performance 
of KNN model is not as good as the others. Overall, the top10-DT have a total importance of more than 98%, 
which include the properties used for AMM and DMM. These 10 descriptors have a good transferability from 
DT to other machine learning models, such as KRR and GPR.

Descriptors selected by univariate testing.  To cross validate the descriptors selected by decision tree, 
univariate selection (UV) was applied. The UV is a totally different algorithms compared with decision tree 
selection. It filters descriptors based on statistical test. In this work, F-test estimating the degree of linear depend-
ency between descriptor and targets was used. 10 and 20 out of 35 total descriptors were selected by univariate 
testing, as shown in Table S4 in supporting information. Figure 4 is the Venn diagram showing the amount of 
common descriptors for top 20 and top 10 descriptors selected by DT and UV. Obviously, there are 15 common 
descriptors out from 20 picked by both DT and UV. 10 descriptors are never selected. For the top10-DT and 

Table 1.   Descriptor importances from decision tree.

Descriptor Importance Remarks

1 fmelt 5.10× 10
−1

interlayer: 1 (exist) or 0 (absent)
T: temperature (K)
fthick: film thickness (nm)
The following columns are labeled for film and substrate by f and s in the front, respectively. (e.g. 
fheatcap and sheatcap)
heatcap: specific heat capacity (J/gK)
melt: melting point (K)
density (g/cm^3)
unit: Volume per formula unit (10^-29 m^3/f.u.)
R1: atomic ratio of the first element
R2: atomic ratio of the second element
AC: AC represents atomic coordinates defined from the periodic table. The group as the x coordinate 
and the period as the y coordinate as (ACix, ACiy), where i represents the order of the elements of the 
compound
ENc: electronegativity for cation
ENa: electronegativity for anoin
IPc: ionic potential for cation
IPa: ionic potential for anion
Eb: binding energy (eV/f.u.)
mass (u)

2 fthick 1.83× 10
−1

3 sheatcap 1.06× 10
−1

4 fheatcap 7.94× 10
−2

5 sdensity 2.49× 10
−2

6 funit 2.41× 10
−2

7 sAC1y 2.14× 10
−2

8 T 1.66× 10
−2

9 sENc 1.37× 10
−2

10 sunit 8.93× 10
−3

11 interlayer 4.50× 10
−3

12 fAC1x 3.07× 10
−3

13 fEb 3.02× 10
−3

14 sAC2x 5.73× 10
−4

15 fIPa 5.34× 10
−4

16 sIPc 4.48× 10
−4

17 fENc 2.33× 10
−4

18 sR1 3.47× 10
−5

19 smelt 2.92× 10
−5

20 fdensity 1.65× 10
−7

21 fmass 0

22 sEb 0

23 smass 0

24 fAC1y 0

25 fAC2x 0

26 fAC2y 0

27 fIPc 0

28 sAC1x 0

29 sAC2y 0

30 sIPa 0

31 fR1 0

32 fR2 0

33 fENa 0

34 sR2 0

35 sENa 0

Total 1
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top10-UV, there are 5 common. The details of the 15 and 5 common descriptors are shown in Table 2. The 5 com-
mon descriptors for top10-DT and top10-UV include the melting point, heat capacity, unit and electronegativity.

Performance of models built by the 15-common descriptors (Top15-DTUV) and 5-common (Top5-DTUV) 
descriptors were evaluated by R2 and RMSE under shuffled cross-validation. (Fig. 5) The same as the previous 
part, performance here is for the test data (holdout set). And train set performance is listed in Table S5 in sup-
porting information. Unlike the descriptors selected by DT only, the descriptor reduction conducted by both 
DT and UV show a much more stable performance. The R2 of KRR improves from 0.62 to 0.77 by applying the 
top5-DTUV instead of top5-DT. And the R2 of GPR and R2 of KNN improves from 0.74 to 0.82 and from 0.65 
to 0.78 by the same way. At the same time, the RMSE of KRR, GPR and KNN decreases with the utilization of 
top5-DTUV. Therefore, descriptors selected by a combination of decision tree and univariate testing are more 
reliable than that selected by only one algorithm.

Figure 3.   R2 (a) and RMSE (b) of test data (holdout set) predicted by models built by different descriptors 
subsets under shuffled cross-validation.

Figure 4.   Venn diagram showing the amount of common descriptors picked for both decision tree and 
univariate testing.

Table 2.   Common descriptors selected by decision tree and univariate testing.

Descriptors

Top15-DTUV
fmelt, fthick, funit, fheatcap, fdensity,
fEb, fENc, fAC1x, T,
smelt, sunit, sheatcap,
sAC1y, sENc, sIPc

Top5-DTUV fmelt, fheatcap, funit, sheatcap, sENc
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Model performance by grouped cross‑validation.  Beside shuffled cross-validation applied above, 
grouped cross-validation was investigated. The dataset was split by substrate/interlayer/film systems to guar-
antee that no identical interface exists in more than one group. Every group includes several distinct interface 
systems, ~ 20% of which serves as the validation set. In this case, it is not appropriate to have holdout set since no 
individual group can represent the others. Figure 6 shows the performance of models built by different descrip-
tors set. The models RMSE for grouped cross-validation is not as good as that of random validation, which is 
not surprising since the information from many interfaces in validation set is not seen and learnt by machine 
learning models. Figure 6 shows RMSE values here are around 17 ~ 25, still lower than that from AMM and 
DMM models, which are 121 and 919, respectively, confirming the superiority of our models built by grouped 
cross-validation.

As shown in Fig. 6, DT is best and the most robust among these models. For KNN and KRR, the descriptors 
selected by both DT and UV show much stable performance than descriptors selected by DT only, which is con-
sistent with the conclusions drawn from shuffled cross-validation. In sum, shuffled cross-validation and grouped 
cross-validation were both performed in our work. In both systems, the common descriptors from decision tree 
and univariate testing are more reliable than that selected by only one algorithm. And the selection methods 
result in concise models with relatively good performance but much lower dimensions.

Although machine learning processes are hard to be understood intuitively, our findings (top5-DTUV) can 
be explained by classic theories and are well supported by experimental results documented in the literature. 
For example, melting point directly affect Lennard–Jones interatomic potential by the following equations in 
molecular simulations66,67:

Tm ∝ ε

Figure 5.   R2 (a) and RMSE (b) of test data (holdout set) predicted by models built by all descriptors, 15 
common descriptors, and 5 common descriptors under shuffled cross-validation.

Figure 6.   (a) RMSE of validation set by models built by descriptors selected by decision tree under grouped 
cross-validation. (b) RMSE of validation set by models built by common descriptors selected by decision tree 
and univariate testing under grouped cross-validation.
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where Tm is the melting point, ε is the well depth, σ is the distance at which the intermolecular potential equals 
to 0, r is the real distance of both particles. Additionally, phonon transport is a dominating mode in thermal 
transport of nanostructured devices. Capacity ( CV ) is a key value when calculating phonon mean free path ( lph ) 
based on kinetic theory68:

where vm is the average sound speed, kL is the lattice thermal conductivities. In other words, the effect of heat 
capacity on ITR is realized by affecting the phonon transport in nanostructured devices. The effect of electron-
egativity on ITR varies in different material systems. Thus, the analysis has to be on a case-by-case basis. Overall, 
electronegativity is always one of the most important factors in both theoretical and experimental exploration 
of ITR among various material systems69–71.

Conclusions
In conclusion, descriptors selection for ITR prediction was conducted utilizing machine learning methods. 
Decision tree and univariate testing were applied to determine the important descriptors. Decision tree, kernel 
ridge regressor, Gaussian process regressor, and K-nearest neighbors were utilized to build models. Dataset 
was treated by shuffled cross-validation and grouped cross-validation. Performance of different algorithms and 
descriptors subsets were evaluated by R2 and RMSE. All models demonstrated relatively good performance 
when reducing all descriptors to top10-DT, indicating the validity of these selected descriptors. Furthermore, 
the 5 common descriptors selected both by top10-DT and top10-UV have a higher prediction accuracy than 
descriptors selected only by DT. These descriptors selected by machine learning methods based on big data 
collected from real experiments agree with properties affecting ITR heavily from a physical point of view. The 
characteristic selection methods by machine learning algorithms can not only be used for ITR prediction but 
also determining important descriptors for other materials properties.
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