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BIRC5 is a prognostic biomarker 
associated with tumor immune cell 
infiltration
Linlong Xu1,5, Wenpeng Yu2,5, Han Xiao3* & Kang Lin4*

BIRC5 is an immune-related gene that inhibits apoptosis and promotes cell proliferation. It is highly 
expressed in most tumors and leads to poor prognosis in cancer patients. This study aimed to analyze 
the relationship between the expression level of BIRC5 in different tumors and patient prognosis, 
clinical parameters, and its role in tumor immunity. Genes co-expressed with BIRC5 were analyzed, 
and functional enrichment analysis was performed. The relationship between BIRC5 expression and 
the immune and stromal scores of tumors in pan-cancer patients and the infiltration level of 22 tumor-
infiltrating lymphocytes (TILs) was analyzed. The correlation of BIRC5 with immune checkpoints 
was conducted. Functional enrichment analysis showed that genes co-expressed with BIRC5 were 
significantly associated with the mitotic cell cycle, APC/C-mediated degradation of cell cycle proteins, 
mitotic metaphase, and anaphase pathways. Besides, the high expression of BIRC5 was significantly 
correlated with the expression levels of various DNA methyltransferases, indicating that BIRC5 
regulates DNA methylation. We also found that BIRC5 was significantly correlated with multiple 
immune cells infiltrates in a variety of tumors. This study lays the foundation for future research on 
how BIRC5 modulates tumor immune cells, which may lead to the development of more effective 
targeted tumor immunotherapies.

Cancer poses a severe threat to human health and has a high mortality rate. The three most common cancers 
among men are prostate, colon and rectum, and skin melanoma. Among women, breast, uterine body, and colon 
and rectum are the most prevalent cancers1. Early detection and effective treatment will improve the survival 
rates of cancer patients. Currently, the most common treatments for cancer are surgical resection, radiation 
therapy, and adjuvant chemotherapy, but their efficacy is still limited2. Immunotherapy has recently emerged as 
an effective cancer treatment option. Some of the newer approaches of immunotherapy include immune check-
point blockade and chimeric antigen receptor T (CAR T) cell therapy. These approaches have attracted much 
attention in cancer immunotherapy and are thought to cure various cancers3,4. BIRC5, also known as survivin, is 
an immune-related gene and member of the apoptotic (IAP) protein family. Overexpression of BIRC5 in cancer 
may inhibit this apoptotic checkpoint and favor aberrant mitosis of transformed cells5. In recent years, several 
studies have reported the role of BIRC5 in cancer6,7, but the role of BIRC5 in pan-cancer or its impact on the 
immune microenvironment has not been investigated.

Bioinformatics techniques were used in this study to predict BIRC5 affects the prognosis of pan-cancer 
and infiltration of immune cells in tumors. The relationship between BIRC5 and known immune checkpoints 
as well as the correlation of BIRC5 expression levels with the expression of four methyltransferases (DNMT1, 
DNMT2, DNMT3A, DNMT3B) in different tumors was also analyzed. GSEA enrichment analysis was conducted 
to reveal how BIRC5 regulates different tumors. The results provided strong evidence that BIRC5 might be an 
antitumor agent. Thus, BIRC5 can be considered an immune prognostic marker with potential application in 
immunotherapies.
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Result
Transcriptional levels of BIRC5 in pan‑cancer.  We collected transcriptome data from 33 tumor patients 
in the TCGA and GTEx databases, including 11,057 cases in the TCGA database and 5964 cases in the GTEx 
database (Fig. 1A). In the Oncomine database, we found that BIRC5 was highly expressed in 18 of the 20 tumor 
tissues included (Fig. 1B). Analysis of expression profiling data of tumor tissues and healthy tissues of patients 
with different cancers in the TCGA database revealed that BIRC5 was highly expressed in 21 out of 33 tumor 
tissues (Fig. 1C). The transcription levels of BIRC5 in different cancers were determined by joint analysis of pan-
cancer data in TCGA matched with normal samples in GTEx. Except for Leukemia, BIRC5 mRNA was highly 
expressed in all tumor tissues (Fig. 1D).

Prognostic value of BIRC5 in pan‑cancer.  The prognosis of each tumor sample in the TCGA database 
was analyzed to determine the effect of BIRC5 expression levels on the prognosis of patients with different 
tumors. The results showed that high expression of BIRC5 was positively correlated with poor overall survival 
in 15 tumors (Fig. 2A), poor disease-specific survival in 13 tumors (Fig. 2B) and poorer disease-free interval in 
patients with 8 tumors (Fig. 2C). It was positively correlated with poorer progression-free interval in 15 tumors 
(Fig. 2D). Taken together, these results showed that high expression of BIRC5 correlated with poor prognosis in 
patients with KIRP, LIHC, LUAD, MESO, and PAAD (Fig. 2E-H).

The relationship of BIRC5 with clinicopathological features.  The relationship between BIRC5 
expression levels and the clinicopathological characteristics of patients with different tumors was analyzed based 
on stage pathology grade, tumor mutation burden (TMB), and microsatellite instability (MSI) status of tumor 
samples from the TCGA database. Results showed that in the vast majority of tumors, the higher the stage grade, 
the higher the expression level of BIRC5 in patients (Fig. 3A). Moreover, the expression level of BIRC5 in 24 
tumors such as ACC, UCEC, STAD, SKCM, and SARC was significantly correlated with TMB (Fig. 3B), whereas 
it was significantly correlated with MSI in 10 tumors such as UCS, UCEC, STAD, and SARC (Fig. 3C). Therefore, 
BIRC5 may be a prognostic marker for multiple tumors.

The relationship between BIRC5 and the tumor microenvironment.  The estimate package was 
used to analyze the immune score and stromal score of each tumor sample and determine the relationship 
between BIRC5 expression level, immune score, and stromal score in 33 tumors. Results showed that the 
immune scores of KIRC, THCA, and THYM were positively and negatively correlated with BIRC5 expression 
levels, while those of ESCA, GBM, LUSC, STAD, and UCEC were negatively and positively correlated with 
BIRC5 expression levels (Fig. S1A). By contrast, the stromal scores of BIRC, COAD, GBM, HNSC, LIHC, LUAD, 
LUSC, SARC, SKCM, STAD, THY, and UCEC were significantly negatively correlated with the expression level 
of BIRC5 (Fig. S1B).

The association of BIRC5 with tumor immune cell infiltration levels.  Given that immune infiltrat-
ing cells play a significant role in cancer development, we investigated the relationship between BIRC5 expres-
sion levels and immune cell infiltration in different types of cancers. Data on the scores of 22 immune infiltrat-
ing cells from 33 cancers were downloaded from the TIMER (https​://cistr​ome.shiny​apps.io/timer​/) database. 
Using these data, the correlation between BIRC5 expression levels and infiltration levels of these immune cells 
was analyzed separately. High BIRC5 expression in KIPP was positively correlated with the infiltration levels of 
macrophages M1, NK cells activated, T cells CD4 memory activated, T cells follicular helper, and macrophages 
M2, NK cells activated, T cells CD4 memory activated, and T cells follicular helper. High BIRC5 expression in 
KIPP was negatively correlated with the infiltration level of B cells naïve, macrophages M0, T cells follicular 
helper, and NK cells. High expression of BIRC5 in LIHC was positively correlated with the infiltration level of 
macrophages M0, T cells follicular helper, and negatively correlated with the infiltration level of B cells naïve, 
macrophages M2, NK cells resting. High expression of BIRC5 in LUAD was positively correlated with infiltra-
tion levels of macrophages M0, macrophages M1, NK cells activated, T cells CD4 memory activated, T cells 
CD8, and dendritic cells resting, mast cells resting, and T cells CD4 memory resting were negatively correlated. 
High expression of BIRC5 in PAAD was negatively correlated with the infiltration level of monocytes (Fig. 4). 
Furthermore, we found that high expression of BIRC5 in different types of tumors was positively correlated with 
the activation of multiple immune cells and negatively correlated with the resting state of immune cells (Fig. S2).

Functional enrichment analysis of BIRC5.  To investigate the molecular mechanisms through which 
BIRC5 regulates various cancers, we constructed a protein–protein interaction (PPI) network (Fig. 5A) of 30 
BIRC5-associated proteins using the STRING database. Functional enrichment analysis showed that the 30 
BIRC5-associated proteins were mainly enriched in the cell cycle, mitotic, APC/C-mediated degradation of cell 
cycle proteins, mitotic metaphase, and anaphase (Fig. 5B). Tumor immunotherapy controls and clears tumors 
by reactivating and maintaining the tumor-immune cycle and restoring the body’s normal antitumor immune 
response. Here we analyze the relationship between BIRC5 expression levels and the expression of immune 
checkpoint genes using more than forty common immune checkpoint genes. The results showed that BIRC5 
expression levels correlated with several immune checkpoint genes in different types of tumors (Fig. 6A). DNA 
methylation is a form of chemical modification of DNA that can affects gene expression without altering the 
DNA sequence. It can also cause changes in chromatin structure, DNA conformation, DNA stability, and the 
manner in which DNA interacts with proteins, thereby regulating gene expression. Here we analyzed the correla-
tion between the expression level of BIRC5 and the expression of four methyltransferases (DNMT1, DNMT2, 
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Figure 1.   The expression level of BIRC5 in cancer patients. (A) The number of normal tissue samples and 
cancer tissue samples of 33 kinds of cancer patients in TCGA database, and the number of normal tissue 
samples of 33 kinds of tumors in GTEx database. (B) The difference of BIRC5 expression between cancer 
tissues and normal tissues of patients with 20 kinds of cancers in Oncomie database. (C) The difference of 
BIRC5 expression between cancer tissue and normal tissue in 33 kinds of cancer patients in TCGA database. 
(D) The difference of BIRC5 expression between cancer tissue and normal tissue of 33 kinds of cancer patients 
was analyzed by TCGA and GTEx database. *P < 0.05. *P < 0.01. *P < 0.001. The figure was performed using R 
version 3.6.1 (2019-07-05)46.
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Figure 2.   The relationship between the expression of BIRC5 and the prognosis of patients with 33 kinds 
of cancers in TCGA database. (A) Overall survival. (B) Disease-specific survival. (C) Disease-free interval. 
(D) Progression-free interval. Five kinds of tumors whose prognosis is most related to the difference of 
BIRC5 expression including (E) Overall survival, (F) Disease-specific survival, (G) Disease-free interval, (H) 
Progression-free interval. The figure was performed using R version 3.6.1 (2019-07-05)46.
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DNMT3A, and DNMT3B) in different tumors. The results showed that the high expression of BIRC5 was cor-
related with the expression of methyltransferase in tumors except UCS and READ. (Fig. 6B). In further analysis, 
we divided tumor samples into two groups based on the median expression of BIRC5. GSEA analysis showed 
that high expression of BIRC5 promoted chromosome activity, DNA binding specification transcription pro-
cess, epidermal development, ncRNA transcription pattern in KIRP. It promoted keratinization, mRNA binding, 
olfactory receptor activity, RNA binding in posttranscriptional gene silencing, and sensory perception of smell 
in LIHC. It promotes epidermal cell differentiation, epidermal development, forebrain development, olfactory 

Figure 3.   The relationship between BIRC5 expression level and pathological characteristics of tumor patients 
the relationship between. (A) BIRC5 expression level and Stage grade of cancer patients the relationship 
between. (B) BIRC5 expression level and Tumor mutation burden (TMB) in cancer patients the relationship 
between. (C) BIRC5 expression level and microsatellite instability (MSI) in cancer patients. *P < 0.05. *P < 0.01. 
*P < 0.001. The figure was performed using R version 3.6.1 (2019-07-05)46.
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receptor activity, and sensory perception activity in MESO. However, high expression of BIRC5 inhibits the 
proliferation of endothelial cells, odorant binding, olfactory receptor activity, protein localization of cell surface, 
sensory perception by cell surfaces, and perception of smell in LUAD. It inhibits the action potential, endothelial 
cell migration, multicellular organismal signaling, negative regulation of blood endothelial vessels, active pre-
synaptic zone in PAAD (Fig. 6C). BIRC5 affects the development in different tumors through diverse pathways 
(Fig. S3), and thus it has the potential to serve as a molecular marker in different tumors.

Discussion
In this study, BIRC5 was highly expressed in all solid tumor tissues. These findings are consistent with those 
reported in a previous study8. Furthermore, BIRC5 expression was relatively high in advanced tumor stages in 
KIRC, KIRP, LIHC, LUAD and UCEC, and relatively low in advanced tumor stages in STAD. In KIRC, STAD, and 
UCEC, BIRC5 expression was higher in advanced tumor stages. Several studies have confirmed the prognostic 
role of BIRC5 in a variety of tumors. Su et al. investigated the role of BIRC5 in hepatocellular carcinoma and 
reported that octamer-binding transcription factor 44 (OCT4) enhanced the expression of BIRC5 via cyclin D1 
(CCND1). This promoted the proliferation of hepatocellular carcinoma cells and reduced their susceptibility 
to chemoradiotherapy, leading to poor prognosis9. BIRC5 is highly expressed in lung cancer and enhances the 
prognostic value of platinum-based therapies by decreasing BIRC5 expression10. High expression of BIRC5 is 
associated with poor prognosis in patients with hepatocellular and pancreatic cancer, lung cancer, renal papil-
lary cell carcinoma, renal clear cell carcinoma, endometrial carcinoma, and sarcoma. However, patients with 
gastric and ovarian serous cystic carcinoma have been reported to have a better prognosis. Therefore, BIRC5 is 
an important prognostic biomarker for these tumors.

A study by T A Chan et al. found that TMB can be used as an immunotherapy biomarker and that high TMB 
can benefit immune checkpoint blockade (ICB) therapy11. Our study found that high expression of BIRC5 was 
significantly associated with TMB and high MSI in a variety of tumors, and correlation studies have also shown 
that BIRC5 expression levels correlate with the mutational load of breast cancer12. High Survivin expression in 

Figure 4.   The relationship between the expression level of BIRC5 and the infiltration level of different kinds of 
immune cells in cancer patients. The figure was performed using R version 3.6.1 (2019-07-05)46.
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the presence of high MSI is an indicator of poor prognosis of FIGO stage I endometrial-like adenocarcinoma13. 
High expression of BIRC5 may contribute to breast tumor proliferation by promoting genetic instability14. These 
are consistent with our study so that in other tumors, BIRC5 is associated with the relationship between TMB and 
high MSI that deserves further study. The association of BIRC5 with TMB and MSI found in our study is novel 
in various tumors. BIRC5 has potential as a therapeutic target for ICB in cancer patients, and the relationship 
between BIRC5 and high TMB and high MSI warrants more in-depth study.

DNA methylation is a form of chemical modification of DNA, which changes the genetic expression without 
altering the DNA sequence. DNA methylation cause changes in chromatin structure, DNA conformation, DNA 
stability, and DNA–protein interaction, and hence regulate gene expression and tumor development. It has been 
shown that the expression levels of DNA methyltransferase 1 (DNMT1), Dnmt3b and Dnmt1/Dnmt3a can regu-
late the methylation status of BIRC515. DNMT1 regulates BIRC516, and overexpression of DNMT 1 can induce 
DNA methylation after BIRC5 silencing17. However, the relationship between the expression levels of DNMT2, 
DNMT3A, DNMT3B, and BIRC5 has not been investigated. In our study, we found that the correlation between 
expression levels of DNA methyltransferase and BIRC5 varied in different tumors. Hence, further studies are 
needed to explore how BIRC5 regulate DNA methyltransferase.

In recent years, studies have shown that BIRC5 may be a universal target antigen for anti-cancer immuno-
therapy. In our study, we found that the expression level of BIRC5 was positively correlated with the activation 

Figure 5.   Potential molecular mechanisms and functional enrichment analysis of BIRC5. (A) The PPI network 
of BIRC5-related genes. (B) Functional enrichment Analysis based on BIRC5 interacting proteins. The figure 
was performed using R version 3.6.1 (2019-07-05)46.
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Figure 6.   The relationship between BIRC expression and immune related genes. (A) The correlation between 
BIRC5 expression level and immune checkpoint gene expression. (B) The relationship between the expression 
level of BIRC5 and 4 methyltransferases. (C) GSEA analysis of BIRC5 in five kinds of tumors whose prognosis is 
closely related to the expression of BIRC5. The figure was performed using R version 3.6.1 (2019-07-05)46.
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status of NK cells and CD4 T cells, but negatively correlated with the dormancy status of naive B cells, dendritic 
cells, CD4 T cells, and mast cells. Furthermore, results showed that down-regulation of BIRC5 severely affected 
tumor cells’ viability, indicating that it can be an important candidate for anti-cancer therapeutic vaccines18. We 
also found that it elicits CD8(+) T-cell-mediated responses in peripheral blood or tumor-associated lymphocytes 
from patients at different disease stages. BIRC5-specific T lymphocytes which recognize colorectal cancer cells 
and BIRC5-specific class I HLA-restricted T lymphocytes were activated and released interleukin 2 in response 
to HLA/ BIRC5-peptide complexes expressed by tumor cells. In addition to the CD8-mediated response, sur-
vivin specifically stimulated CD4+ in peripheral blood lymphocytes from the same patients’ T cell reactivity19. 
Asanuma et al. demonstrated that BIRC5 up-regulates FasL expression and enables cancer cells to suppress 
Fas-mediated apoptotic signals and attack immune cells by inducing FasL20. Macrophages play an essential role 
in tumors, and different subtypes of macrophages have different markers. CD68 and CD163 are surface mark-
ers of macrophage-M021. CD86 is an ideal marker of Macrophage-M122, while CD206 is a landmark antigen 
of Macrophage-M223. Our finding that BIRC5 expression in KIRP, LIHC, LUAD, and PAAD was significantly 
correlated with infiltration of multiple immune cells indicate that BIRC5 may be a potential immunotherapeutic 
target in these tumors.

Because BIRC5 is highly expressed in a variety of tumors, promote tumor progression, and influence immune 
cell status, researchers have used different means to target BIRC5 in cancer patients. Notably, it has been found 
that BIRC5-induced specific T-cell reactivity is strongly correlated with tumor response and patient survival, 
suggesting that vaccination with BIRC5-derived peptides is a promising therapeutic strategy for melanoma24. 
A vaccine designed against BIRC5 HLA class I peptide generated strong antigen-specific immune responses 
in ovarian cancer patients25. CTL activity and tumor growth inhibition was significantly enhanced in vivo in 
mice vaccinated with a combination of MUC1 and BIRC5 tumor gene vaccine. The CTL activity response was 
enhanced by nearly 200% and further enhanced by nearly 60% when combined with IL-2 adjuvant26. Liu et al. 
constructed a combination gene tumor vaccine from MUC1 and survivin (MS). The sPD1 / MS fusion DNA 
vaccine increased the specific cytolysis rate from 21.64 to 34.77%. In a mouse model of colorectal cancer, the 
sPD1/MS vaccine increased tumor suppression rate from 17.18 to 30.96% and prolonged the survival from 6.96 to 
19.44%. The combination of sPD1/MS vaccine and oxaliplatin increased tumor suppression to 74.71% in a mouse 
model of colorectal cancer. The sPD1/MS vaccine exhibited promising anti-tumor effects, increased levels of 
tumor-infiltrating CD8T cells by 6.5-fold (from 0.10 to 0.65%) in a mouse model of lung cancer. It also increased 
the level of tumor-infiltrating CD8T cells by 6.5-fold (from 0.10 to 0.65%) in a mouse model of colorectal cancer 
by potently activating the tumor-suppressing immune system. Lymphocytes show good immunogenicity and 
anti-tumor effects27. Targeting heterologous BIRC5 to mature dendritic cells in lymphoid tissues induced strong 
human and mouse survivin-specific CD4 T-cell responses28. Multiepitope cancer vaccines prepared against 
BIRC5 in recent years inhibit tumor growth and strongly suppress lung metastasis. We demonstrated that the 
vaccine-induced broad cellular immune responses, accompanied by T cell infiltration29. Several studies have 
shown that vaccines targeting BIRC5 have promising anti-tumor effects through different approaches.

The PPI network shows that BIRC5 energetically interacts with 30 genes (including CCNB1, CDCA8, FBXO5, 
PLK1, and UBE2C). This specific intrinsic link between BIRC5 and interacting genes may be crucial to their 
role in tumor progression. It may be possible that multiple genes interact to regulate tumor progression. Further 
functional enrichment analysis showed that BIRC5 and interacting genes are mainly involved in the cell cycle, 
mitosis, APC/C-mediated degradation of cyclins, PLK1 signaling pathway, and FOXM1 signaling pathway. In 
mammals, mitosis and apoptosis maintain a relative balance in the total number of cells normal tissue function. 
However, disturbing the balance leads to the possibility of tumor development30. It has been found that expres-
sion of both BIRC5 and Plk1 is out of control in cancer, and disruptions to survivin or PLK1 activity show many 
similarities, thus linking them in cell division and cell death31. Further studies have shown that PLK1 promotes 
phosphorylation of BIRC5 to allow proper chromosome segregation32, and that targeted inhibition of PLK1 and 
BIRC5 inhibits the proliferation of bladder cancer cells33. BIRC5 is a FOXM1 target gene, and loss of FoxM1 
induces cell death accompanied by decreased expression of the FOXM1 target genes BIRC5 and Bmi134. FOXM1 
overexpressing breast cancer cells displayed an anti-apoptotic phenotype due to up-regulated expression of XIAP 
and BIRC5 anti-apoptotic genes. Conversely, FOXM1 knockdown decreases XIAP and BIRC5 expression, as well 
as inhibits the binding of FOXM1 to the XIAP and BIRC5 promoter regions35.

Herein, we found that BIRC5 expression was elevated in the vast majority of tumors, with high expression 
levels positively correlating with shorter prognosis and level of immune cell infiltration in tumors. The study did 
not specifically address the molecular mechanisms associated with the marker genes, nor did it validate these 
targets using immunomodulatory drugs. However, the strength of this study is that it promotes the development 
of future immunotherapy research. In conclusion, this study shows that BIRC5 can be as a biomarker for use in 
the diagnosis and prognosis of cancers. The upregulation of BIRC5 in tumors was significantly and positively 
correlated with the level of activated tumor immune cells. This suggests an immunomodulatory role for BIRC5 
in tumor immunity. We found that BIRC5 expression levels correlated with methyltransferase expression levels 
in different types of tumors, and the association between immune checkpoints and BIRC5 in cancer shows its 
potential as a therapeutic target. However, these discoveries should be validated by extension to large-scale 
genomic and functional studies.

Materials and methods
Process public sequencing data.  Sequencing data for 33 tumors were downloaded from the TCGA (https​
://porta​l.gdc.cance​r.gov/) database for 11,057 samples (10,327 tumor samples and 730 matched paraneoplastic 
samples). We searched the ONCOMINE (https​://www.oncom​ine.org/) database for differences in tumor versus 
normal tissue expression of BIRC5 in common diseases, covering a total of 464 datasets from 20 tumor types 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.oncomine.org/


10

Vol:.(1234567890)

Scientific Reports |          (2021) 11:390  | https://doi.org/10.1038/s41598-020-79736-7

www.nature.com/scientificreports/

(not subdivided into tumor subtypes). Given that there were too few paracancerous samples in some tumors, 
and that the error of the results may be too large when analyzing these tumors, we introduced a total of 5964 
samples of healthy tissues and organs from the GTEx (https​://www.gtexp​ortal​.org/home/) database. However, 
there were still some tumors with missing matches or too few paraneoplastic samples, and these tumors were 
excluded from the calculation of the difference in expression of target genes in tumor and paraneoplastic tissue, 
such as DLBC, MESO, PCPG, SARC, THYM, and UVM. For the remaining tumor samples, we performed a 
Wilcoxon test after normalization to analyze whether there is a difference in expression of BIRC5 between these 
tumors and healthy tissues. P < 0.05 indicates a statistically significant difference in expression.

Correlation between BIRC5 expression and prognosis of tumor patients.  We downloaded the 
survival times information of 10,327 tumor samples from 33 tumors in the TCGA (including Overall survival, 
Disease-specific survival, Disease-free interval, and Progression-free interval). Collated and divided each tumor 
sample into two high and low expression groups according to the median BIRC5 expression value, analyzed the 
prognostic value of BIRC5 in each tumor using the Cox test, and plotted the BIRC5 risk ratio forest plot. Second, 
we calculated the prognostic value of BIRC5 using the Kaplan–Meier survival estimate method, with indicators 
of significant differences determined by a log-rank test. Comprehensive analysis of the results obtained by these 
two methods, only when the overall survival test P < 0.05 and the four survival states in the Kaplan–Meier chart 
meet the difference simultaneously, we believe that the expression of BIRC5 significantly affects the prognosis 
of the tumor.

Relationship between BIRC5 expression and tumor stage, TMB and MSI.  We downloaded the 
pathological Stage information of all the tumor tissue samples and divided them into 3–4 groups according to 
the staging, leaving 8099 samples after removing samples with incomplete information. The limma package36 
was used to calculate the expression of BIRC5 in each group and ggpubr package (https​://CRAN.R-proje​ct.org/
packa​ge=ggpub​r) was used to plot the box line plot of the relationship between genes and tumor stage. We 
downloaded mutation data from a total of 10,114 samples of these 33 tumors in TCGA and calculated the 
mutation score for each sample to obtain tumor mutation load information for each tumor. Finally, we used the 
Spearman correlation test to analyze the correlation between BIRC5 expression and TMB and used the fmsb 
package (https​://CRAN.R-proje​ct.org/packa​ge=fmsb) to create a correlation radar plot. We also downloaded 
and analyzed the MSI scores of 10,415 tumor samples, combined with the BIRC5 transcriptome data, and used 
the same method as above to plot the MSI correlation radar map between BIRC5 and tumors.

Correlation analysis between tumor microenvironment and BIRC5 expression levels.  Immune 
cells and stromal cells are the two main types of non-tumor components in the tumor microenvironment. They 
have been proposed to be have diagnostic and prognostic value in cancers37,38. ESTIMATE (https​://bioin​forma​
tics.mdand​erson​.org/publi​c-softw​are/estim​ate/)39 is a tool for predicting stromal and immune cell infiltration 
abundance and tumor purity in tumor tissues using gene expression data. Based on the expression profile matrix 
files of 11,057 samples from 33 tumors, we estimated the tumor purity according to the proportion of stromal 
and immune cells in each tumor sample by using estimate and limma packages sequentially after removing the 
normal samples. The stromal score, immune score, and estimate score were used to calculate tumor purity. We 
then combined the BIRC5 expression data and the tumor microenvironment score data, calculated their correla-
tions using the spearman correlation test, and plotted the correlations using the ggplot2 (https​://CRAN.R-proje​
ct.org/packa​ge=ggplo​t2), ggpubr, and ggExtra (https​://CRAN.R-proje​ct.org/packa​ge=ggExt​ra) package to map 
the correlation distribution.

Correlation analysis of immune cell infiltration and BIRC5 expression.  CIBERSORT (https​://
ciber​sort.stanf​ord.edu/)40 is a computational tool based on RNAseq data and used to estimate the relative per-
centage of infiltration of 22 immune cells (B cells naïve, B cells memory, plasma cells, T cells CD8, T cells CD4 
naïve, T cells CD4 memory resting, T cells CD4 memory activated, T cells follicular helper, T cells regulatory 
(Tregs), T cells gamma delta, NK cells resting, NK cells activated, Monocytes, Macrophages M0, Macrophages 
M1, Macrophages M2, Dendritic cells resting, Dendritic cells activated, Mast cells resting, Mast cells activated, 
Eosinophils and Neutrophils) in a tumor41. Similarly, based on the full tumor expression matrix file, after initial 
processing and correction with the limma package, we used the CIBERSORT algorithm in R software to calcu-
late the 22 immune cell infiltration scores for each sample in the tumor. After selecting the tumor samples, we 
used Spearman’s correlation test to analyze the correlation between the individual infiltration levels of the 22 
immune cells in the 33 tumors and BIRC5 expression.

Protein–protein interaction networks and gene enrichment analysis.  Having obtained results on 
the correlation of BIRC5 with the tumor microenvironment and immune cell infiltration, we sought to under-
stand the molecular mechanisms underlying their intrinsic association and their collective impact on the tumor. 
We constructed a network of 31 co-expressed genes, including BIRC5 in the STRING V11.0 (http://strin​g-db.
org)42 database. We analyzed their roles and mechanisms in tumors in the Metascape (https​://metas​cape.org/) 
database. Metascape is a reliable online analysis tool that provides a comprehensive annotated list of genes and 
resources for real-time analysis and is updated monthly43. Based on the annotated lists of KEGG Pathway (https​
://www.kegg.jp/kegg/kegg1​.html)44, GO Biological Processes, Reactome Gene Sets, Canonical Pathways, and 
CORUM, we enriched these genes into clusters. Terms with a P value < 0.01, a minimum count of 3, and an 
enrichment factor > 1.5 (the enrichment factor is the ratio between the observed counts and the counts expected 

https://www.gtexportal.org/home/
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=fmsb
https://bioinformatics.mdanderson.org/public-software/estimate/
https://bioinformatics.mdanderson.org/public-software/estimate/
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggExtra
https://cibersort.stanford.edu/)
https://cibersort.stanford.edu/)
http://string-db.org
http://string-db.org
https://metascape.org/
https://www.kegg.jp/kegg/kegg1.html
https://www.kegg.jp/kegg/kegg1.html
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by chance) are collected and grouped into clusters based on their membership similarities. P values are calcu-
lated based on the accumulative hypergeometric distribution.

Correlation of BIRC5 with known essential marker genes.  Having explored the relationship 
between BIRC5 and the tumor microenvironment and immune cell infiltration, we wanted to investigate the 
mechanism by which they are linked or associated with immune checkpoint genes. We synthesized 47 immune 
checkpoint genes from the literature and analyzed the correlation between BIRC5 expression and the expression 
of these immune checkpoint genes in 33 tumors sequentially using the limma package and spearman’s test. The 
reshape2 package (http://www.jstat​soft.org/v21/i12/) was used to create a correlation heat map. DNA methyla-
tion alters chromatin structure, DNA conformation, DNA stability, and the way DNA interacts with proteins 
without altering the DNA sequence alterations. Accordingly, we analyzed the correlation between the expression 
of BIRC5 and four methyltransferases (DNMT1, DNMT2, DNMT3A, and DNMT3B)45. The analyses were per-
formed in much the same way as described above. To determine the most significant Gene Ontology function 
of BIRC5 in each tumor, the tumors were grouped into high and low expression groups based on the expres-
sion level of BIRC5. The expression level of BIRC5 was then analyzed by limma, org.Hs.eg.db, clusterProfiler 
(http://bioco​nduct​or.org/packa​ges/relea​se/bioc/html/clust​erPro​filer​.html), and enrichplot package based on c5. 
all.v7.1.symbols background file to perform Gene Set Enrichment Analysis on the tumor expression matrix file 
and the top 5 most significant GOs were selected to plot enrichment curves. P < 0.05 was considered a significant 
difference criterion.

Statistical analysis.  The R version 3.6.1 software (https​://www.r-proje​ct.org/) and its ancillary packages 
were used for data analysis. Limma package and Student’s t-test were used to analyze BIRC5 expression, and 
P < 0.05 was considered statistically significant. Kaplan–Meier curves were used for survival analysis using the 
log-rank test, and P < 0.05 was considered statistically significant survival difference. Spearman or partial Spear-
man method was used to analyzing correlations between genes and correlations between genes and immune 
cells. P < 0.05 was considered statistically significant. All figures in this study were performed using R version 
3.6.1 (2019-07-05)46.

Data availability
These data are drawn from the following resources in the public domain. TCGA (https​://cance​rgeno​me.nih.gov/), 
GTEx (https​://www.gtexp​ortal​.org/home/), ONCOMINE (https​://www.oncom​ine.org/), STRING (https​://strin​
g-db.org/), Metascape (https​://metas​cape.org/). All data in this study were permitted for use.
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