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Multi‑level modeling with nonlinear 
movement metrics to classify 
self‑injurious behaviors in autism 
spectrum disorder
Kristine D. Cantin‑Garside1, Divya Srinivasan1, Shyam Ranganathan2, Susan W. White3 & 
Maury A. Nussbaum1*

Self-injurious behavior (SIB) is among the most dangerous concerns in autism spectrum disorder 
(ASD), often requiring detailed and tedious management methods. Sensor-based behavioral 
monitoring could address the limitations of these methods, though the complex problem of 
classifying variable behavior should be addressed first. We aimed to address this need by developing 
a group-level model accounting for individual variability and potential nonlinear trends in SIB, as a 
secondary analysis of existing data. Ten participants with ASD and SIB engaged in free play while 
wearing accelerometers. Movement data were collected from > 200 episodes and 18 different types 
of SIB. Frequency domain and linear movement variability measures of acceleration signals were 
extracted to capture differences in behaviors, and metrics of nonlinear movement variability were 
used to quantify the complexity of SIB. The multi-level logistic regression model, comprising of 12 
principal components, explained > 65% of the variance, and classified SIB with > 75% accuracy. Our 
findings imply that frequency-domain and movement variability metrics can effectively predict SIB. 
Our modeling approach yielded superior accuracy than commonly used classifiers (~ 75 vs. ~ 64% 
accuracy) and had superior performance compared to prior reports (~ 75 vs. ~ 69% accuracy) This 
work provides an approach to generating an accurate and interpretable group-level model for SIB 
identification, and further supports the feasibility of developing a real-time SIB monitoring system.

Abbreviations
ASD	� Autism spectrum disorder
SIB	� Self-injurious behavior
SMM	� Stereotypical motor movements
SaEn	� Sample entropy
RQA	� Recurrence quantification analysis
DFA	� Detrended fluctuation analysis
PCA	� Principal component analysis
MLR	� Multi-level logistic regression
LR-variable intercept	� Logistic regression with variable intercept only
LR-no variable terms	� Logistic regression without variable slopes or intercepts
LR-stepwise	� Stepwise logistic regression
LR-ind	� Participant-level logistic regression
SVM	� Support vector machine
DT	� Decision tree
kNN	� K-nearest neighbor
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Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disability marked by communicative, social, 
and behavioral impairments1. Self-injurious behavior (SIB), including head banging and self-hitting2, is reported 
in roughly half of people with ASD3–5. SIB is a leading cause of hospitalization among people with ASD and can 
lead to physical damage such as lacerations and contusions2,6. These behaviors can be repetitive or rhythmic, 
though behavior presentations vary widely2. Applied behavioral analysis thus suggests that caregivers perform 
a functional assessment (FA) to determine potential triggers of SIB7–9. To complete an FA, clinicians or trained 
caregivers observe and record details about events preceding, during, and following SIB9. Accuracy of an FA 
can suffer if caregivers are not adequately trained, though, and if events are recalled after they occurred10,11. 
Observations also can differ between caregivers and clinicians, and can be challenging to track consistently due 
to other stressors and contextual influences on behavior8,10,12–14. FAs require detailed observations and extensive 
note-taking on complex data, and these requirements lead to a time-consuming process15. Further, the behavior 
of interest may not occur during the observation period of an FA. The lack of SIB during an FA may be due 
to the time window of assessment or the absence of triggers in a specific environment16, which in turn may 
necessitate a repeated FA and add to the required completion time. Thus, traditional manual methods are often 
inefficient10,14–16, and as such do not support the widespread need for care across contexts.

An accurate SIB tracking system might overcome these challenges if the system could identify triggers and 
inform and evaluate management. Sensing technology has the potential to comprehensively, objectively, and 
accurately track movement for people with SIB, as supported by previous research on behavioral monitoring for 
non-SIB behaviors in ASD17–19. Nonwearable and wearable technologies, such as embedded camera systems or 
accelerometers in everyday items (e.g., cellphones), could record data continuously for SIB monitoring without 
requiring high levels of caregiver or clinician compliance19,20. Wearable accelerometers address limitations of 
nonwearable technology, such as restricted field of view and privacy concerns21,22, and were selected for the 
current study to reflect caregiver preferences from our previous work23. Caregivers in that work indicated a 
need for data collection methods applicable in school and at home, and they suggested that children with SIB 
would accept wearable technology if noninvasive, comfortable, and discrete attachment methods were possible. 
Accelerometers have also been shown to provide sufficient data to detect repetitive motions among individuals 
with ASD, with 80–97% accuracy using wrist and/or back sensors24,25, though use for SIB detection has not been 
previously explored.

In conjunction with wearable technology, SIB monitoring requires effective modeling. Earlier findings sup-
port the feasibility of tracking behaviors in ASD, specifically stereotypical motor movements (SMM) such as 
hand-flapping or rocking, which may relate to SIB and be similarly repetitive and rhythmic2. Machine learning 
classifiers applied to accelerometry data—including decision trees26, neural networks27,28, and support vector 
machines7—detected SMM with accuracies up to 99%. However, there is very limited extant evidence for SIB 
classification. Previous work on SIB detection, to our knowledge, is limited to two studies that either created 
classifiers from trained actors imitating aggressive behaviors18 or focused on SMM with one example that could 
be considered SIB29. The former study extended models that were trained on imitated movement to one child 
with SIB, and found that classification with individual accelerometry data yielded accuracies on the order of 
60–70%18. Classifiers may have had stronger performance if trained on natural data, (versus simulated SIB), 
and their generalizability is unknown when used on more than one participant with more than one behavior. 
One study also examined aggression towards others among youth with ASD30. Naturally-collected episodes of 
aggression were classified with high accuracy using physiological and movement sensors (area under the curve: 
AUC = 71–80 for individuals; AUC = 69 for group performance), though SIB was not included in the activities of 
interest30. Importantly, sensory aversions prevalent in SIB31 may preclude the physiological sensors that require 
skin contact, which were used in Ozdenizci et al.30, so other sensor and classification methods may be preferable 
for our application.

Classification models in earlier studies were typically specific to each participant, with training and testing 
completed on each individual18,29. When group-level models were employed, accuracy levels tended to decrease, 
for example from 80% for individual models to 69% for group-level models in Ozdenizci et al.30. Additionally, 
machine-learning based classification methods used in earlier studies (e.g., SVMs or neural networks) can have 
low interpretability, and other more accessible models should also be explored, such as regression30. Interpretable 
models could provide information about predictors of SIB onset, which would be particularly relevant for clini-
cians and caregivers seeking to manage this behavior (see Cantin-Garside et al.23, Dunlap et al.12 and Williams 
et al.9 for further discussion on the need to capture triggers of SIB). Multilevel regression models with varying 
intercepts and slopes could account for the variability among individual diagnoses of ASD and in presentations 
of behavior32,33, though such a model has yet to be applied to SIB.

In our previous study, we examined featureless classification methods to detect the presence of SIB and clas-
sify the type of SIB among individuals and groups of individuals with ASD34. Using data from wearable accel-
erometers as input, accuracy was up to 99.1% for individual models, and up to 94.6% for models specific to SIB 
type. However, the detection models that incorporated all participant data had substantially poorer performance 
(accuracy = 48.8%), likely due to the inter- and intra-individual variability in SIB and activity levels. The current 
study is a secondary analysis of data described in Cantin-Garside et al.34, and employed a multi-level modeling 
technique that includes motor variability features to address this limitation34.

Including additional features, such as metrics from movement variability, may optimize system performance. 
In general, variability can be described using linear measures included in SMM classification27, such as the stand-
ard deviation, as well as using nonlinear dynamics measures, such as entropy35. Linear measures of variability 
consider variability in systems to stem fundamentally from noise, and utilize statistical dispersion measures such 
as the standard deviation to quantify the variability in time-domain signals36. Nonlinear measures of variability, 
such as entropic and fractal measures, can quantify the temporal evolution of movement36. Dynamical systems 
theory suggests that human movement changes and evolves over time, as governed by a deterministic process37. 
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Dynamical systems analyses separate variability in a movement process into chaotic vs. deterministic variability 
components36,38. On the other hand, non-linear measures based in chaos theory and dynamical systems analysis 
consider the evolution of changes in a system over time.

Prior work classifying SMM in ASD has used time- and frequency-domain features25, or has focused on rela-
tively simple measures of variability such as the standard deviation and variance, with the latter yielding frequent 
false positives27. Nonlinear movement variability features could improve classification model performance by 
capturing the underlying variability in SIB movements39, even if the SIB changes between episodes. Dynami-
cal systems theory may be relevant to SIB, since nonlinear components were found in the temporal patterns of 
SIB, though differing within and between individuals40. More complex temporal patterns also emerged in the 
presence of SIB40, and recent work suggests that movements become increasingly complex as a child with ASD 
transitions to an episode of SIB41. This complexity can be captured by measuring nonlinear variability in the 
movements of individuals with ASD and SIB, as further explained below in the description of nonlinear motor 
variability metrics.

Prior work also has found that nonlinear measures, such as entropy, are indicative of diagnosis when applied 
to motor control in ASD. For example, children with ASD had decreased dynamical complexity during quiet 
stance compared to typically-developing children42,43, although people with stereotypy showed greater linear 
variability (standard deviation) during postural sway43. Given that they can distinguish between neurotypical and 
pathological movements, these methods could capture changes in pathology within an individual (i.e., detecting 
health changes such as early signs of aggression). Variability has also been associated with other pathological 
behaviors35,36,44 and the progression of health conditions45,46, and thus could reflect changing risk of SIB in ASD 
as well. To our knowledge, though, only one study employed a nonlinear approach (recurrence quantification 
analysis, described below) to classify motion in ASD, and found that the additional nonlinear features of move-
ment variability improved classification accuracy by 5–9%39. Although the analysis in Großekathöfer et al.39 was 
performed on SMM, their results could generalize to SIB, which is similarly repetitive and rhythmic.

In summary, SIB is one of the most dangerous behaviors in ASD, and a monitoring system could address 
the limitations of traditional tracking methods. Predictive modeling with features capturing nonlinear motor 
variability has the potential to provide superior performance vs. more traditional methods used in related ASD 
research. However, sensor-based behavioral monitoring for SIB has not yet been explored. A long-term goal of 
our research is to develop a real-time SIB monitoring system that can collect continuous movement data, alert the 
caregiver before SIB onset, and assist in management methods (e.g., redirecting the individual with SIB towards 
a different task). To this end, we aimed in the present study to develop an interpretable and generalizable model 
to classify a variety of behaviors among a range of participants, specifically by:

1.	 Utilizing dynamical systems theory to extract measures of nonlinear motor variability as features in an SIB 
prediction model

2.	 Building a multilevel logistic regression model with variable intercepts and slopes to account for inter-
individual variability

Materials and methods
Participants.  Data used here were obtained in Cantin-Garside et al.34 and are briefly summarized below, 
with additional information in Supplementary Material. Children with SIB and ASD were recruited through 
the university-affiliated psychology clinic and through the authors’ networks. Caregivers were pre-screened to 
confirm inclusion criteria: (1) children aged 5–14 years, reflecting heightened aggression in childhood47,48; (2) 
diagnosis of ASD; (3) SIB episodes > 3/hour, to ensure multiple episodes during the 1–3 h sessions; (4) fluency in 
English; and (5) home within driving distance of the noted Center. Note that the last inclusion criterion required 
non-representative convenience sampling. All adult participants provided informed consent, and qualifying 
children (> 7 years of age and of developmental level) provided assent before any data collection. Caregivers 
provided informed consent for their children who were younger than 18 years of age. The Virginia Tech Institu-
tional Review Board (IRB) reviewed and approved all experimental procedures. All experimental methods were 
completed in accordance with relevant guidelines and regulations.

Eleven participants (5–14 years, M = 9.5, SD = 3.0) and their caregivers completed the study. Sessions lasted 
35–147 min, providing more than 1000 min of data and > 200 episodes of SIB. Ten of the 11 participants exhib-
ited SIB (participants 1–4 and 6–11, denoted as “P#”) with 18 different types (Table 1). All participants wore the 
wrist sensor, and the limited sensor configurations of P1, P8, and P9 precluded the use of other sensors in the 
group-level model. To include all participants in one group-level model, only the wrist sensor was considered. 
In contrast, data from 2 to 6 tri-axial accelerometers (Table 1) were used in individual-level models.

Study overview.  After obtaining consent, the lead author, or the caregiver guided by the author, secured 
sensors on the child where tolerated. Demographic information was obtained, including potential SIB triggers 
identified by the caregiver. A trained clinical psychology doctoral candidate confirmed ASD diagnosis using 
standard tools (i.e., ADOS-2)49. The examiner was research reliable in administration and scoring of the ADOS-
2, and was supervised by a licensed clinical psychologist who was also reliable (SWW). Subsequently, movement 
sensors (see “Instrumentation”), video cameras, and 2–3 observing researchers monitored each child during 
free-play. Researchers instructed the caregivers to respond to SIB as if at home. If sufficient SIB episodes failed to 
occur during free play, caregivers had the option to prompt SIB in a controlled fashion with a commonly-used 
procedure (Standardized Observation Analogue Procedure, SOAP)50. The session ended when either: (a) > 3 
episodes of SIB were observed, or (b) participants or researchers stopped the session to prevent escalating behav-
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ior. At the end of the session, participants were compensated for their travel and time, and the children were 
presented with a selected toy.

Instrumentation.  Tri-axial accelerometers (ActiGraph GT9X Link, www.actig​raphc​orp.com) were used 
to track participant movement (sampling frequency = 60 Hz) throughout the session. Earlier work found that 
these particular sensors were both reliable and accurate when used with children and adolescents51 for tracking 
movement among both pathological and healthy populations52. A maximum of six sensors were placed on/in 
the wrists, waist, pockets, and ankles as accepted by the participant. Sensor choice and placement reflected prior 
research that found high reliability and high accuracy when classifying activities with movement sensors on 
either the wrist or torso25,52,53. Ankle sensors were also included as potentially necessary to capture lower-body 
injurious behaviors18. Three Go-Pro cameras and an overhead camera recorded videos for each child as “ground 
truth”.

Table 1.   Participant identifier, type of SIB shown during the session, total duration (seconds), and sensors 
worn. The wrist sensor was commonly worn among all participants.

Behavior(s)* Total duration (s) Sensors worn

P1

Repeated foot to surface (1) 13
Wrist, waist (part 1)
Wrist, waist, pockets, ankle (part 2)Repeated hand to surface (2) 6

Head hitting –with object (3) 20

P2
Finger picking (picking skin off of fingers) (4) 87

Wrist, waist, pockets, ankles
Scratching (5) 28

P3
Heel to surface (1) 66

Wrist, waist, pockets, ankles
Hand to surface (2) 7

P4

Self-biting (hands, arms) (9) 301

Wrist, waist, pockets, ankles

Self-hitting (10) 80

Pulling teeth (11) 33

Eye-gouging (jabbing eye with hand) (12) 79

Jabbing pelvic region (13) 16

Jabbing throat – location of prior tracheotomy (14) 46

Hitting chin/jaw with heel of hand (15) 66

P6

Foot to surface (1) 2

Wrist, waist, pockets, ankles

Hand to surface (2) 15

Repeatedly pulling on teeth using string/object (17) 256

Blowing on fingertips (16) 322

Spinning (18) 155

Flapping (19) 14

Jumping/flapping arms (20) 25

Jump/spin (21) 6

P7 Finger picking (4) 322 Wrist, waist, pockets, ankles

P8

Foot to object (1) 2

Wrists, pocketsHand to surface (2) 4

Throwing body against object or surface (6) 22

P9

Finger picking (4) 229

Wrist, waist, anklesLip picking (picking skin off of lip) (7) 13

Head to wall (8) 14

P10

Hands to surface (2) 9

Wrist, waist, pockets, ankles

Finger Picking (4) 9

Scratching (5) 2

Head to wall (8) 20

Self-biting (9) 39

Self-hitting (10) 4

Eye-gauging (12) 58

Pulling ear (22) 209

Flapping (19) 5

P11
Finger picking (4) 97

Wrist, waist, pockets, ankles
Hair pulling (23) 73

http://www.actigraphcorp.com
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Data processing and analysis.  Sensor data were exported into MatLab (R2018a, MathWorks), which was 
used for data analysis and modeling (using an Intel, dual-core, 2.9 GHz CPU). Accelerometer data were labeled 
as non-SIB events (0) or SIB (1) using the ground truth video data and annotations from in-session observa-
tions. Before the session began, members of our research team discussed the SIB that parents described during 
pre-screening. Behaviors were defined by watching the children individually and captured by terms provided by 
their caregivers (e.g., eye-gouging). Members of our team also discussed behaviors observed in sessions, both 
during and after the session, for consensus building. Behavioral definitions were further clarified prior to data 
labeling. Multiple researchers annotated and discussed the video data before labeling raw accelerometry files (see 
Fig. 1 for an overview of the modeling process, and Cantin-Garside et al.34 for details on consensus-building for 
SIB labels)34.

Raw sensor data were filtered using a 4th order, low-pass, recursive Butterworth filter, with a cutoff frequency 
of 20 Hz. Filtered data were used to obtain time- and frequency-domain features. Based on prior work54,55, raw 
data were used for extracting features of nonlinear motor variability (see “Derivation of nonlinear metrics of 
motor variability”). For continuous analysis of discrete data, all data were segmented into 2-s sliding windows 
with a 1-s overlap7,27. This short time window was used to minimize delays, which was considered important for 
real-time monitoring and reflects the potential for relatively short “bursts” of SIB.

Feature extraction.  Three sets of features were extracted: (1) features in the time-domain; (2) features in 
the frequency-domain; and (3) nonlinear metrics based on chaos theory and dynamical systems. As discussed 
above, the use of time- and frequency-domain features is supported by prior findings on classifying SMM7,18,22,27, 
with nonlinear motor variability features included to capture the dynamical complexity of motion and to improve 
classifier performance56,57. Table 2 lists the features extracted for each channel. The presence (1) or absence (0) 
of a prompt to instigate SIB (from SOAP) was also included initially during feature selection (see “Feature selec-
tion”); all caregivers except for Participant 4 opted to use SOAP at least one time during their session.

Derivation of nonlinear metrics of motor variability.  Nonlinear metrics of motor variability were extracted by 
first reconstructing the phase space of the raw sensor data36,58. Phase space represents the states (“state space”) 
of dynamical system behavior in a plot, and this reconstruction involves creating M copies of the original time 
series x , where M is the embedding dimension, using a time delay (τ )36,59. Time delay was determined using 
two methods: (1) the first minimum of the average mutual information function60,61; (2) the delay when the 
time series autocorrelation was less than e-156,62. Time delay was determined using both methods separately for 
SIB and non-SIB events (see36,56,59 for additional details). The selected τ was the value for which both methods 
converged, and was similar for both SIB and non-SIB ( τ = 5) . The resulting embedding dimension (M) was 4, 
derived from the global false nearest neighbor analysis method61,63. Both τ and M values here are similar to prior 
work on the nonlinear variability of human motion61. State space was reconstructed as embedding vectors X(t) 
in the form:

ASD

1-6 tri-axial 

accelerometers

3-18 channels of 

accelerometry data
Feature 

extraction 

(96 total 

features)

Regression 

model
Observational data 

for SIB event

Feature 

selection 

(lasso, 

PCA)

Event Label 

non-SIB = 0

SIB = 1

Figure 1.   Overview of the data analysis and modeling process.

Table 2.   Time, frequency, and nonlinear motor variability features.

Feature type Time domain Frequency domain Nonlinear motor variability

Number of features 19 features × 3 channels = 57 features 4 features × 3 channels = 12 features 9 features × 3 channels = 27 features

Features

Channel cross-correlation coefficient
Mean difference between channels
Variance
Local Minima Count
Local Maxima Count
Peak
Minimum
Percentiles from amplitude probability distribution: 1, 10, 25, 
50, 75, 90, 99
Zero Crossings
Average
Root mean square (RMS)
Jerk

First two frequencies of FFT
First two corresponding amplitudes

Detrended fluctuation analysis (DFA):
 Exponent (α)
Entropy:
 Sample entropy
 Cross sample entropy
Recurrence Quantification Analysis Metrics (RQA):
 Recurrence
 Determinism
 Laminarity
 Divergence
 Maximum diagonal length
 Trapping time
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such that t = 1, . . . ,N − (M − 1) . Delay reconstruction was used to create the phase space, which produced 
consistent results in other work61. The parameters described below were then calculated using the reconstructed 
phase space.

Entropy.  Sample entropy (SaEn) was used to quantify the complexity of the acceleration signals, with low val-
ues indicating low complexity56,64,65. SaEn was calculated using the following steps:

1.	 Compute CM
t (r) =

{

numberofX(i)suchthat||X(t)− X(i)||∞ ≪ r
}

,where C is the probability that the vector 
X(i) is within the tolerance threshold, r = 0.2 ∗ STDDEV(x) of X(t), M is the embedding dimension, and 
t  = i

2.	 Find φM(r) =
∑N−M+1

t=1
CM
t (r)

N−M+1 , which is the average of CM
t (r)where N is the number of data points from 

the signal.
3.	 Calculate SaEn = −ln φM+1(r)

φM (r)

Cross‑sample entropy.  Cross-sample entropy has not been explored in models classifying ASD motion, though 
was determined here between each sensor channel and used in our feature set. Cross-sample entropy parallels 
SaEn in its estimation, but examines the difference between one data stream and another data stream56,66. Lower 
values imply similarity and synchronicity between the two data streams64.

Recurrence quantification analysis.  Recurrence quantification analysis (RQA) was performed with a MatLab 
toolbox67,68 to evaluate phase space predictability and intermittency56,69. An RQA map is first constructed through 
a distance matrix comparison. A distance matrix (DM) consists of elements ( DMij ) that are Euclidian distances 
( DMij = d[X(i),X

(

j
)

] ) between embedding vectors X(i) and X
(

j
)

56. DMij elements are then compared against 
a threshold determined by recurring dynamical trajectories, with elements = 1 for DMij< threshold, indicating 
recurrent points returned to a previous location, and = 0 otherwise39,56. The selected threshold guarantees that 
the percentage of recurrent points remains within 0.1–2% of the total recurrent elements56. RQA can be evalu-
ated using several measures56,69,70, with the following selected as reliable for human subject research56,66,69–71:

1.	 Recurrence—regularity of the time series as the percentage of recurrent points
2.	 Determinism—percentage of consecutive, diagonally-aligned recurrent points indicating signal periodic-

ity and predictability; this relates to the inverse of the largest positive Lyapunov exponent, because longer 
diagonals imply deterministic versus chaotic movements

3.	 Laminarity—percentage of vertically aligned recurrent points, indicating signal stability (similar to deter-
minism)

4.	 Divergence—inverse of the maximum diagonal line segment, related to the maximal Lyapunov exponent
5.	 Maximum diagonal length—proportional to the inverse of the maximal Lyapunov exponent, indicating the 

longest duration of periodicity
6.	 Trapping time—mean vertical line length, indicating the duration of the trapped state, reflecting signal 

constancy

Detrended fluctuation analysis.  Detrended fluctuation analysis (DFA) was used to quantify the persistence of 
SIB movements. DFA exponents (α) were calculated for every time segment to assess long-range correlations36,72, 
with persistence indicated by α > 0.5 for time series deviations that continue in the same direction, and anti-
persistence by α < 0.5 for deviations that continue in the opposite direction72. DFA has been used in analyses of 
motor control for ASD, with evidence of long-range correlations (persistence) during a drawing task73..DFA has 
also been applied to capture the predictability of a movement, specifically when walking72,74. Persistence typically 
degrades in pathology. The underlying long-range correlations are altered in disordered movement, compared 
to consistent correlations in healthy movement (Goldberger et al.75). This finding remains evident irrespective of 
whether the outward appearance of pathological behavior appears more restricted or more chaotic75.

Feature selection.  The least absolute shrinkage and selection operator (lasso) method was used to address 
multicollinearity, to remove redundant features, and to determine the sparsest model when considering all 96 
features and all sensors76. This method directly selects variables that most contribute to the model. Principal 
component analysis (PCA) was then used for dimensional reduction, by finding the optimal combination of the 
59 selected variables (see Supplementary Materials, Table S2 for further information on variable selection and 
loadings)77. This feature selection approach is capable of characterizing data despite high variability between 
participants. PCA output was subsequently used as input to a multilevel logistic regression model (MLR).

Regression modeling.  A multilevel logistic regression (MLR) model was created with variable slopes and 
intercepts. The latter were used to account for high inter-subject variability32, which could be particularly rel-
evant for ASD. Further, this model relied upon data from other individuals when classifying an episode of SIB 
to improve the overall performance of the entire group. This aspect of the model is particularly relevant, as SIB 
episodes can be sparse, depending on the individual and type of SIB. Specifically, the model can be written as:

(1)X(t) = [x(t), x(t + τ), x(t + 2τ), . . . , x(t + (M − 1)τ )]
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where i indexes over events, j[i] is the index of a subject who exhibits event i, k indexes over the features X , and 
Yi = 1 is the outcome variable if the event is SIB vs. 0 otherwise. Intercepts αj[i] and feature slopes βj[i],k are vari-
able for each subject, and both can be modeled linearly as:

where Uj and Vj,k are potential features, with corresponding linear coefficients γ ′

j  specific to the individual level, 
and modeling error variances σ 2.

Evaluation.  Data were balanced and randomly selected following a 8:2 training/validation:testing ratio, so 
as to build a robust model and to test the built model78. SIB events are relatively rare compared to non-SIB 
events, which leads to a skewed distribution as found in prior work with ASD-related behaviors7,39,79. SIBs here 
lasted for about two seconds at minimum, though more subtle movements, such as picking, lasted longer, which 
lasted ~ 10 to 90  s. SIB and non-SIB data were balanced as in other work to address skewness28,39,79–81. Bal-
anced data were used for training, and tenfold cross-validation was used18,26,30. This validation method was 
implemented to reflect the likely use cases in SIB interventions, including training and validating a model using 
data from each unique individual. SIB management is highly specific to the individual and the demonstrated 
behaviors, thus requiring representative data. Movement classification for SIB must therefore reflect the need 
for highly customizable tracking methods and account for heterogeneity. Two datasets were used for testing 
model generalization: (1) balanced data; and (2) natural, unbalanced data reflecting the ratio of SIB:non-SIB in 
the complete dataset. These testing methods were used to examine the potential use of a model pre-trained on 
controlled data for application to natural, unbalanced datasets. All data were randomly selected from across the 
duration of a given session, and observations were assumed to reflect the entire dataset81.

Outcome measures were calculated for each model (MLR, and the models described below), with classifica-
tion performance (accuracy, specificity, precision, recall, and F-score) calculated for each classification method82. 
Training and testing time were also computed for all developed models to assess the potential for application 
to real-time monitoring.

Model comparisons.  Additional group-level models were trained, validated, and tested, for the purpose 
of comparison with the MLR model (“MLR – variable intercepts and slopes”). These additional models were of 
five different types:

1.	 Logistic regression (LR) with variable intercept only (“LR—variable intercept”). This was used to compare 
the MLR with a less complex model, while still accounting for participant variability.

2.	 LR without variable slopes or intercepts (“LR—no variable terms”). This model was included to compare the 
MLR with a model that does not consider participant-level variation.

3.	 Two-way interaction model (stepwise LR), with included terms determined by BIC (“LR—stepwise”). This 
model was included to compare the MLR with higher-order, nonlinear models, and to evaluate the effect on 
accuracy when including terms with lower interpretability but potentially higher predictive power.

4.	 Participant-level LR models (“LR-ind”), one for each of the 10 who exhibited SIB. These models were included 
to compare the group-level MLR with highly specific modeling that may have low generalizability, yet high 
accuracy.

5.	 Several models using machine learning methods: k-nearest neighbors (“kNN”), with k = 11 selected through 
optimization; support vector machines (“SVM”), and decision trees (“DT”). These three models were 
included to compare the MLR with previously-employed methods demonstrating strong individual (though 
not group-level) performance in other ASD applications and our previous featureless work (Cantin-Garside 
et al.34), and to compare the MLR with “black-box” models with lower interpretability but typically high 
predictive power.

Results
Dimensional reduction.  Fifty-nine variables were selected from lasso and were then input in PCA for the 
group-level MLR model; these variables included both linear and nonlinear features of motor variability features 
from each sensor channel. Lasso results, though, excluded the prompt variable. Means and standard deviations 
of select nonlinear motor variability features are provided in Supplementary Materials, Table S1. PCA generated 
12 principal components (PCs). Coefficients and the explained variance of each PC are provided in Supplemen-
tary Materials, Table S2, and a summary of PCs and top loading variables is provided below in Table 3. PC1 
explained 23% of the variance, with loadings primarily from frequency-based measures and measures captur-
ing sudden or sharp movements (e.g., jerk, peak). Measures of the Z channel (vertical) loaded primarily on 
PC2, with coefficients > 0.3 for mean absolute value and RMS. Nonlinear motor variability metrics had coef-
ficients up to ~ 0.6 in some PCs. Nonlinear metrics from RQA had coefficients > 0.4 on PC6 (Z channel), > 0.3 
on PC8 (X channel), and > 0.4 on PC9 (Y channel), while SaEn had coefficients > 0.3 on PC10 and cross-sample 
entropy (ZY) had coefficients > 0.3 on PC12. The components listed above with nonlinear variable loadings > 0.3 
accounted for 11.1% of the total variance (3.6, 3.0, 2.6, 2.5, and 1.9% respectively). All 12 components contrib-
uted to 65.6% of the group data variance.

(2)Yi = logit−1
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Table 4 summarizes results using the MLR. PC1 and PC12 were both significant features when considered 
across participants, though not when varying with participant level. The intercept, along with PCs 2, 5, 6, 7 and 9, 
were only significant features when considering participant levels, and not when fixed. PCs 3, 8, 10, and 11 were 
significant features both when fixed and when randomly varying with participant level. PC4 was not significant 
in the model, either when fixed or when varying with participant level.

Classifier performance.  Tables 5 and 6 respectively summarize results regarding training time, accuracy, 
specificity, precision, recall, F-scores, and adjusted R2 for validation and testing of group-level models. Training 
times for MLR, stepwise LR, and cubic SVM were 2–4 times longer than for other classifiers (10–2 vs. 10–6 s/
observation), though this same difference was not reflected in testing times (all times within 10–6–10–5 s/pre-
diction). MLR had high accuracy (74.7%) and F-score (0.752) in validation, which decreased minimally when 
testing with balanced data (73.2% and 0.733). Accuracy and F-score decreased with unbalanced test data for 
MLR (69.1% and 0.184). Specificity, precision, and recall were all highest for MLR in validation (~ 0.73 to 0.77) 
and testing (~ 0.73 for all three measures). Adjusted R2 was the highest for MLR (0.502) and the lowest for LR 
without variable intercepts/slopes (0.106). When considering participant levels with only a variable intercept 
versus both variable intercept and slopes, most performance metrics decreased by ~ 2 to 5%. LR without variable 
intercepts/slopes had the lowest accuracy (64.0%) in validation, dropping to 47.0 and 56.1% for balanced and 
unbalanced data, respectively. Linear SVM had the lowest specificity and precision (0.599 and 0.631), while LR 
without variable intercept/slopes had the lowest recall (0.663), though this trend did not extend to testing results. 
Stepwise LR had the lowest specificity for both balanced and unbalanced test data (0.526 and 0.552, respectively). 
LR without variable intercepts/slopes had the lowest precision, recall, and F-score for balanced test data (0.455, 

Table 3.   Summary of each PC, with top-loading features and total explained variance per PC. Bold values 
indicate significant features in the model (p < 0.05).

Principal components

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

Feature

Second FFT 
amplitude X RMS Z

Mean abso-
lute value 
of X

Mean abso-
lute value 
of Y

50th percen-
tile Y

Trapping 
time Z

90th percen-
tile Z Recurrence X Recurrence Y Sample 

entropy X
25th percen-
tile X

Corr. coef-
ficient YZ

Jerk X
Mean abso-
lute value 
of Z

Minimum X 25th percen-
tile X

50th percen-
tile Z Recurrence Z 50th percen-

tile Z
Maximum 
diagonal 
length X

Trapping 
time Y

Sample 
entropy Z

10th percen-
tile X

Cross- sam-
ple entropy 
YZ

Jerk Y Minimum Z 99th percen-
tile X

10th percen-
tile X

90th percen-
tile Z Laminarity Z 50th percen-

tile Y
Trapping 
time X

Maximal 
diagonal 
length Y

Sample 
entropy Y

Mean abso-
lute value 
of Y

Corr. coef-
ficient XY

Jerk Z Peak Z Mean abso-
lute value Z

Mean abso-
lute value Z

1st percentile 
Y

Local 
minima 
count X

1st percen-
tile Z

Determin-
ism X

50th percen-
tile Z

Second FFT 
Peak Z

99th percen-
tile X

Maximum 
diagonal 
length Z

First FFT 
amplitude X

Determin-
ism Z

25th percen-
tile X RMS Z 99th percen-

tile Y
First FFT 
Peak Z

99th percen-
tile Z

First FFT 
peak Y Divergence Y Second FFT 

peak Y
Mean abso-
lute value 
of X

First FFT 
peak Z

Explained variance

23.011 8.014 6.323 5.270 3.900 3.562 3.249 3.006 2.624 2.455 2.269 1.876

Table 4.   Multi-level logistic regression parameter values for the group-level model including all 10 
participants. Bold values indicate significant features in the model (p < 0.05).

Parameters Fixed effect Varying with participant (Parameter|Par)

Intercept − 0.363 1.192

PC1 0.033 1.456e−15

PC2 − 0.021 0.217

PC3 0.247 0.274

PC4 − 0.001 1.712e−08

PC5 − 0.031 0.228

PC6 0.060 0.146

PC7 0.003 0.255

PC8 0.239 0.084

PC9 0.028 0.181

PC10 − 0.273 0.185

PC11 0.333 0.250

PC12 0.132 2.112e−09
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0.304, and 0.365, respectively). The kNN classifier had the lowest precision, recall, and F-score for unbalanced 
test data (0.064, 0.591, and 0.116, respectively), while LR without variable intercept/slopes had the lowest F-score 
for validation (0.648) and balanced test data (0.365). 

Tables 7 and 8 show the classifier performance for validating and testing individual models, respectively. 
Time was on the order of 10–5–10–3 s/observation for training and 10–4–10–3 s/prediction for testing. Validation 
accuracy was higher overall (70.7–97.9%) when compared to group-level models (64.0–74.7%). Testing accuracy 
ranged widely, from 50.0–83.3% for balanced data to 27.2–95.7% for unbalanced data. Note that the unbalanced 
dataset, relative to the balanced dataset, did not lead to a substantial decrement in accuracy from validation to 
test set because there are substantially more behaviors labeled as non-SIB than SIB, and hence the label of non-
SIB is easier to predict. Specificity ranged from 0.648–1 for validation datasets, and from 0.500–1 for balanced 
and unbalanced test data. Precision was between 0.692–1 for validation data, 0–0.818 for balanced test data, 
and 0–0.5 for unbalanced test data. The ranges of recall values were 0.746–1 for validation data and 0–1 for both 
balanced and unbalanced test data. F-scores ranged from 0.718–0.979 for validation data, 0–0.857 for balanced 
test data, and 0–0.667 for unbalanced data. 

Discussion
We developed an interpretable model to identify diverse types of SIB among a range of participants. Traditional 
time- and frequency-domain features were used, along with features capturing nonlinear motor variability, 
as input to a multi-level logistic regression model capable of detecting SIB at the group level, with selected 
components from dimension reduction explaining > 65% of the data variance. The lasso method did not select 
the prompt variable for this group-level model (recall that this prompt represented the presence or absence of 
caregiver actions that were targeted at instigating SIB), indicating that this model explains the presence of SIB 

Table 5.   Validation results for group-level classifiers.

Classifier Training time (s/observation) Accuracy Specificity Precision Recall F-score R2 adjusted

MLR—variable intercept and 
slopes 1.49E−02 0.747 0.728 0.738 0.766 0.752 0.502

LR—variable intercept 4.71E−04 0.705 0.676 0.694 0.734 0.713 0.332

LR—no variable terms 8.34E−06 0.640 0.617 0.634 0.663 0.648 0.106

LR—stepwise 8.49E−02 0.671 0.673 0.672 0.669 0.670 0.147

kNN, k = 11 1.49E−05 0.676 0.621 0.659 0.731 0.693 –

SVM—linear 1.66E−04 0.642 0.599 0.631 0.685 0.657 –

SVM—cubic 6.78E−03 0.696 0.657 0.682 0.734 0.707 –

SVM—Gaussian 1.28E−04 0.690 0.661 0.679 0.719 0.699 –

DT 9.94E−06 0.683 0.652 0.672 0.713 0.692 –

Table 6.   Test results at the group level.

Algorithm Test type
Prediction time  
(s/observation) Accuracy Specificity Precision Recall F-score

MLR—variable intercept and 
slopes

1 5.98E−05 0.732 0.729 0.731 0.735 0.733

2 5.70E−05 0.691 0.687 0.105 0.773 0.184

LR—variable intercept
1 1.54E−05 0.705 0.696 0.702 0.715 0.708

2 1.66E−05 0.647 0.641 0.092 0.773 0.165

LR—no variable terms
1 1.33E−05 0.470 0.637 0.455 0.304 0.365

2 1.07E−05 0.561 0.552 0.073 0.750 0.134

LR—stepwise
1 1.45E−05 0.488 0.526 0.487 0.450 0.467

2 1.45E−05 0.561 0.552 0.073 0.750 0.134

kNN, k = 11
1 2.79E−05 0.643 0.567 0.624 0.719 0.668

2 2.00E−05 0.591 0.591 0.064 0.591 0.116

SVM—linear
1 5.11E−05 0.619 0.612 0.617 0.626 0.622

2 4.60E−05 0.551 0.542 0.072 0.750 0.131

SVM—cubic
1 4.76E−05 0.677 0.639 0.664 0.715 0.688

2 4.67E−05 0.625 0.622 0.081 0.705 0.145

SVM—Gaussian
1 4.68E−05 0.671 0.641 0.662 0.702 0.681

2 4.09E−05 0.645 0.646 0.076 0.614 0.135

DT
1 1.14E−05 0.695 0.676 0.688 0.715 0.701

2 9.86E−06 0.640 0.638 0.082 0.682 0.146
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beyond an identified SIB trigger. This finding is consistent with a prior report40 that temporal patterns in SIB 
occur independent of behavioral or environmental influences (or “triggers”). Nonlinear motor variability features 
(e.g., from RQA and entropy) loaded on PCs that accounted for > 10% of the explained variance in the dataset. 
DFA features had moderate loadings on PCs, and these features were a novel addition to modeling for ASD.

Descriptive statistics of metrics of nonlinear motor variability from pooled SIB versus non-SIB events across 
participants showed little difference between the behavioral classes (Supplementary Materials, Table S1), which 
may explain the poor performance of a general group-level model without participant levels. However, upon 
examining one of the most severe behaviors (head banging) in one participant, nonlinear motor variability of 
SIB differed from non-SIB events (Supplementary Materials, Table S3). For example, DFA exponents for both 
non-SIB and SIB events in the Y and Z axes were slightly anti-persistent (< 0.5), indicating changes evolving in 
different directions over time. Though exponents remained < 0.5, there was a slight increase in DFA exponents 
for the Y and Z axes for SIB events compared to non-SIB, indicating more persistence in SIB events. Differences 
among other nonlinear metrics were evident for head banging in P9. Recurrence rate, for example, decreased 
for head banging in this individual compared to non-SIB events, indicating less regularity in SIB data. This 
finding opposes the common perception that repetitive behaviors are “regular”. There was a slight decrease in 

Table 7.   Validation results for individual participants. Note that 1a = first part of P1 session with only upper 
body sensors, and 1b = second part of P1 session with additional lower body sensors.

P Training time (s/observation) Validation accuracy Specificity Precision Recall F-score R2 adjusted

1a 2.30E−03 0.893 0.857 0.867 0.929 0.897 0.850

1b 1.86E−03 0.979 1.000 1.000 0.958 0.979 1.000

2 1.61E−03 0.883 0.878 0.879 0.888 0.883 0.819

3 1.11E−03 0.803 0.770 0.785 0.836 0.810 0.548

4 7.84E−05 0.707 0.668 0.692 0.746 0.718 0.217

6 2.61E−04 0.857 0.838 0.844 0.876 0.860 0.605

7 1.55E−04 0.760 0.648 0.713 0.872 0.784 0.379

8 2.19E−03 0.935 0.870 0.885 1.000 0.939 1.000

9 1.74E−04 0.941 0.929 0.931 0.953 0.941 0.839

10 1.25E−04 0.772 0.797 0.786 0.747 0.766 0.365

11 2.24E−04 0.933 0.922 0.924 0.943 0.933 0.841

Table 8.   Test results for individual participants. Note that 1a = first part of P1 session with only upper body 
sensors, and 1b = second part of P1 session with additional lower body sensors.

P Test type Prediction time (s/prediction) Accuracy Specificity Precision Recall F-score

1a 1 4.56E−03 0.833 0.667 0.750 1 0.857

1a 2 3.89E−03 0.833 0.800 0.500 1 0.667

1b 1 1.62E−03 0.500 1 0 0 0

1b 2 1.75E−03 0.917 1 0 0 0

2 1 2.94E−04 0.500 1 0 0 0

2 2 6.23E−04 0.938 1 0 0 0

3 1 1.80E−03 0.733 0.800 0.769 0.667 0.714

3 2 5.28E−04 0.533 0.517 0.067 1 0.125

4 1 1.04E−04 0.687 0.613 0.663 0.761 0.708

4 2 1.08E−04 0.577 0.525 0.263 0.833 0.400

6 1 1.66E−04 0.828 0.810 0.817 0.845 0.831

6 2 1.72E−04 0.543 0.514 0.117 1 0.209

7 1 2.97E−04 0.779 0.706 0.744 0.853 0.795

7 2 2.05E−04 0.272 0.238 0.057 1 0.108

8 1 2.30E−03 0.500 0.500 0.500 0.500 0.500

8 2 2.43E−03 0.538 0.500 0.143 1 0.250

9 1 2.76E−04 0.500 1 0 0 0

9 2 1.86E−04 0.925 1 0 0 0

10 1 1.76E−04 0.767 0.787 0.778 0.747 0.762

10 2 1.56E−04 0.673 0.655 0.140 1 0.246

11 1 3.67E−04 0.800 0.829 0.818 0.771 0.794

11 2 4.60E−04 0.957 1 0 0 0
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sample entropy for SIB in the Y and Z axes compared to non-SIB events, suggesting lower levels of complexity; 
however, cross-sample entropy increased during SIB, indicating higher levels of complexity between two chan-
nels of data. These findings may indicate that SIB occurs due to over/understimulation to seek system stability83 
(“less” or “more” complexity)84 (see Mazefsky et al.83 for a review of emotional regulation in ASD, and Stergiou 
and Decker84 for a review of nonlinear dynamics and pathology).

Together, these results suggest that underlying nonlinear trends exist in the movements occurring during SIB. 
However, classic time- and frequency-domain features had the highest loadings on the first PC. These loadings 
indicate that jerk and FFT peaks are the strongest features of SIB, although nonlinear trends appear to differ 
between SIB and non-SIB. Consistent outcomes were found in prior work that used time- and frequency-domain 
features to accurately classify SMM7,18,22,27, and suggest that such features should be the first ones considered when 
creating a model to predict SIB. Further considerations for SIB modeling include variable intercepts and slopes. 
LR without variable intercepts or slopes performed inferiorly to LR with a variable intercept and inferiorly to 
MLR with both variable intercept and slopes. MLR with both variable intercept and slopes performed superior 
to all other classifiers, including commonly used machine learning algorithms implemented in other work7,26. 
These results imply that inter-individual variability also contributed to dataset variance.

This study is the first, to our knowledge, to incorporate nonlinear variability in addition to traditional 
time–frequency metrics to explain the variance in SIB movement data. Our findings suggest that movements in 
SIB can be described as a dynamical system with long-term deviations, which is consistent with prior evidence 
that stereotypical motor movements in ASD can be accurately detected using nonlinear features from RQA39. 
Similarly, our feature extraction revealed higher loadings for RQA features when compared to other nonlinear 
factors, and the associated principal components were significant in our MLR model. Our findings, along with 
those of39, indicate that RQA metrics could be critical in detecting repetitive and rhythmic motor movements 
(such as stereotypical motor movements, and SIB) in ASD.

Further, PCs with nonlinear variable loadings were significant in the MLR model. PC6 and PC9, with load-
ings primarily from RQA metrics from the Z and Y axes, respectively, were significant in the model only when 
randomly varying with participant level; these metrics were not sufficient to classify SIB unless including variable 
slopes, which indicates that nonlinear movement aspects are specific to each individual. Time- and frequency-
domain features that loaded on PC1 (frequency components, jerk, and peak/minimum) were significant features 
in MLR when independent from participant levels, indicating that these variables could be predictive of SIB 
without considering individual variability; the only nonlinear metric of motor variability to which this finding 
applied was PC12 (cross-sample entropy). Other PCs with loadings from metrics of nonlinear motor variabil-
ity (RQA for X on PC8, sample entropy on PC10) were significant only when considered as either a fixed or a 
variable effect, implying that features such as sample entropy vary consistently between participants while still 
explaining individual-level variability. Nonlinear measures were significant features of SIB when they varied with 
participants, which supports prior evidence that nonlinear components of movement are specific to individuals85.

We believe the current group-level model is the first to achieve accuracy of ~ 75% when identifying SIB 
among a diverse group of behaviors and participants. Previous research on classifying other repetitive motor 
movements7,22,24–29,39 and aggression18,30 has evaluated specific models trained and/or tested only on individual 
participants, and performance dropped from 80% with individual models to 69% when applied to the group of 
participants30. Though a similar decrease was also evident here, percent accuracy was ~ 6% higher than earlier 
group-level results. The increased performance we found may be due, at least in part, to the use of feature selec-
tion and dimensional reduction methods, along with the multi-level properties of our model that accounted for 
inter-individual variability. Also, a larger sample of participants was included here, compared to earlier mod-
eling reports of ASD behaviors, with samples ranging from one to six7,17,22,25–27,29. Further, our participant pool 
encompassed 18 different behaviors across children 5–14 years of age, suggesting potential generality to a wider 
sample of children with ASD and SIB. Note that the 18 types of SIB mentioned in the study are a reflection of our 
study cohort and were an attempt to subtype SIB. We were not seeking to identify underlying subclasses of SIB, 
but instead to classify behaviors (as demonstrated naturally by our study cohort) automatically using technology 
(sensors and machine learning), rather than manually with traditional observation methods.

As in the work of30, regression showed promising results here compared to other classifiers; however, these 
earlier authors focused on aggression towards others, whereas our study applied regression on SIB data. MLR 
here had higher accuracy, specificity, precision, and recall compared to several commonly-used machine learn-
ing algorithms. These machine learning algorithms also detected SIB with high accuracy in our previous study 
using featureless data, though accuracy greatly decreased at the group-level (see Cantin-Garside et al. for further 
details)34. Multi-level regression with both variable slopes and intercept may be preferred for group data with 
variable behaviors that could be specific to an individual, and it may also be more accessible to interpretation than 
other machine learning algorithms. MLR had classifier performance superior to LR without varying intercept/
slope, further emphasizing the potential importance of individualizing models for participants with ASD and 
SIB. MLR, though, was only inferior to several highly-specific participant models, which may not generalize 
beyond the participant.

The widely varying performance metrics across participants, however, could account for the unexplained 
variance in MLR. Several participants had either near perfect detection (e.g., P1) or quite poor detection (P8 or 
P9) in testing. This wide range could have resulted from the inconsistent amount of SIB data included (P9 had 
the shortest session of all participants), the different types of SIB, or the variable sensor configurations between 
participants. Of note, MLR only included the one sensor worn in common by all participants: the wrist sensor. 
This single wrist sensor may not be sufficient for all SIB types, such as head banging or kicking, and therefore 
might have led to decreased performance measures in the group model. Yet, despite having only one sensor to 
incorporate in the group model, MLR still showed superior performance to all other tested classifiers. Group-level 



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16699  | https://doi.org/10.1038/s41598-020-73155-4

www.nature.com/scientificreports/

classifiers may be more practical (i.e., efficient and generalizable) to implement in real-world applications, and 
the current results are promising for automatically identifying diverse SIB with minimally-invasive technology.

Limitations and future work.  Outcomes here provide initial groundwork toward creating a group-level 
classifier for SIB classification, yet further research is needed in several respects. Such work should include 
expanded data to improve classifier performance and to extend the model for more individuals with ASD, given 
the highly heterogeneous ASD diagnoses and the lifelong pervasiveness of ASD and SIB. SIB presentation can 
be extremely variable, including in its duration, and thus the current study is limited in size and scale (though 
more extensive than comparable existing studies). SIB data here may not have been sufficient for some partici-
pants, such as P8, when SIB episodes are few and/or short (< 100 s). There would thus be value in monitoring 
SIB across several days (longitudinal recordings) to capture additional episodes across different contexts, as well 
as expanding the study with a larger sample. Data from other episodes may also help increase explanatory power 
for the MLR, though accuracy is perhaps more critical for online detection of SIB. Although recall, sensitivity, 
and accuracy remained relatively high when testing MLR with unbalanced, natural data, precision decreased. 
This decrease in precision indicates that a “quasi-balancing” may be required when implementing classifiers in 
a real-world settings. At present, this technology would be most useful in settings where individuals frequently 
exhibit SIB (e.g., school), as there would be a greater need for support in these settings and a more balanced 
SIB:non-SIB ratio. A classifier could be deployed when caregivers cannot maintain both tracking and behavior 
management due to the high frequency and/or intensity of behaviors. It may be possible to improve MLR by 
weighting terms based on the frequency of the behaviors, as well as based on caregiver perception of imminent 
danger. Other methods of improvement could include nonlinear terms with variable slopes, though this could 
decrease interpretability of the model. Additional levels could also be incorporated into the model, such as age, 
SIB type, frequency or intensity. The definition of frequency or the rate of SIB can vary, depending on the type of 
behavior and the observer (e.g., counting each hit or counting each set of hits); thus, frequency was not included 
to describe behaviors. Behavior was classified by the presence/absence of SIB in the time window versus using 
a defined frequency. Similarly, intensity was not quantified objectively, though doing so would be a valuable 
contribution for future iterations of sensing technology for ASD. Operational definitions of the frequency of SIB 
and associated intensity, though, would be necessary to establish ground truth for inter-rater reliability. Further, 
additional analysis of effects of observation time and duration on classifier performance could support decisions 
about data requirements for training and testing data.

Our work supports the presence of nonlinear motor variability within SIB. However, several features of non-
linear motor variability (DFA) loaded only modestly (< ~ 0.1) on PCs, which may be due to the young ages of the 
participant pool. The long-range correlations quantified by DFA only develop in gait during late childhood86, so 
such correlations may not yet be evident in SIB movements when the participants are young. Age could be incor-
porated as a covariate in future work, which may show differences in feature importance, such as in DFA, among 
age groups. Older participants could show more explicit anti/persistence in pathological movement, which could 
lead to additional evidence of nonlinear motor variability in SIB. Dynamic movement signatures of individuals 
with ASD could provide information to detect pathology, such as movements involved in SIB, before typical 
diagnostic measures85, and could explain the pattern of SIB onset. These individual movement signatures might 
also reveal trends about intentions that underlie SIB movements, such as whether the motion is goal-directed or 
spontaneous85, or the etiology of ASD, through mapping movement characteristics to underlying mechanisms 
of movement87. With additional information about ASD movement signatures, variability components (quanti-
fied with metrics such as RQA and entropy) could be the basis for an intervention to promote self-awareness 
and intentional movements in ASD88. Specifically, if SIB is a deterministic process, nonlinear motor variability 
metrics could capture the convergence or divergence of the repeated motions that may indicate the onset of 
SIB from sensor data. If values from such metrics surpass a certain threshold, the child would be considered at 
risk for starting an SIB. Stimuli (e.g., visual or auditory signals) could provide feedback to alert the child and 
divert the child’s attention to alternative coping mechanisms (e.g., a breathing app, squeezing a sensory object, 
or feeling a certain texture).

In future work, we plan to use the current findings to build more sophisticated hierarchical models. One 
useful addition might be including Bayesian priors for individual-specific information. If such models improve 
accuracy while retaining interpretability, they could be used to determine the necessity of intervention at the 
earliest indicator of an event. Specifically, the predicted probability score from logistic regression can serve as a 
criterion for caregiver interjection, by setting a pre-determined threshold (e.g., caregivers should interject if the 
probability of SIB > 0.8). A monitoring system could also include real-time estimation of variable parameters 
(intercept and slope) for each individual with ASD and SIB. Parameter coefficients can be estimated by the 
empirical Bayes approach, which allows the mean value of the prior distribution to equal the mean of coefficients 
from the training data. Using new data in real-time, the posterior distribution can then be recomputed and 
updated for that participant. Continuously adapting features could both improve current models and address 
evolving behavior when tracking SIB. Alternatively, autoregressive models could be employed to account for 
the temporal dynamics of SIB. As in Rad et al.28, such an approach could address the common challenge of class 
imbalances in detecting SIB. However, applying more advanced models, such as an autoregressive model, would 
likely detract from the interpretability of the SIB prediction, and such a tradeoff would need to be considered 
carefully when developing a monitoring system.
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Conclusions
This work provides a framework for, and initial results obtained from, interpretable SIB classification at the 
group-level, particularly through introducing new features with variable slopes and intercepts in a multi-level 
classifier. A new application of nonlinear metrics to movement in SIB was employed, specifically to develop a 
group-level classification model. We found that both linear and nonlinear measures of motor variability and 
time/frequency-domain features, paired with feature selection and dimensional reduction, explained > 65% of the 
variance found in SIB movement data, and classified diverse SIBs among a group of 10 participants with ~ 75% 
accuracy. Our results are promising in terms of the feasibility of developing a continuous monitoring system for 
SIB that can be applied to different types of behaviors and a range of individuals. This work serves as a proof of 
concept for the utility of technology to track SIB in ASD, which is necessary to apply this work to future Phase 
1 prevention efforts. Future work should continue to build on these results, with added consideration of prior 
distributions for adaptive modeling.

Data availability
The datasets analyzed for this study are not publically available because they contain sensitive information with 
identifiable behaviors from minors. Requests to access these datasets should be directed to DS.
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