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Validating a functional near-
infrared spectroscopy diagnostic 
paradigm for Major Depressive 
Disorder
Syeda Fabeha Husain1,2, Rongjun Yu3, Tong-Boon Tang4, Wilson W. Tam5, Bach Tran6,7,8, 
Travis T. Quek2, Shi-Hui Hwang2, Cheryl W. Chang9, Cyrus S. Ho2 & Roger C. Ho1,2 ✉

Reduced haemodynamic response in the frontotemporal cortices of patients with major depressive 
disorder (MDD) has been demonstrated using functional near-infrared spectroscopy (fNIRS). Most 
notably, changes in cortical oxy-haemoglobin during a Japanese phonetic fluency task can differentiate 
psychiatric patients from healthy controls (HC). However, this paradigm has not been validated in 
the English language. Therefore, the present work aimed to distinguish patients with MDD from HCs, 
using haemodynamic response measured during an English letter fluency task. One hundred and five 
HCs and 105 patients with MDD took part in this study. NIRS signals during the verbal fluency task 
(VFT) was acquired using a 52-channel system, and changes in oxy-haemoglobin in the frontal and 
temporal regions were quantified. Depression severity, psychosocial functioning, pharmacotherapy 
and psychiatric history were noted. Patients with MDD had smaller changes in oxy-haemoglobin in 
the frontal and temporal cortices than HCs. In both regions of interest, oxy-haemoglobin was not 
associated with any of the clinical variables studied. 75.2% and 76.5% of patients with MDD were 
correctly classified using frontal and temporal region oxy-haemoglobin, respectively. Haemodynamic 
response measured by fNIRS during an English letter fluency task is a promising biomarker for MDD.

Major depressive disorder (MDD) is a common global disorder that impairs daily living for sufferers, and causes 
significant societal and economic burden1,2. It is characterised by low mood and anhedonia for almost every 
day in a two-week period. These core symptoms are often accompanied by several other somatic, psychological 
and cognitive symptoms, that vary between individuals in terms of their occurrence and severity3. Patients are 
assessed during clinical interviews, but given the heterogenous nature of this disorder, subjective patient reports, 
and reliance on individual clinical judgement, there is poor inter-rater reliability in diagnosing MDD4. Despite 
the disease burden, and inaccuracies of clinical interviews, there are currently no quantitative biological tests 
for MDD. There is however, growing evidence for the utility of functional neuroimaging, particularly functional 
near-infrared spectroscopy (fNIRS), to aid in the diagnosis of MDD.

Light in the NIR spectrum has the unique property of penetrating tissues, and being preferentially absorbed 
by haemoglobin5. The absorbance spectra of haemoglobin is dependent on its binding with oxygen, which ena-
bles fNIRS devices to continuously monitor both oxy-haemoglobin and deoxy-haemoglobin in the cerebral 
cortex6. NIRS signals are a surrogate measure of the underlying neural activity, described by a phenomenon 
known as neurovascular coupling7. Regional neuron activity triggers an increase in blood flow and volume that 
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is disproportionately higher than the metabolic demand. Therefore, cerebral haemodynamic response typically 
involves a nett increase in oxy-haemoglobin, and a simultaneous slight decrease in deoxy-haemoglobin8. Since 
the changes in oxy-haemoglobin are greater than deoxy-haemoglobin, the former is used as an indicator of cer-
ebral activity9. Although NIR light cannot reach subcortical regions, the practical advantages of fNIRS make 
it a suitable tool for assessing psychiatric patients. Compared to conventional functional neuroimaging meth-
ods, such as functional magnetic resonance imaging (MRI) and positron emission tomography (PET), fNIRS is 
cost-effective and does not involve ionising radiation, restraints or loud noise10.

fNIRS studies have consistently reported reduced oxy-haemoglobin in the frontotemporal cortices during the 
verbal fluency test (VFT) in patients with MDD compared to healthy controls (HC)11. This cognitive task assesses 
language production and word retrieval controlled by the posterior inferior frontal gyrus, and semantic process-
ing controlled by the anterior inferior temporal gyrus12. Thus, from a neuropsychological perspective, reduced 
frontotemporal haemodynamic response to cognitive stimuli may be associated with the cognitive symptoms of 
MDD. At the same time, reduced haemodynamic response may reflect neurophysiological changes associated 
with MDD. Although the biological mechanism of haemodynamic dysfunction is not clear, post-mortem and 
animal models suggest neurons and glial cells responsible for maintaining haemodynamic response lose their 
function in patients with MDD13.

While several variations of the VFT have been published in the fNIRS literature14–17, the VFT and NIRS sig-
nal processing protocol proposed by Takizawa et al.18 was designed specifically for neuropsychiatric assessment. 
Subsequent studies using this protocol have demonstrated that frontotemporal oxy-haemoglobin response mag-
nitude could distinguish HCs and patients with common psychiatric disorders, namely MDD, schizophrenia and 
bipolar disorder19. Moreover, frontotemporal oxy-haemoglobin response magnitude is associated with depression 
severity20, social functioning21 and family psychiatric history22 in patients with common psychiatric disorders. 
Despite these promising results, this paradigm has not been modified for the English language. Hence, the objec-
tive of this study is to validate an fNIRS diagnostic test for MDD in English-speaking adults.

We hypothesise that low activation in the frontotemporal cortex is a salient trait of patients with MDD, and 
that frontotemporal oxy-haemoglobin response magnitude can differentiate patients with MDD from HCs with 
acceptable accuracy. Hence, the first aim of this study was to demonstrate lower frontotemporal oxy-haemoglobin 
response magnitude during an English version of the VFT in patients with MDD compared to HCs. The second 
aim was to investigate the relationship between cortical oxy-haemoglobin and several clinical factors such as 
depression severity, pharmacotherapy and clinical history. Lastly, we report the sensitivity and specificity of clas-
sifying patients with MDD and HCs with frontotemporal oxy-haemoglobin response magnitude.

Results
Demographic and clinical data.  HCs and patients with MDD did not differ in age, gender, ethnicity, 
handedness and family psychiatric history (p > 0.05) (Table 1). Compared to controls, patients with MDD had 
fewer years of education [t = 5.28, df = 186.46, p ≤ 0.001, d = 0.73, 95% CI, (1.08 to 2.37)], generated fewer words 
[t = 4.2, df = 203.62, p ≤ 0.001, d = 0.63, 95% CI, (1.89 to 5.24)], had higher HAM-D scores [t = -15.9, df = 123.33, 
p ≤ 0.001, d = 2.19, 95% CI, (-13.79 to -10.73)] and lower GAF scores [t = 17, df = 176.21, p ≤ 0.001, d = 2.35, 95% 
CI, (21.72 to 27.43)]. Approximately 70% of patients had no prior admission to a psychiatric ward, and approxi-
mately 35% were medication naïve. Amongst patients with MDD receiving pharmacotherapy, majority were on 
antidepressants, and a fraction were on combination anxiolytics or antipsychotics (Supplementary Table 2).

Comparing haemodynamic response between controls and patients.  HCs and patients with MDD 
did not differ in the number of available channels in the frontal (MDD, n = 101; HC, n = 101; p = 0.094) and tem-
poral (MDD, n = 102; HC, n = 103; p = 0.952) regions. Patients had lower integral values than controls in both 
the frontal [t = 4.76, df = 200, p ≤ 0.001, d = 0.67, 95% CI, (39.24 to 94.81)] and temporal [t = 6.99, df = 199.42, 
p ≤ 0.001, d = 0.98, 95% CI, (68.16 to 139.65)] regions (Fig. 1), but centroid values did not differ between controls 
and patients (frontal region, p = 0.567; temporal region, p = 0.689).

Factors associated with haemodynamic response.  The frontal region integral value was not associ-
ated with demographic factors, clinical factors and channel availability for both HCs and patients with MDD. 
Similarly, the temporal region integral value was not associated with demographic and clinical factors for HCs 
and patients with MDD (supplementary table 3 and 4). However, the temporal region integral value negatively 
correlated with the number of available channels amongst HCs (r = −0.222, p = 0.024), but not patients with 
MDD. Stepwise linear regression also revealed associations between temporal region integral value and number 
of available channels amongst HCs (β = −6.68, SE = 2.92, p = 0.024, adjusted R2 = 0.04). Despite this statistically 
significant association, the number of available channels only accounts for 4% variability in temporal integral 
value. Thus, both the frontal and temporal integral values were used in ROC analysis.

Differentiating controls and patients with major depression.  The area under the ROC curve for the 
frontal and temporal region integral values, were 0.76 [95% CI, (0.7 to 0.83)] and 0.82 [95% CI, (0.76 to 0.88)] 
respectively (Fig. 2). Using an optimal threshold value of 51, the frontal region integral value correctly classified 
75.2% of patients with MDD (proportion of patients/measurements: 76/101) and 74.3% of HCs [proportion of 
controls/measurements: 75/101; positive predictive value (PPV) = 0.75; negative predictive value (NPV) = 0.75]. 
Similarly, with an optimal threshold value of 81, the temporal region integral value correctly classified 76.5% of 
patients with MDD (78/102) and 76.7% of HCs (79/103; PPV = 0.77; NPV = 0.77; Table 2).
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Discussion
Results from this study lend support for an fNIRS paradigm as a supplementary tool for MDD diagnosis. In addi-
tion to patients with MDD having significantly lower integral values than HCs, integral values were not associated 
with any of the demographic and clinical factors. In particular, the independence of integral values from illness 
duration and treatment with psychotropic medications, suggests that the proposed fNIRS paradigm may be used 
to assess patients at any stage of their disorder. A similar conclusion was made in a recent publication on patients 

MDD 
(n = 105) HC (n = 105) p-value

Age (years) 36.2 ± 13 36.4 ± 13 0.915

Gender 0.574

Male 45 (42.9%) 40 (38.1%)

Female 60 (57.1%) 65 (61.9%)

Ethnicity 0.052

Chinese 86 (81.9%) 80 (76.2%)

Malay 10 (9.5%) 5 (4.8%)

Indian 7 (6.7%) 8 (7.6%)

Eurasian 0 3 (2.9%)

Others 2 (1.9%) 9 (8.6%)

Handedness † 0.235

Right 66 (88%) 89 (90.8%)

Left 8 (10.7%) 5 (5.1%)

Ambidextrous 1 (1.3%) 4 (4.1%)

Education (years) 14.8 ± 2.7 16.5 ± 1.9 ≤0.001

Number of words 
generated 16.6 ± 6.6 20.2 ± 5.7 ≤0.001

HAM-D 14.7 ± 7.6 2.4 ± 2.3 ≤0.001

GAF 68.9 ± 12.5 93.4 ± 7.9 ≤0.001

Family psychiatric 
history † 27 (26.5%) 17 (18.3%) 0.230

Age at onset (years) 30.8 ± 11.4 —

Duration of illness 
(years) 5.3 ± 6.5 —

Past admission to 
psychiatric ward 32 (30.5%) —

Pharmacotherapy 68 (64.8%) —

Fluoxetine equivalent 
dose (mg/day) 28.9 ± 17.6 —

Diazepam equivalent 
dose (mg/day) 6.2 ± 5 —

Chlorpromazine 
equivalent dose (mg/
day)

192.9 ± 132.6 —

Table 1.  Demographic and clinical characteristics. Mean ± SD are shown and p-values ≤0.05 are in bold. 
†Complete demographic data was not obtained for all subjects (Known handedness in healthy controls, n = 98; 
in major depressive disorder, n = 75. Known family history of psychiatric illness in healthy controls, n = 93; in 
major depressive disorder, n = 102).

Figure 1.  Average oxyhaemoglobin waveforms in the (a) frontal and (b) temporal regions.
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at various stages of psychosis23. Additionally, the independence of integral values from the number of words 
generated during the VFT and years of education, suggests that the proposed test is suitable for most people with 
and without MDD.

Another significant finding in this study is that the integral values could distinguish HCs and patients with 
MDD with acceptable sensitivity and specificity. The classification rates reported in this study are similar to an 
earlier report on Japanese subjects19. Our finding provides a cross-cultural validation of fNIRS metrices, as a 
marker for common disorders like MDD24. However, the optimal cut-off integral values in our sample were 
lower than the Japanese study19. This variation may be due to differences in the design of the VFT. While we 
used English alphabets, the Japanese VFT utilises syllabary. Since lexical retrieval strategies differ between alpha-
betic and non-alphabetic languages25, it may have an effect on cortical activity. Likewise, amongst fNIRS studies 
done on Chinese-speaking patients with MDD, cortical activity in the temporal region differs between HCs and 
patients during the Chinese phonological VFT26, whereas differences in prefrontal cortex activity was observed 
during the Chinese categorical VFT27. Furthermore, variations of the Chinese letter fluency task have been pro-
posed in fNIRS studies on patients with schizophrenia, because different populations use different syllable sys-
tems28. Specifically, the letter fluency task designed by Quan et al.29 for subjects in mainland China differed from 
that used by Chou et al.30 for subjects in Taiwan. Hence, language specific validation of this fNIRS paradigm is 
important.

In research and clinical settings alike, the presence and severity of depressive symptoms are typically assessed 
by instruments like the HAM-D and GAF. Although we did not observe an association between these scales and 
integral values, this association was previously reported. However, the methodological differences between stud-
ies, and limitations of these scales should be noted. For instance, Kawano et al.20 recruited patients with various 
psychiatric disorders, and found that frontal region integral values negatively correlated with the total score of 
the 21-item HAM-D. The HAM-D can differentiate symptomatic and remitted patients with excellent accuracy31, 

Figure 2.  Receiver operating characteristic analysis of the (a) frontal and (b) temporal region integral values 
between patients with MDD and HCs.

Integral 
value

Frontal region Temporal region

Sensitivity Specificity Sensitivity Specificity

120 0.91 0.34 0.88 0.54

110 0.91 0.42 0.86 0.57

100 0.90 0.44 0.85 0.64

90 0.87 0.51 0.83 0.68

80 0.83 0.55 0.76 0.78

70 0.82 0.60 0.70 0.83

60 0.79 0.68 0.66 0.84

50 0.74 0.74 0.64 0.86

40 0.65 0.75 0.56 0.90

30 0.57 0.83 0.48 0.91

20 0.48 0.86 0.41 0.95

10 0.38 0.87 0.34 0.96

Table 2.  Sensitivities and specificities of frontal and temporal region integral values.
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but its discriminatory power for mild, moderate and severe depression is lower32. Moreover, the recommended 
threshold values for depression severity categories vary between publications33. Hence, total HAM-D scores may 
not be a reliable measure of depression severity for a correlation analysis with integral values. Still, negative corre-
lation between oxy-haemoglobin and individual HAM-D items have been reported, albeit in differ cortical region 
of interest. Items include depressed mood, work and activities34, insomnia early, psychomotor retardation35, and 
suicidal ideation36. Yet, the options for many HAM-D items do not vary as a function of depression severity. Thus, 
individual item scores may not be a reliable indicator for disorder severity37. The level of oxy-haemoglobin meas-
ured at individual channels of patients with MDD has also been linked to the GAF38. The GAF score is a single 
measurement of overall impairment, that takes psychological symptoms and social and occupational function-
ing into consideration. However, much like the HAM-D items, the GAF scale also lacks continuity between inter-
vals39. Nevertheless, low frontotemporal cortical activity is associated with the syndromic criteria for MDD in the 
fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)11.

Low frontal and temporal region integral values may represent a decline in physiological function amongst 
MDD patients. Concerted evidence from other neuroimaging modalities and post-mortem studies indi-
cate that pathophysiological changes occur in the prefrontal cortex. Compared to HCs, neuron size and glia 
cell density are reduced in patients with MDD40. MRI techniques reveal grey matter volume reduction41 and 
blood-oxygen-level-dependent response attenuation during the VFT42. Furthermore, a previous study using PET 
reported reduced blood flow and metabolism in the prefrontal cortex of patients with MDD43. Biomarker val-
idation and pathophysiology elucidation for MDD is especially challenging, since there are no established bio-
logical gold standards. Regrettably, both psychological and somatic symptoms can only be evaluated by clinical 
interviews. Therefore, psychiatric nosology may dampen the classification accuracy of potential biomarkers44. 
On the other hand, low integral values may be particularly useful to evaluate the cortical function of psychiatric 
patients who may underreport their symptoms, remitted patients at risk of relapse45,46 and patients with poor 
prognosis26,47–49.

This study has several limitations. Firstly, this cross-sectional study could not establish a causal relationship 
between low frontotemporal activity and onset of MDD. In contrast, previous longitudinal studies reported con-
current oxy-haemoglobin increase and MDD severity decrease50,51. However, these changes were only seen in 1 or 
2 channels located at the temporal cortex. Therefore, integral value for the frontal and temporal regions may not 
vary over time. Longitudinal studies focussing on the same regions of interest are needed to verify this hypothesis. 
Moreover, consistency of frontal and temporal region integral values at different time points would demonstrate 
internal validity. Secondly, MDD subtypes were not compared in this study, even though it is a heterogenous 
disorder52. This may explain why clinical outcomes were not associated with integral values in this study. Future 
fNIRS investigations on other clinical outcomes, such as treatment response, may identify differences between 
MDD subtypes. Thirdly, this study was unable to determine the effect of individual psychotropic medications 
on haemodynamic response. Contrary to the present study, Takamiya et al.53 observed an association between 
oxy-haemoglobin at 5 channels across the frontotemporal region and daily defined dose of antidepressants. As 
antidepressants can improve depressive symptoms54 and improve cognitive function55, future fNIRS studies com-
paring antidepressants may provide insights into their mechanism of action. Lastly, majority of patients included 
in this study suffered from mild to moderate depression. Therefore, replication studies in severely depressed 
patients are needed to further support the fNIRS diagnostic paradigm. Despite these limitations, this is the first 
study to validate a single trial fNIRS VFT paradigm in the English language for MDD. Furthermore, the moderate 
sample size allows findings from this study to be generalised to other adult populations.

In conclusion, cortical oxy-haemoglobin changes measured by fNIRS provides a safe, non-invasive and direct 
measure of cerebral physiological function. Accordingly, diminished haemodynamic response in the frontal 
and temporal cortices of patients with MDD provides further evidence for the biological basis of this disorder. 
Threshold integral values determined in this study enable this fNIRS paradigm to be used as an objective and 
quantitative assessment of psychiatric patients who present with depressive symptoms.

Materials and methods
Participants.  One hundred and five HCs and 105 age- and gender-matched patients with MDD participated 
in this study. All participants spoke English and were between 21–65 years old. Depressive symptoms and psy-
chosocial functioning for each participant were evaluated on the day of participation using the 17-item Hamilton 
rating scale for depression (HAM-D)56 and global assessment of functioning (GAF)57, respectively.

HCs recruited from the community were assessed by a psychiatrist, and those included in this study were 
certified as being normal. HCs did not have a history of any psychiatric illnesses, including alcohol/substance 
abuse or addiction. HCs were excluded if they had conditions that could affect the central nervous system, includ-
ing neurological illnesses such as epilepsy, traumatic brain injury, cerebrovascular diseases, respiratory diseases, 
hepatic diseases, kidney diseases, cancer or intellectual disability. Additionally, HCs who received psychotherapy 
in the past, had a HAM-D score of 8 or higher on the day of participation32, or reported drowsiness on the day of 
participation, were excluded.

Patients with MDD were recruited from the outpatient psychiatric clinic at the National University Hospital, 
Singapore. They were diagnosed by a psychiatrist, according to the DSM-5 criteria58. Patients with MDD were 
excluded if they had any neurological illnesses, traumatic brain injury, cerebrovascular diseases, respiratory dis-
eases, hepatic diseases, kidney diseases, cancer, intellectual disability or alcohol/substance abuse or addiction. In 
addition, patients with MDD who received psychotherapy in the past, and those who reported drowsiness on the 
day of participation, were excluded.

Study details were fully explained to participants, and their written informed consent was obtained. This study 
was performed according to the Declaration of Helsinki, and the ethical principles in the Belmont Report. It was 
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approved by the Domain Specific Review Board of the National Healthcare Group, Singapore (protocol number 
2017/00509).

Verbal fluency task.  Prior to the NIRS measurement recording, participants watched a demonstration 
video, in which they were asked to remain seated, avoid excessive body or head movements, and focus on a cross 
displayed during the VFT. The paradigm used in previous studies18 was modified for the English language (Fig. 3). 
It consisted of a 30 s pre-task period, 60 s task period, and a 70 s post-task period. During the pre- and post-task 
periods, participants were asked to say “A, B, C, D, E” aloud and repeatedly. During the task period, they were 
instructed to generate as many words as possible, beginning with A, F and S for 20 s per letter, similar to the con-
ventional VFT59 and VFT protocols used in other fNIRS studies60. The total number of unique words, enunciated 
within the task period, was recorded as the task performance. Before the actual trial, participants were asked to 
practice the VFT for a shorter duration, and with the letters H, B and P. This ensured all participants understood 
the task and responded to the cues correctly during the actual trial.

NIRS measurement.  A 52-channel NIRS system (ETG-4000. Hitachi Medical Co., Tokyo, Japan) measured 
relative oxy-haemoglobin and deoxy-haemoglobin changes using 2 NIR light wavelengths (695 and 830 nm)61. 
Emitter and detector optodes were arranged 3 cm apart. The area between each emitter and detector pair is called 
a channel. Anatomically, channels correspond to cortical regions 2–3 cm beneath the skin and scalp surface62. 
Optodes were placed on the forehead and scalp, with the lowest optodes placed along the T4-Fpz-T3 line, defined 
by the 10/20 system. This arrangement allowed for haemoglobin changes in the bilateral prefrontal cortex, fron-
topolar cortex, and the anterior regions of the superior and middle temporal cortices to be measured. These 
approximate channel locations are based on the anatomical craniocerebral correction of the international 10/20 
system. Real coordinates of each channel were acquired using a 3D digitiser (Patriot system, Polhemus, USA) 
for each subject. Coordinates were superimposed on a cerebral cortex atlas using the statistical parametric map-
ping for near-infrared spectroscopy (NIRS-SPM) toolbox63–65, and did not differ between controls and patients 
(Supplementary Table 1).

NIRS signal analysis.  NIR signals were processed according to the method described by Takizawa et al.18. 
Oxy-haemoglobin, deoxy-haemoglobin and total haemoglobin were derived from optical densities using the 
modified Beer-Lambert law. Haemoglobin changes during the task period were normalised by linear fitting 
between a 10 s baseline at the end of the pre-task period, and a 5 s baseline 50 s into the post-task period (Fig. 3). A 
moving average factor of 5 was applied to remove short term motion artefacts. An algorithm identifying channels 
with body movement artefacts, or high and low frequency noise was applied. Artefact channels were not used in 
further analysis. Previous studies have also established the reliability of synthesising NIRS signals from a cluster of 
associated channels19. The first cluster of 11 channels is located approximately at the frontopolar and dorsolateral 
prefrontal cortex. The second cluster of 20 channels is located approximately at the left and right ventrolateral 
prefrontal cortex, superior temporal cortex, and middle temporal cortex. These clusters are referred to as ‘frontal 
region’ and ‘temporal region’ respectively (Fig. 4). Oxy-haemoglobin changes measured at the channels for each 
region are averaged for each subject. Participants with at least 6 available channels in either regions of interest 
were included. Oxy-haemoglobin changes at each region was quantified using 2 visual spatiotemporal indices, 
called the integral and centroid values. The integral value is the area under the oxy-haemoglobin curve during the 
task period, and it is a metric of haemodynamic response magnitude. The centroid value is the time correspond-
ing to the centre of the area under the oxy-haemoglobin curve, and it is a metric of haemodynamic change over 
time. A small centroid value indicates an earlier haemodynamic response, while a large centroid value indicates 
a delayed haemodynamic response19.

Statistical analysis.  The effect of diagnostic group on continuous and categorical variables were determined 
using t-test and Pearson’s chi-square test, respectively. Continuous variables are age, years of education, number 
of words generated, HAM-D score, GAF score, integral values, centroid values and number of available channels. 
Categorical variables are gender, ethnicity, handedness and family psychiatric history. Integral and/or centroid 
values that were significantly different between MDD and HCs were used in further statistical analysis.

Variables associated with frontal and temporal region integral and/or centroid values within diagnostic groups 
were determined using Student’s t-test for dichotomous variables, Kruskal-Wallis test for categorical variables, 
and Pearson’s correlation for continuous variables. Dichotomous variables are gender, family psychiatric history, 

Figure 3.  The verbal fluency task protocol.
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past admission to a psychiatric ward and pharmacotherapy. Categorical variables are ethnicity and handedness. 
Continuous variables are age, years of education, number of words generated, number of available channels in the 
corresponding region of interest, HAM-D score, GAF score, age at MDD onset, duration of MDD, and equivalent 
doses of antidepressants, anxiolytics and sedatives, and antipsychotics. Equivalent doses were calculated based on 
published mean dose ratios. Reference drugs for each class are fluoxetine, diazepam and chlorpromazine, respec-
tively66,67. For patients receiving more than one drug in each class, the combined equivalent dose was calculated.

Subsequent stepwise linear regression was performed to verify variables associated with frontal and tem-
poral region integral and/or centroid values. Independent variables included in the model for each diagnostic 
group are age, gender, years of education, HAM-D score, GAF score, number of words generated and number 
of available channels in the corresponding region of interest. Additional variables included in the regression 
analysis for patients with MDD are age at onset, duration of illness, past admission to a psychiatric ward and 
pharmacotherapy.

Lastly, receiver operating characteristic (ROC) analysis was performed to determine the accuracy of differen-
tiating HCs and patients with MDD based on their frontal and temporal region integral and/or centroid value. All 
tests were two-tailed, with a significance level of p ≤ 0.05. Data are expressed as mean and standard deviation. The 
effect size (Cohen’s d) and the 95% confidence interval are reported wherever a statistically significant difference 
was observed between groups. Statistical analysis was done on SPSS Statistic 21.0 (IBM).

Data availability
The data that support the findings of this study are available on request from the corresponding author. The data 
are not publicly available due to privacy or ethical restrictions.
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