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Midlife chronological and 
endocrinological transitions in 
Brain Metabolism: System Biology 
Basis for increased Alzheimer’s Risk 
in female Brain
Yiwei Wang1, Yuan Shang1, Aarti Mishra1, eliza Bacon2, fei Yin1 & Roberta Brinton1 ✉

Decline in brain glucose metabolism is a hallmark of late-onset Alzheimer’s disease (LoAD). 
comprehensive understanding of the dynamic metabolic aging process in brain can provide insights into 
windows of opportunities to promote healthy brain aging. chronological and endocrinological aging 
are associated with brain glucose hypometabolism and mitochondrial adaptations in female brain. 
Using a rat model recapitulating fundamental features of the human menopausal transition, results 
of transcriptomic analysis revealed stage-specific shifts in bioenergetic systems of biology that were 
paralleled by bioenergetic dysregulation in midlife aging female brain. Transcriptomic profiles were 
predictive of outcomes from unbiased, discovery-based metabolomic and lipidomic analyses, which 
revealed a dynamic adaptation of the aging female brain from glucose centric to utilization of auxiliary 
fuel sources that included amino acids, fatty acids, lipids, and ketone bodies. coupling between brain 
and peripheral metabolic systems was dynamic and shifted from uncoupled to coupled under metabolic 
stress. Collectively, these data provide a detailed profile across transcriptomic and metabolomic 
systems underlying bioenergetic function in brain and its relationship to peripheral metabolic 
responses. Mechanistically, these data provide insights into the complex dynamics of chronological and 
endocrinological bioenergetic aging in female brain. Translationally, these findings are predictive of 
initiation of the prodromal / preclinical phase of LoAD for women in midlife and highlight therapeutic 
windows of opportunity to reduce the risk of late-onset Alzheimer’s disease.

Late onset Alzheimer’s disease (LOAD) is a complex disease with approximately a 20-year prodromal period1–3. 
The prodromal/preclinical phase of AD is associated with brain glucose hypometabolism, which can be detected 
in at-risk-groups before diagnosis of the disease, and is predictive of disease progression4–13.

Brain glucose hypometabolism, mitochondrial dysfunction, and reduced oxygen flow in the brain are consid-
ered primary risk factors for LOAD14–18. On the cellular level, aging is associated with reduced glucose transporter 
expression, compromised hexokinase activity, phosphorylated (inactivated) PDH, and altered levels and activities 
of key enzymes involved in oxidative phosphorylation19–36. On the molecular level, aging is associated with sig-
nificant down regulation of nuclear encoded OXPHOS genes19,37 and disrupted balance of NAD/NADH, AMP/
ATP, purine and pyrimidine pool38,39.

During midlife, females experience both chronological and endocrinological aging. The perimenopausal to 
menopausal transition is unique to females, and is linked to deficits in brain glucose metabolism and mitochon-
drial dysfunction3,19,40, which could contribute to the two-fold greater lifetime risk of AD in females41–43.

Under normal conditions, brain utilizes glucose as its primary fuel source. Under stress conditions, the brain 
can adapt to utilize auxiliary fuel sources in response to an energy crisis. Under conditions of restricted nutrient 
access, auxiliary energy substrates such as lactate and ketone bodies are used to generate ATP44–47. Our previous 
research demonstrated that ketone bodies derived from brain lipids and white matter are utilized as an auxiliary 
fuel in the aging female brain in response to deficits in glucose metabolism22,33.
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Herein, we describe the dynamic metabolic profile at each stage of midlife chronological and endocrinological 
aging (menopausal transition) in the female brain. Given the central role of mitochondria and electron trans-
port chain (ETC) in brain bioenergetics, we investigated the transcriptome of both mitochondrial and nuclear 
encoded OXPHOS genes, followed by expression of key metabolic upstream regulators. We then detailed the 
dynamic metabolic profile in the female brain at each stage of aging, employing global metabolomics and lipid-
omic analysis, and supported these findings with transcriptomic analysis. Further, we characterized the relation-
ship between brain and peripheral metabolic and lipid profiles.

Materials and Methods
Animals (perimenopausal Animal Model of Human Menopausal transition (pAM)). All animal 
studies were performed following National Institutes of Health guidelines on use of laboratory animals and all 
protocols were approved by the University of Southern California Institutional Animal Care and Use Committee.

To model human menopausal transition that included chronological and endocrinological aging, female 
Sprague Dawley rats were obtained from Harlan Laboratories (now part of Envigo) at either 5-month or 8-month 
of age. Their estrous cycle status was monitored and evaluated by vaginal cytology obtained through daily vaginal 
cytology between 9am to 11am over the course of 2 months. Details of the procedure and classification of estrous 
stages were previously described in detail by Yin et al.19. Briefly, the 4 stages of estrous cycle – estrus (E), metestrus 
(M), diestrus (D), and proestrus (P) – were morphologically characterized based on by the proportion of different 
cell types (epithelial cells, cornified cells, and leukocytes) presented in the vaginal secretions19,48. Female Sprague 
Dawley rats normally cycle through the four stages of estrous cycle in 4 to 5 days (regular). As they age, their 
reproductive system becomes incompetent, and the estrous cycle becomes unpredictable and prolonged, usually 
between 6 to 9 days (irregular), before they finally become reproductive senescent and stay constantly in the 
estrous stage (acyclic). This transition occurs in rats at around 9-month to 10-month of age19,48.

To capture this endocrinological transition, we included 9-10 months old regular cycling rats (Reg 9 mo), 9-10 
months old irregular cycling rats (Irreg 9 mo), and 9-10 months old acyclic rats (Acyc 9 mo). And to test for age 
effect, we also included 6 months old regular cycling rats (Reg 6 mo) and 15 months old acyclic rats (Acyc 15 mo). 
To eliminate confounding effect of estrous cycle, all animals were euthanized on the estrous day of their estrous 
cycle. Rats that did not meet the endocrine status criteria were excluded from the study. For each assay, and an N 
of 5-7 per group was used.

Our initial study using the perimenopausal animal model (PAM) established validity of this model with regard 
to peripheral and brain female hormone levels19. Estrogen (E2) and progesterone (P4) levels were quantified 
by LC-MS/MS in serum and cerebral cortex collected at estrus across all groups19. We observed no correlation 
between serum and cortical E2 level at any given endocrine stage19. Serum E2 level was the highest in the Reg 9 
mo and Irreg 9 mo group and declined in Acyc 9 mo and Acyc 15 mo19. In the cortex, E2 level dropped to negligi-
ble level from Acyc 9 mo to Acyc 16 mo19. In contrast to E2, serum P4 levels were correlated with cortical levels19. 
Serum P4 level was highest in the Irreg 9 mo group and significantly declined with the menopausal transition 
in the Acyc 9 mo group and remained low in the Acyc 16 mo group19. Similarly, cortical P4 level significantly 
decreased following transition from Irreg 9 mo to Acyc 9 mo19.

Dissection of the brain. Rats were euthanized per animal protocol at University of Southern California, and 
brains were dissected quickly on ice to prevent degradation. Briefly, meninges were completely removed, followed 
by removal of hypothalamus, cerebellum, and brain stem. The two hemispheres were then separated, and hip-
pocampus was peeled off from each hemisphere carefully. Brain tissues were snap frozen in liquid nitrogen before 
being stored in −80 °C for subsequent assays.

RnA isolation. RNA was isolated following procedures previously described49,50. Briefly, frozen hippocam-
pus tissue was directly homogenized in TRIzol Reagent (Invitrogen, 15596026) using the Bullet Blender and 
silicon beads. Chloroform was used to extract RNA from the homogenate at a volume ratio of 1:5 to that of 
the TRIzol Reagent. Ethanol was then used to precipitate nucleic acids from the aqueous phase. RNA was fur-
ther purified using PureLink RNA Mini Kit (Invitrogen, 12183018 A) following manufacturer’s instructions. 
Purelink DNase (Invitrogen, 12185010) was used to eliminate DNA contamination. Purified RNA was eluded in 
RNase-free, diH2O. RNA concentration and quality were checked by NanoDrop One.

RnA Sequencing (RnA-Seq). RNA-Seq was conducted on hippocampal RNA at Vanderbilt Technologies 
for Advanced Genomics (VANTAGE). Only RNA samples with an acceptable RNA quality indicator score 
(RQI > 7) were used for sequencing. Enrichment of mRNA and library preparation of cDNA were done using a 
stranded mRNA (poly(A) - selected) sample preparation kit. Sequencing was performed at 100 bp paired-end on 
NovaSeq. 600, targeting 30 million reads per sample. Transcripts were mapped to rat genome (ensemble release 
90) using Kallisto 0.4.351. Tximport V1.6.052 was used to generate a counts table from Kallisto output, and DESeq. 
2 V1.18.153 was used to calculate normalized read counts for each gene and/or transcript and to perform expres-
sion analysis. Heatmap visualization was based on average expression value of vst transformed normalized counts 
from DESeq. 2 and scaled per gene. N of 5-7 animals was included per group.

principle component analysis. The gene counts were transformed in the “DESeq. 2” package in R by vari-
ance stabilizing transformation. Then, PCAs were computed based on the top 500 variable genes. Projections over 
the first and second principal components were used to present the separations. To better visualize the phenotypic 
separation, the average PCs ± SEM for each group were calculated and presented in the PCA plot.

Metabolome analysis. Changes in metabolomic profile during chronological and endocrinological 
aging processes was determined at each aging and endocrinological transition point. Both cortex (200μg) and 
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plasma (100μL) samples were included to identify differences and correlations between the central nervous 
system and the peripheral system. Metabolomics analysis was performed by Metabolon utilizing their Global 
Metabolomics platform and the Complex Lipids Panel to identify changes in metabolic pathways. Briefly, the 
Global Metabolomics Platform used mass spectrometry to identify and quantify 438 compounds of known 
identity, covering classes of metabolites including amino acids, carbohydrates, lipids, nucleotides, microbiota 
metabolism, cofactors and vitamins, and xenobiotics. The Complex Lipids Panel focuses on the lipidomic, and 
determines absolute quantitation, molecular species concentration, and complete fatty acid composition of 990 
named biochemicals from 14 lipid classes, including principle phospholipid, sphingolipid and neutral lipid 
classes. For heatmap visualization, normalized and log transformed data were scaled per metabolite. The distance 
maps of correlation between brain and plasma lipid profiles were generated using Orange 3.22 distance map fea-
ture without clustering. N of 5-7 animals was included per group.

ingenuity pathway analysis (ipA) of metabolomic data. Output of Metabolome data was processed 
using the metabolome analysis function of IPA. Because the nature of subtle changes during normal aging, 
metabolites with p value smaller than 0.25 were included. The disease and functions analysis predicted activa-
tion or inhibition of metabolic processes based on metabolites and networks compiled from literature and IPA’s 
Ingenuity knowledge base.

Statistical analysis. For metabolomic analysis, mass spectrometry readings were normalized to mass and 
log transformed. Missing values were imputed with the minimum observed value of each compound. Welch’s 
two-sample t-test was used to identify biochemicals that differed significantly between experimental groups. For 
the lipidomic correlational analysis between brain and plasma, Pearson correlation was used to calculate distance 
matrix. A p value of <0.05 is considered statistically significant for all statistical analysis in this study.

Results
Hippocampal transcriptome. RNA-Seq analysis of bulk hippocampal gene expression and principle 
component analysis revealed distinct transcriptional profiles as females transitioned through chronological and 
endocrinological aging (Fig. 1). Principle component analysis indicated that up to 43.7% of variance in the tran-
scriptome was explained by chronological aging and endocrinological aging combined (PC1), and chronological 
aging had a stronger impact on hippocampal transcriptome than endocrinological aging (Fig. 1 and Table 1). 
Further, chronological aging had more impact during post-menopausal aging, between 9-month-old animals 
and 15-month-old animals, than during pre-menopausal aging, between 6-month-old animals and 9-month old 
animals (Fig. 1 and Table 1). PCA also suggested that during endocrinological aging, Acyc 9 mo animals that 
completed the menopausal transition had distinct transcriptomic profile relative to reproductively competent 
Reg 9 mo animals and reproductively impaired Irreg 9 mo animals (Fig. 1). These observations confirmed our 
previous findings in hypothalamus, where changes in gene expression and DNA methylation profiles precedes 
reproductive senescence and changes in the hippocampus54.

Brain bioenergetics gene expression. Consistent with the overall trend in the hippocampal transcrip-
tome, RNA-Seq analysis revealed that chronological aging had greater impact on oxidative phosphorylation 
(OXPHOS) gene expression, especially between Acyc 9 mo and Acyc 15 mo (Fig. 2). Multiple subunits encoded 
by both nuclear (Fig. 2a) and mitochondrial genome (Fig. 2b), across all five electron transport chain complexes, 

Figure 1. Principle component analysis of hippocampal gene expression. PC1 can be explained by both 
chronological aging and endocrinological aging.  Chronological aging has a stronger impact on the 
trancriptomic profile, especially post-menopausal,  which led to a unique aging brain state.

Reg 9 mo vs 
Reg 6 mo

Irreg 9 mo vs 
Reg 9 mo

Acyc 9 mo vs 
Irreg 9 mo

Acyc 15 mo vs 
Acyc 9 mo

Upregulated 207 144 269 2285

Down-regulated 159 219 477 1888

Table 1. Number of differentially expressed genes (DEGs, p < 0.05) between each chronological or 
endocrinological aging transition stage. Post-menopausal aging is associated with the greatest number of DEGs.
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were significantly down-regulated. During endocrinological aging, animals displayed an initial trend of decline 
in OXPHOS gene expression at Irreg 9 mo and a non-significant rebound as the transition completed at Acyc 9 
mo, for both nuclear and mitochondrial encoded subunits (Fig. 2a and Fig. 2b).

The pattern of expression of mitochondrial transcriptional factor TFB2M was significantly down-regulated 
during post-menopausal chronological aging (p = 0.015), and TFAM displayed a trend towards down-regulation, 
supporting the observed change in mitochondrial gene expression (Fig. 2c). In contrast, mitochondrial RNA 
polymerase (POLRMT) and DNA polymerase (POLG) were significantly upregulated during post-menopausal 
aging (p = 0.014 and p = 0.007 respectively), which could be interpreted as a compensatory response to decline in 
TFAM (p = 0.056), TFB2M, and mitochondrial gene expression (Fig. 2c).

Given the changes in gene expression of electron transport chain subunits, we investigated gene expression 
of key energy metabolism and bioenergetic regulators (NRF1, NFE2L2, PPARA, PPARD, PPARG, PPARGC1A, 
PPARGC1B). RNA-Seq revealed that chronological aging from Reg 6 mo to Reg 9 mo was associated with a 
trend towards down-regulation of these genes, whereas chronological aging from Acyc 9 mo to Acyc 15 mo was 
associated with significant upregulation of multiple bioenergetic genes, including PPARA (p = 0.023), PPARD 
(p = 0.004), and PPARGC1B (0.008) (Fig. 2d). The endocrinological aging process was associated with a tempo-
rary surge of expression of energy metabolism regulators, especially PPARG, at Irreg 9 mo (Fig. 2d). Given the 
role of these regulatory genes in glucose and lipid metabolism, fluctuating gene expression patterns suggested 
potential dynamic fuel changes in the aging female brain, which we then investigated.

Figure 2. Gene expression of hippocampal electron transport chain subunits and bioenergetics regulators 
during endocrinological and chronological aging. Panel (a), nuclear encoded OXPHOS genes; (b), 
mitochondrial encoded OXPHOS genes; (c), expression of mitochondrial transcriptional factors, RNA 
polymerase POLRMT and DNA polymerase POLG; (d), gene expression of key bioenergetics regulators. 
*p < 0.05 in comparison to the previous column.

https://doi.org/10.1038/s41598-020-65402-5


5Scientific RepoRtS |         (2020) 10:8528  | https://doi.org/10.1038/s41598-020-65402-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Brain metabolome. Glycolysis and TCA cycle. Metabolomic analysis in brain indicated that compared 
to the Reg 6 mo group, Reg 9 mo group had significantly higher level of α-ketoglutarate (p = 0.033), along with 
multiple other TCA cycle intermediates and glycolysis intermediates (citrate, aconitate, dihydroxyacetone phos-
phate, 3-phosphoglycerate, and phosphoenolpyruvate). Compared to the Reg 9 mo group, Irreg 9 mo group had a 
significant reduction in multiple glycolysis intermediates (frugcose-6-phosphate (p = 0.035), 3-phosphoglycerate 
(p = 0.046), phosphoenolpyruvate (p = 0.029), and pyruvate (p = 0.021), Fig. 3a), with a trend towards reduction 
in TCA cycle intermediates (citrate, aconitate, and α-ketoglutarate, Fig. 3b). This observation was consistent with 
our previous findings of significantly reduced brain glucose uptake and electron transport chain complexes I 
and IV activities during the same stage of endocrine aging19. Further, compared to the Reg 6 mo group, Acyc 15 
mo had significantly higher glycolysis intermediates (fructose 1,6-diphosphate (p = 0.006), 3-phosphoglycerate 
(p = 0.008), and phosphoenolpyruvate (p = 0.005), Fig. 3a). However, Acyc 15 mo group had reduced pyruvate 
(Fig. 3a) and TCA cycle intermediates (Fig. 3b). This can be explained by the significant down-regulation of 
genes encoding TCA cycle enzymes (IDH3B, IDH3G, DLST, SUCLA2, SUCLG1, SDHB, SDHC, SDHD, FH, and 
MDH1), oxidative phosphorylation genes (Fig. 3), and a trend towards decreased expression of glycolysis genes 
(Fig. 3d). Hexokinase 1 and 2 were significantly upregulated, suggesting a futile compensatory response (Fig. 3c).

Amino acid and peptide metabolism. While brain relies on glucose as its primary fuel source, auxiliary fuels 
such as amino acids, fatty acids, and ketone bodies can be used in response to changing fuel source avail-
ability. For this reason, we investigated whether fluctuating glycolysis and TCA cycle activity affected amino 
acid metabolism. Brain amino acid levels peaked in Reg 9 mo (Fig. 4a). Coupled with the highest levels of 
gamma-glutamyl amino acids, reduced glutathione (GSH), and 5-oxoproline at this stage (Fig. 4b), which are 
involved in transporting amino acids across cellular membrane, these data suggested increased amino acid 
metabolism in reg 9 mo group. IPA metabolomic pathway analysis predicted significant activation of amino 

Figure 3. Glycolysis and TCA cycle intermediates and key enzyme gene expression. Panel (a), glycolysis 
intermediates and lactate level; (b), TCA cycle intermediates and derivatives level; (c), gene expression of 
key enzymes involved in glycolysis; (d), gene expression of key enzymes involved in TCA cycle. *p < 0.05 in 
comparison to the previous column. #p < 0.05 in comparison to Reg 6 mo.

Figure 4. Brain amino acids levels (a) and gamma-glutamyl amino acids levels (b). *p < 0.05 compared to Reg 
9 mo group.
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acid release during this stage (z = 2.327, p = 2.06e-8). Because glucogenic amino acids (Ala, Arg, Asn, Asp, Cys, 
Glu, Gln, Gly, His, Met, Pro, Ser, Val, Phe, Ile, Thr, Trp, Tyr) can feed into the TCA cycle as intermediates, the 
elevated amino acid level provided a plausible explanation for the trend toward increase of multiple TCA cycle 
intermediates, especially α-ketoglutarate (p = 0.03) (Fig. 3b). Oxaloacetate from the TCA cycle can be fur-
ther converted to phosphoenolpyruvate for gluconeogenesis. However, due to the extremely low gene expres-
sion level of fructose-bisphosphatase in the brain, the enzyme catalyzing the rate limiting step that converts 
fructose-1,6-diphosphate to fructose 6-phosphate, carbon backbone of amino acids is unlikely to be converted 
to fructose-1,6-biphosphate for glucose production. This fits well with the non-significant increase of phosphoe-
nolpyruvate, 3-phosphoglycerate and DHAP and no increase in fructose-1,6-diphosphate, fructose-6-phosphate, 
or glucose-6-phosphate in the Reg 9 mo group (Fig. 3a).

Ketone body metabolism. Because ketogenic amino acids (Lys, Leu, Thr, Tyr, Phe, Trp, Ile) can be used to gener-
ate ketone bodies, we investigated the metabolic profile of ketone body generation. Metabolomic analysis revealed 
a gradual decline of 3-hydroxybutyrate during chronological and endocrinological aging (p = 0.021, Fig. 5a). 
Transcriptome analysis confirmed that genes for ketone body transport (SLC16A1), ketogenesis (ACAT1, 
HJGCS2, HNGCL, BDH1), and ketolysis (BDH1, OXCT1, ACAA2) all declined with chronological and endo-
crinological aging (Fig. 5b). These data suggest that the surge of amino acid metabolism in the Reg 9 mo group 
was not associated with ketone body metabolism.

Glycolipids metabolism. Because the systematic shift in amino acid metabolism and TCA cycle intermediates did 
not lead to gluconeogenesis or ketogenesis, we hypothesized that these changes may instead lead to lipogenesis. 
Indeed, IPA metabolomic analysis predicted activation of re-esterification of lipids (z = 2.00, p = 9.58e-7) from 
Reg 6 mo to Reg 9 mo. Further, change in triglyceride (TAG) level was fatty acid side chain saturation-dependent. 
In general, levels of TAGs with saturated or monounsaturated fatty acid side chains were the highest in the Reg 
9 mo group, in contrast to those with polyunsaturated side chains (Fig. 6a). Transcriptomic analysis suggested 
two potential mechanisms for lipogenesis at Reg 9 mo. The first route was de novo synthesis from DHAP. We 
observed significant upregulation of the TPI1 gene, which encodes the enzyme that catalyzes the interconversion 
of glycolysis intermediate Glyceraldehyde-3-phosphate to DHAP, the precursor to triglycerides (Fig. 3c). This 
observation is further supported by increased levels of DHAP, glycerol, and glycerol 3-phosphate (Fig. 6b), and 
non-significant upregulation of GPAT3 (Fig. 6c), which catalyzes rate limiting step of glycerol-3-phosphate to 
lysophosphatidic acid conversion. The second route is conversion from monoacylglycerol (MAG) (Fig. 6d), and 
was supported by increased expression of MOGAT1 and DAGT1 (Fig. 6c), which are responsible for converting 
MAG to diacylglycerol (DAG) (Fig. 6e) and DAG to TAG respectively.

In contrast, post-menopausal aging from Acyc 9 mo to Acyc 15 mo was associated with significant activation 
of lipid catabolism (z = 2.376, p = 3.18e-6), especially polyunsaturated TAGs (Fig. 6a). This was evident by a sig-
nificant upregulation of diacylglycerol lipase (DAGLA and DAGLB) and monoacylglycerol lipase (MGLL), and 
non-significant upregulation of triglyceride lipase (PNPLA2) (Fig. 6c). Increased lipolysis and potentially stalled 
β-oxidation in the Acyc 15 mo group could explain the accumulation of monoacylglycerol in this group.

Fatty acid metabolism. Fatty acids are major components of glycolipids. Systematic shifts in lipogenesis and 
lipolysis should be paralleled by shifts in fatty acid metabolism. Consistent with the pattern of TAG metabolism, 
fatty acid metabolism in the midlife aging female brain is also chain length- and saturation-dependent (Fig. 7). 
Saturated short-chain and long-chain fatty acid levels were the lowest in the Acyc 15 mo group. On the other 
hand, very long-chain fatty acids and unsaturated fatty acids were the lowest in the Reg 9 mo group and accumu-
lated in the Acyc 15 mo group (Fig. 7a). Fatty acids can be catabolized through β-oxidation in either mitochon-
dria or peroxisome. Post-menopausal aging from Acyc 9 mo to Acyc 15 mo was associated with upregulation of 
long-chain acyl-CoA synthetase (Fig. 7c), which enables long-chain fatty acids to be transported into the mito-
chondria or peroxisome, as indicated by a significant increase of lipid transportation (z = 2.635, p = 2.34e-15), 
and fatty acid activation (z = 2.333, p = 1.85e-11). However, while carnitine palmitoyl transferases (CPT1 and 
CPT2) were upregulated in the Acyc 15 mo group, the carnitine-acylcarnitine translocase (SLC25A20) was signif-
icantly down-regulated (Fig. 7c), indicating potential impairment of the carnitine shuttle, which is responsible for 
transferring acylcarnitine into mitochondria. Similarly, transporters responsible for importing long-chain fatty 

Figure 5. Brain ketone body level (a) and expression of genes involved in ketone body metabolism (b). 
*p < 0.05 in comparison to the previous column. #p < 0.05 in comparison to Reg 6 mo.
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acids into the peroxisome (ABCD3, ABCD4) were also down-regulated, although changes were not statistically 
significant (Fig. 7c).

Coincident with observed changes in fatty acid transporters, multiple genes encoding enzymes for β-oxidation 
in both mitochondrial and peroxisome were down-regulated (Fig. 7c). These alternations of genomic responses 
could explain the downregulation of fatty acid beta oxidation (z = -0.853, p = 1.27e-26) and the accumulation of 
acylcarnitine in the Acyc 15 mo group (Fig. 7b). Coupled with the inhibition of TCA cycle (z = 2.828, p = 2.59e-
29), this observation further explained the down-regulation of mitochondrial OXPHOS genes (Fig. 2). However, 
since short-chain fatty acids can enter mitochondria without the carnitine shuttle, they still can be readily metab-
olized, which is consistent with the non-significant upregulation of ACADB, the acyl-CoA dehydrogenase that 
has specific activity for short-chain fatty acids (Fig. 7c). Because branched chain fatty acids are mostly saturated 
fatty acids, the non-significant upregulation of ACOX2 and ACOX3, two acyl-CoA oxidase isoforms involved 
in branched chain fatty acid metabolism in peroxisomes, is also consistent with the reduced saturated fatty acids 
level in the Acyc 15 mo group (Fig. 7).

Plasma lipidome. The lipid metabolic profile in plasma was distinct from that of brain. In plasma, metabolomic 
analysis revealed a decline in free fatty acid levels in Reg 9 mo group (Fig. 8a). Unlike the brain, which released 
fatty acids from lipids, plasma fatty acids were likely converted to triglyceride for storage in Acyc 15 mo group, 
as evident by a decrease in free fatty acid levels (Fig. 8a) and increased triglyceride levels (p < 0.05 for 406 out of 
510 TAG species compared to Reg 9 mo) (Fig. 8c). Significantly lower levels of multiple acyl carnitine and rela-
tively higher free carnitine levels supported the hypothesis of reduced fatty acid utilization in the peripheral in 
Acyc 15 mo animals (Fig. 8b). In parallel with the brain, ketone body levels gradually decreased in plasma. The 
dynamic metabolic and lipidomic profiles highlighted changes in systems of biology indicative of transitioning 
from midlife aging to late life aging.

Figure 6. Glycolipids metabolism and expression of relevant genes. Panel (a), brain triglyceride levels; (b), 
DHAP, glycerol, and glycerol 3-phosphate levels; (c), gene expression of lipogenesis and lipolysis enzymes; (d), 
brain monoacylglycerol levels; (e), brain diacylglycerol levels. Lipids arranged by increased unsaturation and 
total carbon number from top to bottom for panels (a,d,e). *p < 0.05 compared to the previous column.
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Brain-plasma lipid profile correlation. Correlation analysis of brain and plasma lipidome revealed that the lipid 
metabolic profiles were dynamic within each compartment and independent of each other across chronological and 
endocrinological aging stages (Fig. 9). Significantly positive correlations among ceramides (CER), phosphatidylcho-
lines (PC), phosphatidylethanolamines (PE), sphingomyelins (SM), diacylglycerols (DAG), and triacyclglycerols 
(TAG) were observed at 6 months within either brain or plasma (Fig. 9a). In contrast, an overall negative correlation 
was observed between the two systems, especially between brain total free fatty acid (FFA) and plasma ceramides, 
phospholipids, lysophospholipids, and diacylglycerols (Fig. 9a). These data suggested dynamic and independent 
lipid interconversion and homeostasis within each system in young and reproductive competent females.

As animals transitioned from Reg 6 mo to Reg 9 mo, correlation analysis revealed a pattern of declining pos-
itive correlation among lipid species within both brain and plasma, and more positive correlations between the 
two compartments, where the significant negative correlation between brain total free fatty acid and plasma lipids 
was lost (Fig. 9b). These observations suggested a potential transition from independent metabolic compartments 
to interdependence between the two systems. At this stage, brain free fatty acid (FFA) level was significantly 
negatively correlated with brain monoacylglycerols (MAG) and diacylglycerols (DAG) (Fig. 9b), consistent with 
our metabolomic and transcriptomic analysis suggesting sequestering of brain free fatty acids for lipogenesis. A 
similar pattern of free fatty acid sequestration was also observed in plasma, although fatty acids were negatively 
correlated with ceramides instead of glycolipids (Fig. 9b).

The shift in lipid metabolism continued into Irreg 9 mo, especially in the brain, where significant correlations 
among lipid species were limited to phosphatidylcholine, triacylglycerol, and diacylglycerols, and between sphin-
gomyelin and phosphatidylethanolamine (Fig. 9c). In contrast, positive correlations remained among triacylg-
lycerol, diacylglycerol, monoacylglycerol, and free fatty acids, as well as among phosphatidylcholine, ceramides, 
sphingomyelin, and cholesterol esters (CE) were present in plasma, (Fig. 9c). Further, brain free fatty acid was 
negatively correlated with most lipid species in both brain and plasma, including plasma free fatty acids (Fig. 9c).

At Acyc 9 mo, disruption in lipid metabolism was evident in both brain and the periphery. Very few signifi-
cant correlations were observed within either system or between the two (Fig. 9d). In brain, the sole significant 
correlation was a positive correlation between monoacylglycerol and diacylglycerol (Fig. 9d). And in plasma, 
the sole significant correlation was a positive association among hexosylceramide (HCER), sphingomyelin, and 
cholesterol ester (Fig. 9d). Brain and plasma lipid species appeared to be negatively correlated again, particu-
larly between brain free fatty acids and plasma ceramides and sphingomyelin, and between brain ceramides and 
plasma triglycerides (Fig. 9d).

At Acyc 15 mo, lipid homeostasis appeared to be restored among most plasma lipid species, but to a lesser 
degree in brain (Fig. 9e). In plasma, positive correlations were observed between triacylglycerol and diacylg-
lycerol, triacylglycerol and monoacylglycerol, as well as among sphingomyelin, ceramide, cholesterol ester, and 
lysophospholipids (Fig. 9e). In the brain, ceramides were positively correlated with free fatty acids, as well as 
phosphatidylethanolamine level (Fig. 9e), suggesting potential de novo synthesis of ceramide in the brain, as 
observed in our previous studies33. In contrast to the negative correlation observed at Reg 6 mo, brain free fatty 
acid was significantly positively correlated with plasma cholesterol ester, ceramide, lysophospholipids, and sphin-
gomyelin, but not plasma fatty acids (Fig. 9e).

Figure 7. Fatty acid metabolism. Panel (a), level of free fatty acid (FFA) levels in the brain; (b), level of acyl-
carnitine levels in the brain; (c), gene expression of genes involved in fatty acid metabolism and β-oxidation. 
*p < 0.05 compared to the previous column. #p < 0.05 to Reg 6 mo group. &p < 0.05 to Reg 9 mo group.
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Discussion and conclusion
Aging is the greatest risk factor for late onset AD55. While the average age of diagnosis for AD is in the mid 60 s 
to 70 s, a prodromal phase of 10 to 20 years precedes diagnosis55–58. The average age of menopause is ~51 years of 
age59, which is approximately 20 years prior to the average age of AD diagnosis. The coincidence of completion of 
the menopausal transition and the prodromal phase of AD in females may explain the higher risk for developing 
mild cognitive impairment between age 55 to 70 years60, higher risk for developing AD between age 65 to 7560, 
and a two-fold life-time risk of LOAD in comparison to males43,61–63.

Figure 8. Plasma lipidomic analysis. Panel (a), free fatty acid levels; (b), acylcarnitine and free carnitine levels; 
(c), triglyceride (TAG) levels. *p < 0.05 to the previous column. #p < 0.05 to Reg 6 mo.
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To address change in bioenergetic function, we first investigated gene expression of both nuclear and mito-
chondrial encoded OXPHOS genes, and observed down-regulation of OXPHOS genes in Acyc 16 mo animals. 
Down-regulation of OXPHOS genes was paralleled by decline in mitochondrial transcriptional factors (TFAM, 

Figure 9. Correlation of brain and plasma lipid profiles at each chronological and endocrinological aging 
stage. Panel (a), Reg 6 mo; (b), Reg 9 mo; (c), Irreg 9 mo; (d), Acyc 9 mo; (e), Acyc 15 mo; (f), summary of 
significant correlations between brain and plasma lipid species. Dark red indicates negative correlation, 
and bright yellow indicates positive correlation. FFA, free fatty acid; MAG, monoacylglycerol; DAG, 
diacylglycerol; TAG, triacylglycerol; SM, sphingomyelin; CER, ceramide; HCER, hexosylceramid; DCER, 
dihydroceramide; PC, phosphatidylcholine; PE, phosphatidylethanolamine; LPC, lysophosphatidylcholine; 
LPE, lysophosphatidylethanolamine; CE, cholesterol ester.
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TFB1M, TFB2M). When OXPHOS gene transcription was down-regulated, PPARA and PPARD were upreg-
ulated, suggesting a compensatory response to promote mitochondrial biogenesis. Increased expression of 
PPARA and PPARD was paralleled by increases in mitochondrial DNA polymerase POLG and RNA polymerase 
POLRMT. Collectively, the data are consistent with a shift in patterns of both nuclear and mitochondrial gene 
expression that is paralleled by mitochondria phenotypes consistent with the transcriptional profile.

The change in mitochondrial transcriptional profile was paralleled by adaptations in fuel supply (Fig. 10). We 
observed that different fuel sources were differentially preferred at each stage of aging, and that the perimeno-
pausal transition was a turning point in brain bioenergetics and metabolic profile (Fig. 10). Prior to the onset of 
perimenopausal transition, the female brain primarily utilized glucose for fuel. Decline in glucose metabolism 
across the menopausal transition observed herein replicates our earlier findings in animal models19,20,23,26, which 
translated to human female brain40,64. Chronological aging from 6-months reproductively competent animals 
to 9-month reproductively competent animals was associated with increased utilization of amino acids as fuel 
sources. Given the lack of gluconeogenesis or ketogenesis observed in Reg 9 mo animals, the carbon backbone of 
amino acids was likely shuttled to DHAP for triglyceride production. At the same time, monoacylglycerols also 
tended to be converted to triglycerides, explaining the nonsignificant but systematic decrease of monoacylglyc-
erol and free fatty acids which was paralleled by increased triglycerides, particularly saturated or monounsatu-
rated triglycerides.

Onset of endocrinological transition to the perimenopause was characterized by a shift from amino acid 
metabolism to lipid metabolism, as amino acids no longer sustained the energetic demand of the brain. In paral-
lel, glycolysis was impaired, as evident by significant reduction in multiple glycolysis intermediates. This is con-
sistent with a trend towards down-regulation of OXPHOS genes observed in this study, as well as reduced glucose 
uptake, electron transport chain complex I and complex IV activities, and mitochondrial respiratory capacity as 
in our previous studies19,20,23.

During post-menopause chronological aging, mitochondria became progressively inefficient in oxidative 
phosphorylation and fatty acid beta oxidation. While short chain fatty acids can still enter mitochondria and be 
metabolized for energy production, long chain fatty acids could not be effectively transported into mitochondria, 
which led to accumulation of long-chain fatty acids (Fig. 7a). In a potential feedback mechanism, triglycerides 
can be continuously catabolized to generate free fatty acids. This observation is in drastic contrast to plasma, 
where triglycerides were significantly elevated during post-menopausal aging. The outcome of brain lipid catab-
olism could be two-fold. First, free fatty acids can stimulate acylcarnitine production, satisfying a key step in 
transporting long-chain acyl-CoA into mitochondria for β-oxidation while also serving as a marker of incom-
plete β-oxidation65,66. Second, as a feedback mechanism it could stimulate glucose metabolism as a compensatory 
mechanism, which would be consistent with upregulation of genes involved in glycolysis in aged reproductive 
senescent rats compared to newly menopausal rats. However, deficiency in TCA cycle and electron transport 
chain activity would restrict energy production through oxidative phosphorylation, thereby promoting anaerobic 
glycolysis in the brain (production of lactate rather than pyruvate). Throughout the whole transition, the level 
of ketone bodies gradually diminished, due to reduced ketogenesis, which is consistent with literature showing 
reduced ketone body metabolism with aging in human studies67.

In addition to their role as an auxiliary fuel source, lipids are also key components of cellular membranes and 
are involved in lipid storage and transportation. The observed alterations in lipid metabolism during chrono-
logical and endocrinological aging are consistent with our previous analysis demonstrating fluctuation in lipid 
droplet accumulation and increase in myelin degradation as an adaptive approach of the aging female brain to 
generate an alternative energy source22,33. The alteration in myelin composition resembles the human aging and 
AD metabolic phenotype of increased lipid metabolism and myelin turnover, with decreased energy metabolism 
and mitochondrial function68,69.

The lipidomic profile in plasma is consistent with a dynamic response to challenges in providing fuel for brain 
ATP generation. The dynamic response was particularly evident in free fatty acids early during both chronolog-
ical (Reg 6 mo to Reg 9 mo) and endocrinological aging (Reg 9 mo to Irreg 9 mo). Completion of reproductive 

Figure 10. Dynamic metabolic aging in female brain during chronological and endocrinological aging. Decline 
in glucose metabolism results in utilization of amino acids as an interim metabolic fuel alternative, followed by 
activation of fatty acid metablism, as oxidative phosphorylation continues to decline.
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senescence was characterized by a shift in plasma metabolome from a glucose metabolomic phenotype to a fatty 
acid and ultimately a triglyceride lipid phenotype.

The correlational analysis of brain and plasma lipid profiles further revealed that while both systems shift from 
glucose metabolism to lipid metabolism, the dynamic changes were not completely paralleled, highlighting the 
complexity and multi-directionality of lipid interconversion within each system. During the transition from pre-
menopausal chronological aging to perimenopausal endocrinological aging, lipid metabolic homeostasis within 
brain and plasma were gradually disrupted. Our analysis suggested that while the peripheral system could restore 
the balance to a younger phenotype during postmenopausal aging, the brain lipid metabolism remained dis-
rupted. This is consistent with our brain metabolic and transcriptomic analysis suggesting that post-menopausal 
brains had limited capacity for both oxidative phosphorylation and β-oxidation.

While this study focused on bioenergetic and metabolic aging in female brain, the underlying mechanisms 
reported herein may be relevant to aging in the males. Compared to menopause, andropause is a similar tran-
sition with a wider age window, longer duration, and more gradual loss of sex hormones. The aging male brain 
also displays glucose hypometabolism70,71, which is correlated with waning level of testosterone72. Loss of tes-
tosterone in males undergoing chemical castration for prostate cancer can result in symptoms comparable to 
ovariectomy in females, including hot flashes and cognitive decline73–76. Further, similar to estrogen, testosterone 
has been shown to exert a protective effect on mitochondrial bioenergetics and reduce generation of AD patholo-
gies77,78, whereas low circulating testosterone level in elder males is associated with increased risk of LOAD77,79–81. 
However, clinical studies on therapeutic effect of testosterone on age-related cognitive decline in males have 
yielded mixing results82,83. An investigative approach comparable to that taken in the current analysis may yield 
better understanding of the metabolic profile in aging male brain and the impact of testosterone.

We are aware of the limitations of interpreting cross sectional observations to infer longitudinal changes. 
However, given the type of samples required for this type of mechanistic investigation, there were limited alter-
natives. While many observed changes did not reach statistical significance, the pattern of changes was consistent 
and systematic. This is likely due to the use of a natural aging model rather than an accelerated aging or disease 
model. Using a natural aging model of chronological and endocrinological aging was key to revealing the systems 
of biology required to respond to energetic demands of brain.

While this study provided systematic and detailed metabolic aging road map in the aging female brain, further 
hypothesis-driven mechanistic studies are necessary to fully understand the implications of such transitions. The 
brain is composed of multiple cell types. Neurons primarily rely on glucose as its fuel source84,85 whereas astro-
cytes are the primary source of fatty acid β-oxidation, lactate generation, and the only producer of ketone bodies 
in brain when glucose availability is limited86–89. Given the tight control of supply and demand required for brain 
bioenergetics, it is important to elucidate how different cell types adapt, communicate with, and support each 
other. Further, metabolic intermediates from auxiliary fuel sources such as free fatty acids can provoke chronic 
inflammation, which is also a common theme of age-related neurodegenerative disease. Understanding how the 
metabolic profile changes correspond with inflammatory markers is key to identifying and deploying effective 
interventions to promote healthy brain aging.

conclusion
The bioenergetic system in the aging brain is complex, adaptive, and dynamic. Chronological aging and endo-
crinological aging both drive critical aspects of the bioenergetic system in brain. Coupling between brain and 
peripheral metabolism is dynamic and has implications for therapeutic and nutritional interventions to address 
brain metabolic distress. Given the parallel metabolic phenotype between aging female brain and prodromal AD, 
our observations provide insights into preventative and therapeutic windows of opportunity to sustain brain 
metabolic health and reduce risk of AD.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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