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Cold storage reveals distinct 
metabolic perturbations in 
processing and non-processing 
cultivars of potato (Solanum 
tuberosum L.)
Sagar S. Datir1,2,6*, Saleem Yousf3,6, Shilpy Sharma1, Mohit Kochle1, Ameeta Ravikumar4 & 
Jeetender Chugh3,5*

Cold-induced sweetening (CIS) causes considerable losses to the potato processing industry wherein 
the selection of potato genotypes using biochemical information has found to be advantageous. Here, 
1H NMR spectroscopy was performed to identify metabolic perturbations from tubers of five potato 
cultivars (Atlantic, Frito Lay-1533, Kufri Jyoti, Kufri Pukhraj, and PU1) differing in their CIS ability and 
processing characteristics at harvest and after cold storage (4 °C). Thirty-nine water-soluble metabolites 
were detected wherein significantly affected metabolites after cold storage were categorized into 
sugars, sugar alcohols, amino acids, and organic acids. Multivariate statistical analysis indicated 
significant differences in the metabolic profiles among the potato cultivars. Pathway enrichment 
analysis revealed that carbohydrates, amino acids, and organic acids are the key players in CIS. 
Interestingly, one of the processing cultivars, FL-1533, exhibited a unique combination of metabolites 
represented by low levels of glucose, fructose, and asparagine accompanied by high citrate levels. 
Conversely, non-processing cultivars (Kufri Pukhraj and Kufri Jyoti) showed elevated glucose, fructose, 
and malate levels. Our results indicate that metabolites such as glucose, fructose, sucrose, asparagine, 
glutamine, citrate, malate, proline, 4-aminobutyrate can be potentially utilized for the prediction, 
selection, and development of potato cultivars for long-term storage, nutritional, as well as processing 
attributes.

Potato (Solanum tuberosum L.) – an important staple non-grain vegetable food crop – is used globally for both 
processing and table purposes. In order to ensure the year-round supply of quality tubers for consumption, cold 
storage of potato tubers after harvesting is mandatory to reduce sprouting, prevent diseases, avoid losses due to 
shrinkage, and extend post-harvest shelf life1,2. Usually 8–10 °C is the recommended storage temperature for 
potato tubers along with sprout suppressants, such as isopropyl N-(3-chlorophenyl) carbamate. The use of such 
chemical suppressants – due to their environmental safety and toxicity issues – are being replaced and reliance 
on storage of potatoes at colder temperatures even below 4 °C has been increased gradually3–5. During cold stor-
age, potato tubers undergo cold-induced sweetening (CIS), wherein rapid degradation of starch and sucrose 
hydrolysis leads to the accumulation of reducing sugars (RS) – such as glucose and fructose6. During the fry-
ing process, these RS react with free amino acids in a Maillard reaction to generate dark-pigmented products 
that are bitter and unsightly to consumers. In addition to this, one of the products of the Maillard reaction is 
acrylamide – a potent neurotoxin and carcinogen4,7. Hence, CIS is considered as one of the critical parameters 
in potato production as well as in processing; therefore, the identification and development of potato tubers 
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resistant to CIS has become a priority in a number of potato breeding programs8–10. Also, to meet the challenges 
of a frequently-changing market, production circumstances, and improving their economic condition11 as well 
as consumer’s preferences, it is crucial to develop potato cultivars that possess CIS resistance. In this regard, the 
metabolic stability of potato tubers during the cold storage period has been identified as one of the prime traits 
to be investigated for breeding programs worldwide12, wherein selection of potato genotypes at early generations, 
using biochemical information through marker-trait associations has been found to be advantageous13.

Metabolomic studies have been crucial in potato breeding mainly because tuber quality traits such as con-
tent and quality of starch, chipping quality, flesh color, taste, and glycoalkaloid content, etc., have been shown 
to be linked to a wide range of metabolites and alteration in metabolic networks14–16. Metabolic profiles in 
different life cycle stages of potato tubers were characterized to link temporal changes in metabolites to their 
acrylamide-forming potential17. In a recent study, comprehensive metabolomics and ionomics analysis on raw 
and cooked potato tubers of 60 unique genotypes spanning five marker classes were performed to understand the 
chemical variation and nutritional values in different varieties15. Such studies presented the metabolite diversity, 
which laid the foundation to generate potato cultivars with enhanced nutritional and processing qualities for 
human health.

Processing industry and consumers’ demand for potato cultivars with good CIS resistance, high specific grav-
ity and dry matter (DM), low RS content11,18 along with improved nutritional qualities. In this regard, com-
mercially grown processing (Atlantic and Frito Lay 1533) and non-processing (Kufri Jyoti and Kufri Pukhraj) 
potato cultivars18, are popular along with one locally grown table purpose cultivar (PU1) in India. While, Atlantic 
and Frito Lay-1533 have been rated as the good varieties for processing purpose with good storability19, Indian 
potato cultivars Kufri Pukhraj and Kufri Jyoti retain their suitability for table purpose due to their medium and 
average/poor storability, but have been found to be inferior for processing purposes due to high RS and low DM 
content11,19–21. Therefore, to advance our knowledge about the biochemical variation underlying CIS abilities of 
potato tubers, a comprehensive analysis needs to be performed from potato cultivars differing in their storability, 
as well processing attributes.

Here, we have carried out 1H nuclear magnetic resonance (NMR)-based untargeted metabolic profiling of 
five potato cultivars (mentioned above) differing in their CIS abilities and processing characteristics from freshly 
harvested (FH) potato tubers and after one-month of cold storage at 4 °C (CS). The key objective of this study 
was to examine the differences in metabolic profiles of these cultivars at harvest and after cold storage to further 
advance the knowledge of biochemical mechanisms underpinning the CIS trait. We report candidate metabolites 
(based on the metabolomics data and pathway analysis) that can potentially be used in breeding programs for the 
development of new cultivars with CIS resistance and improved processing attributes and thereby would enhance 
the potato tuber quality.

Results and discussion
Global profiling of metabolites in different potato cultivars – Processing versus non-processing 
cultivars.  Global profiling of metabolites obtained from methanolic extracts of the FH and CS tubers obtained 
from five different potato cultivars, differing in their cold storage behaviour and processing characteristics20–23, 
identified a total of 39 abundant water-soluble metabolites using 1D 1H-NMR (Fig. S1). These were further con-
firmed using 2D 1H-1H TOCSY (Fig. S2) and information from the BMRB database. Water-insoluble metabolites 
in the organic phase gave broad and overlapping signals in 1D 1H-NMR and thus were excluded from the analysis.

A range of distinct metabolites was detected that could be characterized mainly as sugars, sugar alcohols, 
amino acids, and organic acids (Table S2). The accumulation of these metabolites during various storage tempera-
tures from different potato varieties have been previously reported16,24,25. Furthermore, PLS-DA analysis showed a 
divergent separation on the scores plot of PC1 and PC2, accounting for a 48.1% and 28.5% variation in the metab-
olites extracted from the FH and CS treated tubers of the different cultivars used in the study (Fig. 1). The unsu-
pervised PCA plots for the different cultivars in the two conditions have been depicted in Fig. S3. Interestingly, 
the clustering of single points in the principal component space (marked by ellipses showing 95% confidence 
limits of a normal distribution) for metabolites from the FH tubers of Atlantic and FL-1533 (processing cultivars) 
clustered together while FH tubers from Kufri Jyoti and Kufri Pukhraj cultivars and the local PU1 were more 
similar to each other (Fig. 1). Further, the ellipses marking the principal component space for the metabolites of 
the cold storage tubers were also found to be different in processing, non-processing, and locally grown cultivars 
(Fig. 1).

In order to highlight the differences in the FH and the CS condition from the processing, the non-processing, 
and the local potato cultivars used in the study, pair-wise analysis was done (Fig. S4). PLS-DA analysis of metab-
olites obtained from the processing cultivars, Atlantic and FL-1533 showed 84.2% variation in PC1 and 10% var-
iation in PC2 (Fig. S4A); and 84.4% variation in PC1 and 9.5% variation in PC2 (Fig. S4B), respectively. PLS-DA 
analysis of metabolites obtained from the non-processing cultivars, Kufri Jyoti and Kufri Pukhraj, showed 
92.8% variation in PC1 and 3.8% variation in PC2 (Fig. S4C); 90.4% variation in PC1 and 6.1% variation in PC2 
(Fig. S4D), respectively upon CS. Similarly, 92.9% variation in PC1 and 3.4% variation in PC2 (Fig. S4E) were 
observed for the metabolites obtained from the local cultivar PU1. Such differences due to metabolite content 
in the different cultivars at the two time-points could be attributed to the genetic make-up of each cultivar used 
in the present study. In fact, variability in the metabolite content has been reported in potato cultivars differing 
in their genetic background26,27. Using PCA, Dobson et al. showed the similarity and differences in genotypes 
belonging to different groups of potato on the basis of metabolic profiling24.

Metabolic perturbations in processing, non-processing and local cultivars in CS conditions.  
Volcano plot analysis (Fig. 2) and VIP score plot analysis (Fig. 3) were also performed under FH and CS con-
ditions to identify the significantly affected metabolites in cold storage. Volcano plots help determine the 

https://doi.org/10.1038/s41598-020-63329-5


3Scientific Reports |         (2020) 10:6268  | https://doi.org/10.1038/s41598-020-63329-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

importance and significance of the metabolite changes on the basis of p-value and fold change (FC) in concen-
tration. On the other hand, VIP scores are used to discriminate significant metabolites on the basis of their PLS 
loading. Thus, a combination of the two is preferred to culminate key associated metabolites as there are least 
chances of losing any important metabolites of interest28.

Cold storage of potato tubers revealed that significantly altered metabolites varied with the cultivar studied. 
Nonetheless, the number of metabolites that significantly increased was higher than those that were decreased. 
Also, the number of metabolites that increased after cold storage was greater in Kufri Jyoti, Kufri Pukhraj, and 
PU1 cultivars as compared to Atlantic and FL-1533 (Fig. 2). These results indicate that one-month cold storage of 
potato tubers resulted in a gradual change of the metabolite content.

Among all the cultivars, the processing cultivars i.e., Atlantic and FL-1533 were less reconfigured due to CS 
in contrast to non-processing cultivars (Kufri Jyoti, Kufri Pukhraj, and PU1). Glucose and fructose were more 
pronounced in the non-processing cultivars when compared to the processing cultivars (Figs. 2–4). While in the 
Atlantic cultivar, fumarate and glutamate were found to be significantly downregulated (p = 0.001; FC = 4.89 for 
fumarate and p = 0.029; FC = 1.62 for glutamate) upon CS when compared with FH (Figs. 2A and 3A); these 
metabolites showed significant upregulation (p = 0.022; FC = 0.49 for fumarate and p = 0.047; FC = 0.64 for gluta-
mate) in FL-1533 upon CS (Figs. 2B and 3B). The opposite trend of these two metabolites in the processing verus 
non-processing cultivars indicates different adaptive strategies for the utilization of these metabolites upon CS, 
probably via the regulation of the expression of enzymes including, fumarase, aconitase, isocitrate dehydroge-
nase, glutamate synthase etc. Interestingly, asparagine was significantly increased in Kufri Jyoti (Figs. 2C and 3C) 
and Kufri Pukhraj (Figs. 2D and 3D) upon CS. The levels of organic acids, i.e., aspartate (p = 0.001; FC = 0.40), 
malate (p = 0.013; FC = 0.46) and fumarate (p = 0.040; FC = 0.52), were increased in the Kufri Jyoti cultivar upon 
CS treatment (Figs. 2C and 3C). Similarly, CS treatment of the Kufri Pukhraj (Figs. 2D and 3D) and the local 
PU1 (Figs. 2E and 3E) cultivar was associated with significant increase in malate (p = 0.001; FC = 0.40 for Kufri 
Pukhraj, respectively), aspartate (p = 0.003; FC = 0.52 for Kufri Pukhraj and p = 0.012; FC = 0.65 for PU1) and 
methanol (p = .002; FC = 0.05 for PU1).

Cold storage has been known to induce modifications in plants metabolome29,30. The effect of cold storage 
on metabolite levels in different potato cultivars can be correlated with the differential enzyme activities or cold 
signalling and altered gene expression patterns. For instance, the differential metabolite levels observed after cold 
treatment in six peach fruits were reflected as transcriptional and/or posttranscriptional responses29. Integration 
of metabolomics with quantitative genetics found an effective approach to identify the candidate genes under-
lying metabolite variations which offers trait-specific markers to improve commercially important traits31. CIS 
trait is expected to be associated with primary metabolites and an untargeted metabolic quantitative trait loci 
(QTL) analyses has revealed a relationship between primary metabolism and potato tuber quality14. Metabolic 
profiling performed for 26 starch and CIS-related traits on 97 potato genotypes using gas chromatography-time of 

Figure 1.  Scores plot as obtained by PLSDA utility of MetaboAnalyst 4.0 software for the different potato 
cultivars – Atlantic (G1, G2), Frito Lay-1533 (G3, G4), Kufri Pukhraj (G5, G6), Kufri Jyoti (G7, G8), and PU1 
(G9, G10) at fresh harvest and one-month cold storage at 4°C. Three replicates were used for each cultivar and at 
each condition (as described in Methods). Ellipses showing 95% confidence limits of a normal distribution for 
each group of the samples have been marked in respective colours for each cultivar. Colour legends have been 
mentioned in the figure.
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flight-mass spectrometry detected a total of 139 polar metabolites. Of these 139, metabolite quantitative trait loci 
were identified for approximately 72% of the detected compounds. In particular, between different amino acids, 
the QTL for starch phosphorylation was found to be co-localized with mQTLs for alanine, GABA, pyroglutamate, 
phenylalanine, serine, threonine, aspartic acid, glutamine, tyrosine and tryptophan14. Thus, using metabolomics, 
the key metabolic pathways and the key candidate genes affecting a trait can be identified in plants. These genes 
can be further manipulated using genetic engineering approaches to alter their function32. Therefore, we propose 
that the metabolite variability obtained in the present study can be combined with the genetic information that 
will facilitate the discovery of metabolite biomarkers for CIS and potato processing related traits in the cultivars 
used in the study.

Metabolic correlation network analysis.  Metabolite correlations of potato groups differing in the genetic 
background have been previously reported24,33. In the current study, Pearson’s correlation coefficient analysis was 
used to analyse the metabolite-metabolite correlation among identified metabolites in all five cultivars at both the 
time-points (Figs. S5–S7). Correlations within a cultivar have been plotted with an aim to identify correlations 
between metabolites in a given treatment. Two correlation plots have been plotted in each half of the square (sep-
arated by the diagonal) to highlight and compare the differences in metabolite-metabolite correlations within FH 
with that from CS conditions. The aim was to map all the significant metabolite correlations in both the treatments 
for each cultivar. A total of 100, 84, and 45 significant correlations (p-value < 0.05) were obtained at FH among 
processing group (Atlantic and FL-1533), non-processing group (Kufri Pukhraj and Jyoti), and local (PU1) cul-
tivars, respectively (upper-right half of the plot marked with white triangle in Figs. S5–S9). After CS, the number 
of significant correlations changed to 108, 105 and 31 (lower-left half of the plot marked with blue triangle in 
Figs. S5–S9) in the processing group, non-processing group, and local cultivar, respectively. The number of positive 
vs. negative correlations also varied depending on the variety (Table S3). Remarkably, among all the metabolites, 
amino acids dominated the significant metabolite correlations. In general, the metabolite-metabolite correlations 
detected in the present work were highly dependent on the type of the cultivar considered; however, some par-
ticular behaviours of the metabolic network after CS are worth mentioning. For instance, a positive correlation of 

Figure 2.  Volcano plots, where log10(FDR-corrected p-value) is plotted against log2(fold-change in 
concentration), depicting the changes in the metabolite concentration from freshly harvested potato tubers and 
tubers stored at 4°C for one month. The different cultivars used for the study have been depicted as A) Atlantic, 
B) Frito Lay-1533, C) Kufri Jyoti, D) Kufri Pukhraj, and E) PU1. The significantly down-regulated metabolites 
upon cold storage have been marked in red and the ones up-regulated have been marked in green.
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fructose with phenylalanine, valine, 4-aminobutyrate, glutamine, choline, and glutamate was evident in Atlantic 
(Fig. S5) upon CS. In the case of FL-1533, pyroglutamate was found to be positively correlated with valine, ala-
nine, arginine, and 4-aminobutyrate after CS (Fig. S6). Whereas 4-amiobutyrate was positively correlated with 
trigonelline, sucrose, allantoin, and arginine; citrate and malate displayed significantly positive correlations with 
several other metabolites in Kufri Jyoti after CS (Fig. S7) which were not evident in the other cultivars. However, 
several negative correlations were exclusively observed in PU1 cultivar after CS (Fig. S9). Glutamate and glutamine 
are metabolic neighbours in the glutamine synthase pathway and show no correlation in the non-processing and 
local cultivars (Figs. S7–S9) in FH as well as CS treatments, while are found to be correlated in processing cultivars 
(Figs. S5 and S6). Significant correlations among various potato cultivars might help to predict the CIS status of the 
particular potato genotype based on FH and CS tuber profiling. However, the reason for these strong correlations 
remains unclear as no direct link has been reported so far and further investigations are warranted.

Significant metabolite variation and metabolite-metabolite correlations were detected from a collection of 
60 unique potato genotypes that span 5 different market classes such as russet, red, yellow, chip, and special-
ity33, where authors concluded that metabolite diversity and correlations data can support the potential to breed 
new cultivars for improved health traits. The metabolite variations (Fig. 4) and various correlations (Figs. S5–S9) 
obtained especially after cold storage raise the possibility to test the function of genes or the combination of 
transgenes using genetic engineering approaches to further validate the role of other candidate genes identified 
in this study.

Metabolic pathway analysis and potential metabolite insights of CIS.  CIS is a multigenic complex 
trait involving multiple intricate metabolic pathways which clearly indicates that it is unlikely to be controlled 
by a single metabolite; thus, multiple metabolites would come-up as plausible candidates for CIS in potatoes. 
We performed the pathway analysis depicting significantly affected metabolites in cold-stored potato tubers by 
comparing the primary metabolites based on KEGG and the reference pathway4,34 (Fig. 5). Potato tubers dis-
played diverse biochemical mechanisms during CIS and the amount of sugar in potato tubers is influenced by 
several candidate genes operating in glycolysis, hexogenesis, and mitochondrial respiration4,35. The metabolic 
pathway analysis presented in this study suggests that several metabolites were affected during cold storage and 
mainly resulted from the alanine, aspartate, and glutamate metabolism; valine, leucine, and isoleucine biosyn-
thesis; arginine and proline metabolism; glycine, serine, and threonine metabolism; the TCA cycle, fructose and 
mannose metabolism, galactose metabolism, nicotinate and nicotinamide metabolism, glycolysis; and starch and 
sucrose metabolism along with several other metabolites (Fig. 5). Also, the levels of metabolites were found to be 
specifically different depending on potato cultivars (Figs. 2–4) indicating that the specific metabolites might play 
a crucial role in determining the cold-induced ability of potato cultivars. Also, the molecular events controlling 
such metabolic perturbations in potato tubers after cold storage are still puzzling.

Figure 3.  VIP scores obtained after pair-wise PLS-DA analysis for A) Atlantic, B) Frito Lay-1533, C) Kufri Jyoti, 
D) Kufri Pukhraj, and E) PU1. A VIP score of ≥1.0 is considered significant.
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Sugar metabolism under cold storage condition.  Cold temperature induces starch degradation in 
potato tubers to form sucrose, glucose, and fructose, thereby leading to an imbalance between starch degradation 
and sucrose metabolism in tubers. The enzymes involved in these processes such as starch synthases, invertase, 
invertase inhibitors, sucrose synthase, UDP-glucose pyrophosphorylase, etc., have been extensively studied at 
biochemical and molecular levels4,12,35–40. Storage of potato tubers at 4 °C significantly increased the levels of 
sucrose, particularly in Atlantic (VIP = 1.82) and Frito Lay 1533 (p-value <0.001; FC = 0.20), while it was sig-
nificantly decreased in Kufri Jyoti (p = .004; FC = 3.47) and PU1 (p = .009; FC = 2.08), and remained invariant 

Figure 4.  Box-Whisker plot for the significantly different metabolites (p-value <0.05, and with VIP score ≥1.0) 
for the different potato cultivars. The significantly different metabolites obtained from ANOVA and post-hoc 
analysis were selected individually and the relative concentrations of each of these were plotted against the two 
time-points, i.e., fresh harvest and one-month cold storage for the five cultivars used in the study. FH – fresh 
harvest and CS – cold storage at 4 °C.
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in Kufri Pukhraj (Fig. 4). On the other hand, the increase in RS was more pronounced in the non-processing 
cultivars – Kufri Pukhraj, Kufri Jyoti, and PU1; as compared to the processing cultivars – Atlantic and Frito Lay 
1533 (Figs. 2–4). These results are coherent with previous studies that observed an increase in RS after cold stor-
age of potato tubers11,21,23,38, which has been attributed to the enhanced activity of the vacuolar invertase33. The 
accumulation of RS in tubers of cold-sweetening susceptible and cold-sweetening resistant potato cultivars was 
found to be under the control of vacuolar invertase and invertase inhibitors12,38,41. The levels of RS were decreased 
after one month of cold storage and this was accompanied with increased expression of the vacuolar invertase 
inhibitor mRNA accumulation in cold-sweetening resistant cultivars. Therefore, a relatively lower increase of RS 
after cold storage in Atlantic and Frito Lay 1533 cultivars (when compared with non-processing and local culti-
var) used in this study could be attributed to increased levels of vacuolar invertase inhibitor. Allelic variations in 
the vacuolar invertase inhibitor gene from Atlantic, Frito Lay 1533, Kufri Jyoti, Kufri Pukhraj, and PU1 cultivars 
could be associated with the variation in RS levels in these cultivars38. However, these results need to be further 
validated using a qRT-PCR expression of vacuolar invertase inhibitor gene before and after cold storage in these 
cultivars. In addition to this, FL-1533 is represented by higher dry matter and starch content as compared to the 
non-processing cultivars11. However, further biochemical experiments and transcriptomics data would be needed 
to comment on the set of enzymes that are being upregulated or downregulated in specific cultivars thereby 
changing the metabolome upon CS.

Amino acid metabolism under cold storage condition.  The accumulation of amino acids has been 
reported in cold stress and has been found to improve resistance to cold temperature in several plant species42,43. 
Metabolic correlation network analysis revealed (Figs. S5 to S9) that the amino acids dominated the significant 
metabolite correlations indicating an important role CIS process of potato tubers. In the amino acid metabolism 
pathways, the distinct significantly affected pathways include metabolism of 11 amino acids: isoleucine, gluta-
mate, glutamine, leucine, alanine, arginine, proline, tryptophan, aspartate, asparagine and serine metabolism. 
In the present work, although proline levels were increased in all the potato cultivars upon cold storage; tubers 
of non-processing cultivars (Kufri Jyoti, Kufri Pukhraj, and PU1) exhibited relatively higher levels of it (Fig. 4). 
The GABA shunt pathway was significantly enhanced as seen by the increased levels of 4-aminobutyarte in PU1 
(p = .001; FC = 0.33) upon cold storage, whereas it was not significantly affected in any other potato cultivar. 
Accumulation of proline and GABA has been reported in plants under chilling stress44,45 wherein these were pre-
sumed to act as osmolytes (Figs. 4 and 5), as an acclimation response under CS treatment46. GABA treatment has 

Figure 5.  Pictorial representation of metabolic pathways affected during cold-induced sweetening in the 
different cultivars of potato. The significantly different metabolites under cold storage have been marked with 
arrows wherein an ↑ indicates upregulated metabolites and the ↓ arrow indicates down regulated metabolites. 
TCA – tricarboxylic acid.
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been demonstrated as a promising approach not only for reducing the enzymatic browning but also maintaining 
the quality of fresh-cut potatoes47. However, to date there has been no conclusive evidence on the role of several 
of these metabolites in CIS process of potato tubers. This is particularly because the comprehensive analysis of the 
biochemical pathways affected during CIS remains to be elucidated.

It is noticeable that the levels of glutamine were exclusively significantly higher in FL-1533 and Kufri Pukhraj 
after CS as compared to the rest of the potato cultivars (Figs. 4 and 5) probably due to an elevated transcription 
of glutamine synthetase48. Enzymes, branched-chain amino acid aminotransferase and glutamine synthetase, 
involved in glutamine biosynthesis have been found to be potentially involved in governing potato tuber quality 
traits49. The changes in the levels of total amino acids, specifically the levels of asparagine, and the ratio of free 
asparagine to RS during cold storage were found to be significantly varied among different potato cultivars upon 
CS (Fig. 4). These factors, therefore, can further influence the processing quality of potato tubers.

In addition to the amount of RS, the total and individual amino acid content, the asparagine content, levels of 
organic acids, and other metabolites have been considered as important processing parameters50. Breeders aim 
for the identification and development of processing potato cultivars with low free-asparagine and RS as desirable 
characteristics for processing purpose. In the current study, a unique metabolite combination was observed for 
the processing cultivar, FL-1533, which was represented by the lowest amount of RS and asparagine compared to 
rest of the cultivars CS (Figs. 2–4).

TCA cycle metabolites under cold storage condition.  Organic acids are known to play an important 
role in cold tolerance in plants45,51. Amongst the different TCA cycle metabolites, the levels of citrate were signif-
icantly higher (p = 0.019; FC = 0.54) in the processing cultivar, FL-1533; whereas Kufri Jyoti and Kufri Pukhraj 
showed significantly higher levels of malate after CS (Fig. 5). Low temperature has been shown to increase citrate 
levels in banana, tomato and Ponkan fruits thereby indicating that citrate might be involved in cold tolerance 
of these fruits45,51,52. Increased levels of citrate upon cold storage at 4 °C for 28 days in tomato fruits have been 
attributed to the enhanced expression ATP-citrate synthase and isocitrate dehydrogenase51. Cold storage resulted 
in an increase in different isoforms of malate dehydrogenase, isocitrate dehydrogenase and 2-oxoglutarate dehy-
drogenase genes in cold-stored (4 °C) litchi fruit which accelerated the fruit senescence that might be associated 
with cold susceptibility or respiratory burst53. In potato, both citrate and malate are critical in the determination 
of non-enzymic browning reactions, the suitability of potato tubers for culinary use, industrial processing, the 
texture of cooked and fried potato products, after cooking darkening and physiological age/ stages of devel-
opment in the storage of potato tubers54–58. Significantly higher citrate levels in FL-1533 (p = 0.019; FC = 0.54) 
exhibited as compared to rest of the cultivars after CS (Fig. 4), might be associated with CIS resistance with 
good processing attributes as citric acid is known as a popular anti-browning agent, mainly because it not only 
inhibits the polyphenol oxidase by reducing pH but also chelates copper at the enzyme-active site59. Hence, it is 
necessary to develop the indicators of tuber browning and physiological age, mainly because both the growers 
and seed companies can optimize the storage conditions for individual cultivars56. A molecular-function map for 
carbohydrate metabolism and transport has mapped both citrate synthase and malate dehydrogenase on potato 
chromosomes37,60,61. So far, no functional markers have been developed for these candidates. Therefore, potato 
cultivars differencing in their CIS ability could be further screened for the quantitative variations in citrate and 
malate levels. Such data then can be utilized for the development of molecular-linkage maps based on functional 
gene markers (molecular-function maps) which are necessary for a candidate-gene approach to further identify 
genes responsible for quantitative traits at the molecular level37.

Importantly, several other metabolites such as fumarate, adenosine, sn-glycero-3-phosphocholine, 
4-aminobutyrate, 3-hydroxyisobutyrate, trigonelline, and chlorogenate were significantly affected upon CS 
(Figs. 2, 3 and 5) thereby implying the role of these as candidate metabolites in the CIS process. Interestingly, 
methanol levels were significantly higher in PU1 cultivar (Figs. 2E and 3E). The texture of potato tubers is mainly 
determined by starch properties, cell size, cell-wall structure and composition, the breakdown of the cell wall 
middle lamella during cooking, and the correlation between pectin methyl esterase activity and the degree of 
methylation of cell wall pectin62. The amount of methanol released on saponification is the measure of the degree 
of pectin methylation and found indirectly associated with the potato tuber texture properties62. Therefore, 
the amount of methanol present in potato tubers can be used as a potential marker for screening of potato culti-
vars for texture properties. However, the possibility cannot be ruled out that since methanolic extracts were used 
for the metabolomics analysis; therefore, it is likely that, the methanol detected by NMR might represent the 
exogenous levels.

Likewise, myo-inositol was significantly upregulated in PU1 cultivar (p = 0.006; FC = 0.55), indicating its role 
in cold tolerance63. However, further studies are necessary to understand the role of myo-inositol in CIS process 
of potato tubers. The convergence and divergence of various pathways involved in CIS revealed a complex meta-
bolic network. However, the roles of these metabolites and their accumulation pattern in response to cold storage 
in different potato cultivars can be further investigated by identification of candidate genes which are putatively 
involved in the formation of enzymes involved in the biosynthesis of these metabolites. In order to improve 
potato (Solanum tuberosum L.) genotypes through selection or breeding, it is helpful to determine the chemical 
composition of tubers64. Previous studies have suggested that various primary metabolites in potato tubers can 
be utilized as biomarkers in breeding programs for predicting agronomically important traits such as black spot 
bruising and chip quality65,66.

Maintaining the quality of potato tubers during storage is a major challenge. Therefore, the biochemical infor-
mation on the response of potato cultivars to cold storage and metabolite accumulation can be useful for the 
development of candidate metabolites for predicting the severity of CIS of different potato genotypes. Such can-
didates can then be tested on a wide range of potato genotypes differing in CIS response and the information 
obtained can be easily integrated into the existing potato storage management and breeding methods. Moreover, 
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such predictive candidate metabolites can be used in selection for potato breeding and for tailoring storage con-
ditions for the harvested tubers67,68. Furthermore, candidate metabolites can be utilized for the manipulation of a 
specific metabolite pathway for developing potato genotypes with improved processing characteristics.

Conclusions
A number of commercial potato cultivars used for processing and table purpose are currently available. However, 
the information on biochemical variations underlying the CIS status of various potato cultivars is very scanty. 
Our studies showed that the differences in variation in several tuber metabolite contents such as glucose, fruc-
tose, sucrose, asparagine, glutamine, citrate, malate, proline, 4-aminobutyarte, etc., especially after cold storage 
which indicated that these candidate metabolites could be used to unravel the biological basis of CIS process of 
potato tubers. For instance, low levels of glucose, fructose, and asparagine accompanied by high citrate levels in 
processing cultivar (FL-1533) and higher glucose, fructose and malate levels in non-processing cultivars (Kufri 
Pukhraj and Kufri Jyoti) can be utilized for the prediction, selection and development of potato cultivars for 
altered storage as well processing attributes. Likewise, variations in GABA and glutamine can be utilized in deter-
mining the enzymatic browning of fresh-cut potatoes and tuber quality respectively. The correlation between the 
amino acids, organic acids and sugars suggests for the close biochemical relationship as well the interdependence 
of the amino acid metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis in CIS process of potato tubers. 
Both proline and malate were found to be correlated in Kufri Jyoti and Kufri Pukhraj after cold storage, indicating 
that these metabolites can be useful in the identification of CIS susceptible potato cultivars. Also, the presence 
or absence of specific metabolites cannot be the only concluding answer for the prediction of CIS behaviour. The 
relative amount of the specific metabolite present can also play a contribution in CIS status of potato cultivar. 
Follow-up biochemical studies in the cultivars reported, in addition to metabolomics experiments from another 
30–40 additional potato cultivars from India, with longer storage conditions (2–4 months, in addition to one 
month) would be required in future to ascertain the results obtained in the study in the future. Such information 
on metabolic biomarkers would be of major interest to potato breeders and the processing industry in the selec-
tion of CIS resistant potato genotypes.

Methods
Plant Material.  Readily available exotic processing potato cultivars – Atlantic and Frito Lay-1533 (FL-1533) 
(Pepsi Foods Pvt. Ltd. Channo, Sangrur), and two Indian non-processing/table purpose cultivars – Kufri Jyoti and 
Kufri Pukhraj (Central Potato Research Institute, Shimla)11,20–23, along with a locally grown cultivar – PU1, were 
used in the present study. These varieties were obtained from BT Company and Jai Kisan Farm Products and Cold 
Chains Pvt. Ltd, India, Pune. These cultivars have also been found to differ in their CIS ability19,22,23. The locally 
grown potato cultivar – (PU1) – used for table purpose, has been reported to contain high RS after cold storage38, 
and possesses poor storability in cold temperatures. The information on the physiology of potato cultivars has 
been presented in Supplementary Table S1.

Potato plantation and harvesting.  The tubers from 5 potato cultivars – namely, Atlantic, FL-1533, Kufri 
Pukhraj, Kufri Jyoti, and PU1 – were planted under open-door conditions (natural conditions and sunlight) in 
triplicates in PB5 Polythene bags containing potting mix (50% shredded pine bark, 20% crusher dust, 10% cow 
dung, 20% soil supplemented with sand and slow-release fertiliser) on 20th November 2017, at the Department of 
Biotechnology, Savitribai Phule Pune University, Pune, India. Field facility was not available and the experiment 
was conducted as a randomized potted trial. The plants were regularly watered. Tubers were then harvested on 
5th March 2018 after full senescence. Six tubers (medium to large sized) from three replications (two tubers from 
each replicate) of each potato cultivar were transferred to a paper bag. The remainder of the harvested tubers 
from each cultivar were used for propagation/maintenance purposes. The tubers were washed under running 
tap water, cored and de-skinned. Of the six harvested tubers, three tubers (one tuber from each replication) were 
immediately processed for the fresh analysis (fresh harvest; FH) and the other three tubers (one tuber from each 
replication) were stored in the dark for one month at 4 °C in paper bags (cold storage; CS) for extraction of metab-
olites. All the tuber samples were subjected to freeze-drying (Operon, FDB-5503, Korea) for one week before 
using for metabolite extraction.

Metabolite extraction.  The freeze-dried potato tuber samples were ground to a fine powder and were 
used for metabolite extraction. Briefly, approximately 200 mg of freeze-dried potato powder was re-suspended in 
200 µl Phosphate Buffer Saline (PBS) in 1.5 ml tubes and vortexed for five minutes. To each tube, 400 µl ice-cold 
methanol (Sigma, HPLC grade) was added, followed by vortexing for another 5 min. Samples were then stored 
at −20°C for 12 h. Post-incubation, the samples were centrifuged at 16,000 ×g (Eppendorf centrifuge 5415 C, 
Hamburg, Germany) for 20 min at 4 °C. The supernatants were transferred to fresh 1.5 ml Eppendorf tubes and 
were subjected to lyophilization (Operon, FDB-5503, Korea). There were three replicates for each of the five 
cultivars processed in two treatments (a- FH; and b- CS) making a total of 30 distinct samples. The lyophilized 
extracts of all the samples were reconstituted into 580 µl 100% NMR buffer (20 mM sodium phosphate, pH 7.4 
in D2O containing 0.4 mM DSS (2,2-dimethyl-2-silapentane-5-sulfonic acid). For making buffer containing a 
known concentration of DSS, 17.46 ± 0.01 mg of DSS was weighed (mol wt. 218.32 g/mol) and dissolved in 2000 
µl ± 2 µl of phosphate buffer. This stock solution was then diluted to 100-fold resulting in a final buffer solution 
containing 87.30 ± 0.16 mg L−1 of DSS in solution, which corresponds to 399.9 ± 0.7 µM of DSS in the buffer. The 
samples were vortexed for 2 min at room temperature and centrifuged at 4000 ×g for 2 min. The supernatants 
were transferred to respective 5 mm NMR tubes for NMR data measurements.
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NMR spectroscopy.  All the NMR data was measured on a Bruker AVANCE III HD Ascend NMR spec-
trometer operating at 14.1 Tesla. This spectrometer has been equipped with pulsed-field gradients in x, y, and 
z directions (operating at 54 Gauss/cm), and Bruker high-performance shim system with 36 orthogonal shim 
gradients and integrated real-time shim gradient for 3-axis shimming. A cryogenically cooled quad-channel 
(1H/13C/15N/31P-2H) probe was used to pump radio frequencies and detection. All the NMR data was measured 
at 298 K controlled by the Bruker VT unit. NMR data measurement, metabolite identification, and quantifica-
tion have been reported in details as per Metabolomics Standards Initiative (MSI) as described recently by our 
group69,70. Water-suppression pulse sequence from Bruker library (noesygppr1d) was used to measure all the 1H 
NMR data, where water suppression was achieved by pre-saturating water using continuous-wave irradiation 
at 5.56E-05 W during the inter-scan relaxation delay of 5 s, and employing spoiler gradients (Smoothed square 
shape SMSQ10.100, where G1 was with 50% power and G2 was with -10% power for 1 ms duration each). The data 
acquisition period of 6.95 s (including inter-scan delay) was used, giving a spectral width of 7200 Hz resolved in 
32k data points. Sixty-four scans were used to average the signal recorded on each sample. 1H 90° pulse-width, 
receiver gain, and water-suppression parameters were kept invariant from sample to sample to rule out inten-
sity variations while recording data on different samples. To help with assignment of metabolites, 1H-1H total 
correlation spectroscopy (TOCSY) experiment (using ‘mlevesgppg’ pulse sequence from Bruker library) was 
measured with a 6000 Hz of spectral width resolved in 2048 × 1024 data points with 40 transients per increment. 
A Hartman-Hahn mixing time of 80 ms was employed for the TOCSY spin-lock using composite blocks of 90°-
180°-90° pulses with 90° pulse width of 25 μs at 2.29 W of power. TOCSY data was recorded in States-TPPI mode 
and Smoothed square shaped (SMSQ10.100) gradients were used with 31% power (after the spin-lock period) 
and 11% power (before refocusing) for a duration of 1 ms.

Metabolite identification and quantification.  All of the NMR data were processed using Topspin 
(v3.5) software (www.bruker.com/bruker/topspin). 1H NMR raw data was multiplied with exponential function 
and zero-filled to 64 K data points prior to Fourier transformation. All the spectra are manually phased and the 
baseline is corrected before subjecting to further analysis. 1H chemical shift was directly referenced to DSS res-
onance (δ=0 ppm at 25 °C). 1H-1H TOCSY was processed with a pure cosine function (SINE with SSB = 2) and 
zero-filled to 2048 and 1024 data points in F1 and F2 dimensions prior to subjecting the data to Fourier transfor-
mation. Multiple peak parameters including, chemical shift values, J-coupling values, line shape, and multiplic-
ity information, in combination with Biological Magnetic Resonance Bank (BMRB) and Human Metabolome 
Database (HMDB) were used to assign the peaks to respective metabolites. Chenomx NMR suite 8.1 (https://
www.chemnomx.com/) was used to carry out the 1H resonance assignment with a chemical shift tolerance of 
0.05 ppm when comparing the data with BMRB/HMDB. Resonance assignment of metabolites was confirmed 
using 1H-1H TOCSY (Fig. S1) cross peak pattern of individual metabolites containing coupled 1H spin systems 
via a semi-automated software, MetaboMiner (http://wishart.biology.ualberta.ca/metabominer/). A set of five 
resonances remained unassigned and have been duly marked as U1-U5 (Fig. S2 and Table S2).

After identification of metabolites, respective peaks were manually picked, integrated using Topspin v3.5, and 
converted to absolute concentrations of individual metabolites using Chenomx v8.1 by comparing with the peak 
integrals from an external reference compound DSS of known concentration (400 µM). The absolute concentra-
tions obtained above were then normalized using the dry weight obtained from the tuber mass used for metab-
olite extraction. The data matrix file was created using concentrations of metabolites as obtained above from 30 
distinct samples. The lower limit of quantification achieved using the above-mentioned NMR parameters was 
0.25 μM for the methyl peak of DSS at a s/n ratio of 10.

Metabolic pathway analysis.  Metabolic pathway analysis depicting significantly affected metabolites in 
cold-stored potato tubers was performed by comparing the primary metabolites based on KEGG and the refer-
ence pathway4,34, using MetaboAnalyst 4.0 web tool (https://www.metaboanalyst.ca/).

Statistical analysis.  Due to high dimensionality and large complexity (5 cultivars in triplicates in 2 process-
ing conditions with each NMR sample having ~1000 1H signals) of the metabolomics data, multivariate statistical 
analysis was carried out to depict the differences in concentrations of metabolite in various cultivars upon CS. 
Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were carried 
out using normalized metabolite concentration as input in the MetaboAnalyst 4.0 (www.metaboanalyst.ca) to 
provide insights into the separations between the FH and CS tubers in all five cultivars studied. PCA is a tech-
nique that transforms the variables in a data set into a smaller number of new latent variables called principal 
components (PCs), which are uncorrelated with each other and account for decreasing proportions of the total 
variance of the original variables. On the other hand, PLS-DA, a supervised extension of PCA is used to maximize 
the covariance between predictor variables (metabolite concentration from NMR measurement) and the response 
variables (e.g. the classes of each sample). PCA was applied to identify the clustering patterns while as PLS-DA 
was used for classification and feature selection in the metabolic dataset. The input data table was normalized 
using the Pareto-scaling approach available in the MetaboAnalyst prior to multivariate analysis. Pareto-scaling 
was chosen over the unit variance scaling approach as it gives more importance to abundant metabolites thereby 
avoiding noise from low signal-to-noise peaks into the analysis. Pareto-scaling has typically been the method of 
choice in NMR-based metabolomics studies71–73. Correlation between the first two principal components was 
drawn as the scores plot for all the samples and clusters of normal distribution were marked using ellipses show-
ing 95% confidence limits for each group in PCA analysis. The PCA and PLS-DA score plots for all five cultivars 
showed that the clusters of FH and CS treatment tubers are well separated from each other thereby indicating 
different metabolic profiles. Next, pair-wise analysis of all five cultivars in FH and CS treatments was achieved 
using volcano plot analysis, where metabolites were selected based on dual criteria: 1) the significance (false 
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discovery rate (FDR) corrected p-value < 0.05); and fold-change in concentration (cut-off for fold change was 
set to 1.5 fold increase or decrease). In addition to this, the variable importance of projection (VIP) score plot 
obtained by PLS-DA identified the key metabolites responsible for the clustering of various groups. VIP score 
measures the contribution of a variable to the PLS-DA model. Metabolites with a VIP score of ≥1.0 are generally 
considered to be statistically significant74,75. A union set of significant metabolites (those identified from volcano 
plot analysis, and from VIP score following the above-mentioned criteria) were taken for generating box and 
whisker plots to highlight the variation of a particular metabolite across replicates, in different cultivars, and in 
different treatment conditions. Metabolites, e.g., ascorbate, having low signal-to-noise (s/n < 15) in NMR spectra, 
although identified with confidence, were not included in box and whisker plot analysis as they might be prone to 
over- or under-estimation of concentrations. Further, Pearson’s correlation was used to generate the correlation 
plots to identify all the significantly correlated metabolites (p-value < 0.05) in FH and CS treatments for all five 
cultivars. The correlations between FH and CS treatment for each cultivar was drawn by combining the data for 
three replicates. The significantly affected metabolic pathways were then identified using significantly perturbed 
metabolites as input in MetaboAnalyst tool and KEGG pathway database (www.genome.jp/kegg/pathway.html).

Ethical approval.  This article does not contain any studies with human and/or animal participants per-
formed by any of the authors.
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