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Comparative lipidomics of 
5-Fluorouracil–sensitive and –
resistant colorectal cancer cells 
reveals altered sphingomyelin 
and ceramide controlled by acid 
sphingomyelinase (SMPD1)
Jae Hun Jung1, Kohei Taniguchi3, Hyeong Min Lee1, Min Young Lee4, Raju Bandu1, 
Kazumasa Komura3, Kil Yeon Lee5, Yukihiro Akao6* & Kwang Pyo Kim1,2*

5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat colorectal cancer. 5-FU is known 
to gradually lose its efficacy in treating colorectal cancer following the acquisition of resistance. 
We investigated the mechanism of 5-FU resistance using comprehensive lipidomic approaches. We 
performed lipidomic analysis on 5-FU–resistant (DLD-1/5-FU) and -sensitive (DLD-1) colorectal cancer 
cells using MALDI-MS and LC-MRM-MS. In particular, sphingomyelin (SM) species were significantly 
up-regulated in 5-FU–resistant cells in MALDI-TOF analysis. Further, we quantified sphingolipids 
including SM and Ceramide (Cer) using Multiple Reaction Monitoring (MRM), as they play a vital role 
in drug resistance. We found that 5-FU resistance in DLD-1/5-FU colorectal cancer cells was mainly 
associated with SM increase and Cer decrease, which are controlled by acid sphingomyelinase (SMPD1). 
In addition, reduction of SMPD1 expression was confirmed by LC-MRM-MS analysis and the effect 
of SMPD1 in drug resistance was assessed by treating DLD-1 cells with siRNA-SMPD1. Furthermore, 
clinical colorectal cancer data set analysis showed that down-regulation of SMPD1 was associated with 
resistance to chemotherapy regimens that include 5-FU. Thus, from our study, we propose that SM/Cer 
and SMPD1 are new potential target molecules for therapeutic strategies to overcome 5-FU resistance.

Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality in both men and women1. 
Although there are other drugs for treatment of CRC, 5-Fluorouracil (5-FU) is widely used and is positioned 
as a first-line chemotherapy. 5-FU was developed as an inhibitor of thymidylate synthase (TS), which results in 
suppression of thymine synthase, resulting in cell death2. The mechanism involves misincorporation of a pyrim-
idine analogue into RNA and DNA in place of uracil or thymine, respectively3. Despite the effectiveness of 5-FU, 
drug resistance remains a significant limitation. To overcome this drug resistance, many researchers have tried to 
identify potential genes and proteins involved in mediating 5-FU resistance, using emerging technologies such as 
microarray profiling4 and whole genome sequencing5. For instance, the alteration of drug influx and efflux by the 
ABCC5 membrane protein and mutation of the drug target6 may lead to 5-FU resistance. Furthermore, accumu-
lation of TS protein and elevated activity of deoxyuridine triphosphatase are expected to cause 5-FU resistance 
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in CRC. Although various target genes are involved, the detailed 5-FU-resistance mechanism has not been fully 
elucidated. Therefore, new strategies for therapy and resistance reversal are urgently needed.

Various lipidomic approaches have revealed that lipids play key roles in various phenomena in living cells 
including oncogenesis7,8, apoptosis9, and drug resistance10–12. Alterations in levels of glycerophospholipids (GPs) 
such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been often considered as biochemical 
indicators of tumor progression or drug response13,14. In particular, sphingolipids (SLs) such as sphingomyelin 
(SM), ceramide (Cer), and sphingosine 1-phosphate (S1P) are known as the central molecules, controlling various 
aspects of cell growth and proliferation in cancer, and have been implicated in the mechanisms of action of cancer 
chemotherapeutics15,16. A previous study (Chiranjeevi Peetla et al.) reported that doxorubicin-resistant (MCF-7/
ADR) breast cancer cells showed significant increase in plasma membrane SM, which interacts with cholesterol. 
This interaction forms a more condensed, solid plasma membrane compared to those of doxorubicin-sensitive 
cells. The rigidity of the membranes of the resistant cells inhibits drug uptake when using a liposomal formulation 
of doxorubicin17. When Cer is stacked in a lipid raft through breakdown of SM into Cer by acid sphingomyelinase 
(SMPD1), the death receptor FAS aggregates in the lipid raft, which leads to programmed cell death (apoptosis)18. 
However, defects in Cer and its generation, as well as its metabolism in cancer cells, contribute to tumor cell 
survival and resistance to chemotherapy. Thus, SMPD1 regulation might be very important in controlling the 
mechanism of resistance to 5-FU.

Although differences of lipid species between 5-FU-sensitive and -resistant cells are important for the 5-FU 
resistance mechanism in CRC, there have been few studies using global lipidomic analysis of 5-FU–resistant 
CRC. In the current study, GPs and SLs associated with 5-FU resistance in CRC were successfully identified 
and quantified using MALDI-MS and LC-MRM-MS approaches. Of note, SL species and proteins involved in 
the pathway of SL metabolism were quantified by accurate multiple reaction monitoring (MRM) to understand 
the relationship between 5-FU resistance and the SL pathway. A decrease of SMPD1 protein with a significant 
increase of SM and a decrease of Cer has been proven to be a very important mechanism in 5-FU resistance. 
Furthermore, using Oncomine data set analysis, we investigated the expression level of mRNA of SMPD1 in CRC 
clinical samples in response to 5-FU treatment. Together, our findings propose a novel mechanism of 5-FU resist-
ance and an effective cancer therapy by combining drugs that target angiogenesis and lipid metabolism.

Results
Profiling and semi quantification of lipids by MALDI-MS analysis.  To investigate global alterations 
in cell lipid composition, we used the parental DLD-1 cell line, which is a human colorectal adenocarcinoma cell 
line, and its 5-FU-resistant version DLD-1/5-FU. Extracted lipids were analyzed by MALDI-MS in both positive 
and negative ion modes (see the Methods section for details). Figure 1 shows the detailed workflow of the present 
study.

The positive ion and negative ion MALDI-MS spectra of lipids acquired from DLD-1 (Red) and DLD-1/5-FU 
(Green) are shown in Fig. 2A,B. Most lipid peaks appeared in the scan ranges of m/z 600–900 in positive ion mode 
and m/z 800–950 in negative ion mode. We subjected the obtained mass spectral data to principal component 
(PCA) analysis to compare the general clustering trends of lipids between DLD-1 and DLD-1/5-FU (Fig. 2C,D). 
As seen from the PCA plot, significant different patterns in lipid compositions were observed between the two 
types of cells. From the MALDI-MS spectra of lipids, we could distinguish DLD-1 and DLD-1/5-FU cells with a 
60.8% and 86.9% confidence interval in both positive and negative ion modes, respectively.

Figure 1.  Schematic diagram of global lipidomic analysis. Total lipids were extracted from 5-FU–sensitive 
(DLD-1) and –resistant (DLD-1/5-FU) colorectal cancer cells and subjected to MALDI-MS analysis in positive 
and negative modes in triplicate. MALDI-MS spectra were processed by MALDI-Quant in R package. The 
transition of sphingolipid and related enzymes (Q1 and Q3) was optimized and quantified using MRM-based 
LC-QqQ-MS analysis in triplicate. Statistical analysis of quantified lipids was carried out using Metaboanalyst.
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Each lipid was identified based on the search results of the precursor ion through Lipidomics Gateway (http://
www.lipidmaps.org) and the MS/MS fragment ions19,20 through LIFT mode. Supplementary Fig. S1 shows repre-
sentative MS/MS spectra of PC {34:1} [M + K]+ and PI {16:0/18:1} [M-H]− obtained in both positive and nega-
tive ion modes in LIFT mode. In positive mode, Supplementary Fig. S1A depicts MS/MS spectrum of PC {34:1} 
[M + K]+ (m/z 798.6) showing fragment ions at m/z 184.1 corresponds to the choline head group and m/z 163.1 
which is signature ion of the head group of PC with potassium adducts, symbolized [M + K]+. The negative ion 
MS/MS spectrum of m/z 861.6 (Supplementary Fig. S1B) displays product ions at m/z 241, corresponding to 
phosphatidylinositol (PI) head group. Additional fragment ions at m/z 255.3 and m/z 281.3 reflect the deproto-
nated fatty acyl chains of 16:0 and 18:1, respectively. Similarly, other identified lipids were also confirmed by MS/
MS fragmentation patterns in LIFT mode (data not shown).

Figure 2.  MALDI-TOF-MS lipidomic analysis of DLD-1 and DLD-1/5-FU cells. (A) Average chromatogram 
of DLD-1 (in red) and DLD-1/5-FU (in green) obtained with positive ion mode and (B) negative mode. (C) 
Principal component analysis (PCA) of the acquired MS spectra from DLD-1 (shown in red) and DLD-1/5-FU 
(shown in green) in positive and (D) negative modes. Hierarchical clustering of each sample data set showing 
differentially expressed lipids in (E) positive mode and (F) negative mode. Volcano plots display differentially 
expressed lipids in (G) positive and (H) negative mode, respectively (fold change > 1.4, p value < 0.05 in 
positive and fold change > 1.3, p value < 0.05 in negative mode).
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Altered lipids in 5-FU resistant DLD-1 cells compared to sensitive cells in MALDI-MS analysis.  
A total of 42 lipids in positive ion mode and 18 lipids in negative ion mode was identified and quantified using 
Metaboanalyst 2.0 (Supplementary Tables S1 and S2). In particular, 35 species of PC, 4 species of PE, and 3 spe-
cies of SM were identified in positive ion mode. In negative ion mode, 14 PI, 3 phosphatidylglycerol (PG), and 
1 phosphatidic acid (PA) species were identified. Data of hierarchical clustering and heat mapping (Fig. 2E,F) 
show up-regulated (indicated in red) and down-regulated (indicated in green) patterns of lipids in both DLD-
1/5-FU cells and DLD-1 cells. Next, we assessed differentially regulated lipids (DRLs) isolated from DLD-1/5-FU 
and compared them with those of DLD-1 using specific selection criteria (positive mode; fold change > 1.4, p 
value < 0.05 and negative mode; fold change > 1.3, p value < 0.05). A total of 9 DRLs (1 up-regulated and 8 
down-regulated) was identified in positive mode. Of note, only SM species was significantly up-regulated in DLD-
1/5-FU: SM {d34:1} [M + Na]+ (m/z 725.5). On the other hand, 8 PC species were significantly down-regulated 
in DLD-1/5-FU: PC {30:3} [M + Na]+ (m/z 722.5), PC {42:6} [M + Na]+ (m/z 884.6), PC {P-32:0} [M + H]+ (m/z 
718.6), PC {14:1} [M + K]+ (m/z 504.2), PC {O-32:0} [M + H]+ (m/z 720.6), PC {O-30:1} [M + H]+ (m/z 690.6), 
PC {30:1} [M + H]+ (m/z 704.6) and PC {32:0} [M + H]+ (m/z 734.5). In negative ion mode, PI {40:4} [M − H]− 
(m/z 913.6) and PG {38:0} [M − H]- (m/z 805.6) were increased, while PG {42:10} [M − H]− (841.6 m/z) and PA 
{36:2} [M − H]− (m/z 701.5) were decreased in 5-FU-resistant cells compared with sensitive cells. Volcano plots 
revealed that the DRLs in DLD-1/5-FU were largely classified into over-expressed or under-expressed clusters in 
both positive and negative ion modes (Fig. 2G,H).

Quantification of sphingolipids in DLD-1/5FU and DLD-1 cells using LC-MRM-MS.  MALDI-TOF 
analysis revealed an increase of sphingomyelin species. Therefore, we focused on how upregulation of sphingo-
myelin is related with 5-FU resistance in DLD-1 cells. To quantify SLs (including SM and Cer) that are important 
in apoptosis, cell proliferation, and drug resistance, we developed and optimized the MRM conditions for SM and 
Cer using LC-QqQ-MS. First, the lipid standards SM (d18:1–12:0), Cer (d18:1–12:0), dihydro-sphingomyelin 
(d18:1–12:0), dihydro-ceramide (d18:0–12:0), and ceramide-1-phosphate (d18:1–12:0) were used to optimize 
the MRM conditions for SLs. To quantify SL species in lipid samples, we detected their corresponding [M + H]+, 
[M + Na]+, and [M + K]+ ions by MS scan and later confirmed them with MS/MS of adducted ions of each lipid 
species under different collision energies. Based on the MS scan and MS/MS conditions, we set the MRM tran-
sitions (m/z value of precursor ion [Q1] > m/z value of product ion [Q3]) for each SL species as summarized in 
Supplementary Table S3.

In total, 55 SLs including 22 SMs, 11 dihydro-sphingomyelin (DHSM), 11 Cers, 7 ceramide-1-phosphate 
(C1P), and 1 each of sphingosine (d18:1) (So), sphinganine (d18:0) (Sa), sphingosine 1-phosphate (d18:1) (S1P), 
and sphinganine1-phosphate (d18:0) (Sa1P) were identified and quantified by MRM analysis (Supplementary 
Table S3). We further identified 22 SLs that were significantly differentially regulated between DLD-1/5-FU and 
DLD-1 cells (fold change > 1.5, p value < 0.05) (Table 1). The quantitative results demonstrated that SMs com-
prised the largest proportion of SLs, among which the C18 sphingoid base backbone was the dominant species. 
Among the 22 SMs, 16 showed an increase in DLD-1/5-FU cells compared to sensitive cells. In particular, 8 of 
the 9 SM species in DRLs increased significantly, which was similar to the MALDI-MS results. DHSM showed a 
slight increase with an average 1.18-fold change in DLD-1/5-FU cells, and 3 of the 5 DHSM increased, whereas 
the other 2 species decreased significantly.

Interestingly, unlike the SM class, all 6 quantifiable species of Cer decreased except Cer (d18:1–24:1). In par-
ticular, the most dominant Cer (d18:1–16:0) in DLD-1 cells decreased by 0.64-fold and was identified as a marker 
lipid candidate for 5-FU resistance. In addition, we confirmed up-regulation of So (d18:1) by 3.58-fold and Sa 
(d18:0) by 1.71-fold.

Quantification of enzymes in the sphingolipid pathway in DLD-1/5FU and DLD-1 cells by 
LC-MRM-MS.  We investigated the relationship between 5-FU resistance and SLs through an integrated 
analysis of SLs in the SL metabolism pathway, as well as related enzymes. Prior to MRM quantification, 20 
enzymes were confirmed as candidates including 75 distinct Q1 and 300 distinct Q3 transitions generated 
from SRMAtlas21, which provides definitive and verified peptide transitions and collision energy informa-
tion optimized by quadrupole-based mass spectrometry (Supplementary Table S4). The detectable peptides 
were confirmed by an MRM transition test followed by MRM analysis in triplicate. The analysis showed that 5 
enzymes—SMPD1, SPHK2, ASAH1, DEGS1, and GALC—were significantly changed in DLD-1/5FU compared 
to DLD-1 cells (p value < 0.05, fold change > 1.3) (Supplementary Table S5). As shown in Fig. 3, the enzyme 
ASAH1 (ceramidase family), whose product catalyzes the degradation of Cer into So(d18:1) and deacylates Cer 
into Sa(d18:0), was significantly up-regulated by 2.65-fold, as shown by increases in So(d18:1) and Sa(d18:0), 
respectively. Cer is further metabolized for the synthesis of galactosylceramide and glucosylceramide by UGCG 
(glucosylceramide synthase), which are precursors of lactosylceramide and ganglioside generation, respectively. 
However, these pathways were not altered significantly in 5-FU–resistant cells. Most importantly, the decrease of 
SMPD1 (acid sphingomyelinase; ASMase), which hydrolyzes SM to yield Cer in DLD-1/5FU cells, appeared to be 
related to increase of SM and decrease of Cer in lipidomic results.

Gene silencing of SMPD1 induce acquisition of 5-FU resistance in DLD-1 cell.  As confirmed in 
the MRM analysis, conversion of SM to Cer was attenuated in the 5-FU resistant cell line. These results strongly 
suggest that SMPD1-driven SM to Cer conversion is crucial in 5-FU resistance. SMPD1 is a major enzyme in the 
conversion of SM to Cer. To confirm whether the suppression of SMPD-1 expression was dependent on 5-FU 
resistance, the cell viability was examined by combined treatment with 5-FU after the gene-silencing for SMPD1 
in DLD-1 parental cells. Western blot analysis showed that siRNA-SMPD1 reduced expression of SMPD1 as 
shown in Fig. 4A and Supplementary Fig. S2. Subsequently, when DLD-1 cells were treated with 1 to 100 μM 5-FU 
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Category Lipids log2 (Fold change) p value Regulation

SM

SM(d18:1–20:2) 2.62 0.0012 Up

SM(d18:0–20:0) 2.24 0.0071 Up

SM(d18:1–22:4) 2.11 0.0219 Up

SM(d18:1–22:2) 1.83 0.0014 Up

SM(d18:1–20:0) 1.81 0.0001 Up

SM(d18:1–22:1) 1.76 0.0002 Up

SM(d18:1–22:3) 1.61 0.0001 Up

SM(d18:1–20:3) 1.56 0.0013 Up

SM(d18:1–24:0) 0.56 0.0021 Down

dihydro-SM

DHSM(d18:0–20:1) 1.75 0.0080 Up

DHSM(d18:0–22:2) 1.74 0.0007 Up

DHSM(d18:0–18:1) 1.53 0.0200 Up

DHSM(d18:0–16:0) 0.64 0.0271 Down

DHSM(d18:0–24:1) 0.54 0.0001 Down

Cer
Cer(d18:1–16:0) 0.64 0.0283 Down

DHCer(d16:0–24:0) 2.13 0.0131 Up

C1P

Cer1P(d18:1–18:1) 1.85 0.0387 Up

Cer1P(d18:1–22:0) 0.48 0.0356 Down

Cer1P(d18:1–24:1) 0.39 0.0081 Down

Cer1P(d18:1–24:0) 0.24 0.0264 Down

So So(d18:1) 3.58 0.0006 Up

Sa Sa(d18:0) 1.71 0.0154 Up

Table 1.  Differentially expressed sphingolipids between DLD-1/5FU and DLD-1 cells in LC-QqQ-MS 
based MRM quantification (Fold change > 1.5, p value < 0.05). SM: Sphingomyelin, dihydro-SM: 
dihydrosphingomyelin, Cer: Ceramide, C1P: Ceramide-1-Phosphate, So: Sphingosine, Sa: Sphinganine

Figure 3.  Quantitative results of sphingolipids and enzymes by LC-MRM-MS. Illustration of differences 
in the expression of sphingolipids and proteins in the sphingolipid metabolism pathway using MRM-based 
quantification. The abbreviations of proteins are shown in boxes with different colors to represent fold change in 
DLD-1/5-FU compared to DLD-1. Upregulated sphingolipids are shown in red circles, while downregulation is 
shown in green circles.
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combined with siR-SMPD1, the growth inhibition by 5-FU was partly blocked in siR-SMPD1-treated DLD-1 
parental cells as shown in Fig. 4B. Finally, we investigated the expression level of SMPD1 in CRC clinical speci-
mens by clinical data sets (Oncomine database). As shown in Fig. 5A, down-regulation of SMPD1 was observed 
in tumor specimens compared with normal specimens in several data sets22–27. Importantly, Tsuji’s cohort indi-
cated significant down-regulation of SMPD1 in non-responders to FOLFOX, a regimen that includes 5-FU28 
(Fig. 5B). These findings suggested that down-regulation of SMPD1 is associated with the acquisition of 5-FU 
resistance in clinical CRC samples.

Figure 4.  siR-SMPD1 quality check by western blotting analysis. (A) siR-SMPD1 quality check by western 
blotting analysis. The concentration of each siRNA was 2.5 nM. (B) The cell viabilities were examined after 
siR-SMPD1-treatment with different amounts of 5-FU. Results are presented as the mean ± SD; **p < 0.01; 
***p < 0.001.

Figure 5.  (A) The mRNA expression level of SMPD1 was investigated for several CRC cohorts. The n number 
of independent patient samples is indicated in each panel. An unpaired t-test was performed to examine the 
difference between the expression levels of SMPD1 mRNA in normal and CRC tissues. Error bars indicate 
standard deviations. (B) FOLFOX is 5-FU+ l-LV+L-OHP and is a standard chemotherapy regimen for CRC. 
SMPD1 mRNA expression level in FOLFOX responder and non-responder group from Tsuji’s cohort.
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Discussion
Since 5-FU has been used in cancer therapy, several important studies have been conducted to understand the 
mechanism underlying 5-FU resistance in CRC. Screening at the genomic and proteomic levels using microarray 
techniques and traditional molecular technologies offers an abundance of candidate targets that have key roles in 
5-FU resistance29–31. However, outcomes from these strategies have not been enough to overcome 5-FU resistance 
in CRC. Thus, new approaches are needed to discover the mechanism of resistance to 5-FU.

In the present study, we carried out a sequential lipidomic analysis combined with a shotgun MALDI-TOF 
analysis and a LC-QqQ-MS-based MRM analysis to identify and quantify DRLs in 5-FU–resistant cells. Notably, 
our optimized sphingolipidomic analyses on DLD-1 and DLD-1/5-FU cells encompassed several definite SLs 
including SM, Cer, DHSM, So(d18:1), Sa(d18:0), and C1P, as well as the S1P(d18:1) and Sa1P(d18:0) classes. This 
is the first comprehensive lipidomic study on 5-FU–resistant CRC to date, as evidenced by the identification of up 
to 124 lipids including GPs and SLs. Furthermore, our study provides a broad understanding of the 5-FU–resist-
ance mechanism by integrating SLs and the enzymes in the SL pathway.

We identified 60 lipids in both positive and negative ion modes of MALDI-MS analysis. In particular, we 
explored the alterations of several GP species including PC, PE, SM, PI, PG, and PA in both positive and negative 
ion modes. Among them, 8 PC species, PC {30:3} [M + Na]+, PC {42:6} [M + Na]+, PC {P-32:0} [M + H]+, PC 
{14:1} [M + K]+, PC {O-32:0} [M + H]+, PC {O-30:1} [M + H]+, PC {30:1} [M + H]+ and PC {32:0} [M + H]+ 
were significantly down regulated in DLD-1/5-FU cells (fold change < 0.71, p value < 0.05). Previous studies 
revealed that phospholipase D (PLD) enzymes catalyze the elimination of head groups of PC to generate PA, 
resulting in reduction of PC groups32–34. PLD enzymes have been implicated as key regulators in progression, 
tumorigenesis, and inhibition of apoptosis35–38 in CRC as well as in other types of cancers39. Although the present 
study noted the association between changes in sphingolipids and 5-FU resistance, further studies will be per-
formed on phospholipids and their enzymes.

It is noted that MALDI-MS-based lipid profiling identified up-regulated SM species, SM {d34:1} [M + Na]+ 
(fold change > 1.4, p value < 0.05). However, the Cer species were not detected in MALDI-MS due to their low 
ionization efficiencies40.

To confirm the relationship between the alteration of SM and 5-FU resistance, we further quantified the SLs 
including SM, Cer, DHSM, So(d18:1), Sa(d18:0), C1P, S1P(d18:1), and Sa1P(d18:0) using the more sensitive and 
quantitative LC-QqQ-MS. We quantified 55 targeted SLs, as shown in Supplementary Table S3. In this study, the 
most significant alteration of SLs was the overall increase of SMs and decrease of Cers. Approximately 16 of the 
22 SMs (73%) showed up-regulation, and 5 of the 6 Cers were significantly decreased in DLD-1/5FU cells (fold 
change > 1.5, p value < 0.05). The roles of membrane lipids such as PC, SM, Cer, and cholesterol in signaling and 
protein functions have been well investigated41,42. In addition, biophysical properties of cell membrane lipids have 
also been demonstrated to regulate apoptosis, proliferation, and drug resistance43,44. From the structural point of 
view, SMs have the highest affinity to cholesterol on account of the interaction between the C-3 hydroxyl group of 
cholesterol and the sphingosine moiety of SMs. This interaction can make the plasma membrane denser and more 
resistant to drug influx10. Thus, several studies have demonstrated that the increased levels of SM and cholesterol 
in drug-resistant cells could indicate that a less permeable cell membrane can significantly reduce diffusion of 
5-FU45,46. In the current study, significant up-regulation of SMs in DLD-1/5-FU cells was observed and confirmed 
by both MALDI-MS and LC-MRM-MS analyses, which may reveal the key mechanism of 5-FU resistance.

In addition, we confirmed the overall decrease of Cer in DLD-1/5-FU cells compared to sensitive DLD-1 
cells. It can be noted that Cer species are intracellular messengers that facilitate several signaling pathways that 
lead to cell cycle arrest47, apoptosis48–50, and autophagic responses51,52. In particular, C18-Cer induces cancer 
cell death and is an essential lipid for tumor suppression53–55. Interestingly, our study indicated that the decrease 
in Cer (d18:1–16:0) plays an important role in inhibiting 5-FU–induced apoptosis in CRC. The intracellular 
concentrations of SM and Cer are managed by regulating the SMPD1 level. Lower levels of intracellular Cer are 
maintained in various drug-resistant cells by either escalating SM level or hindering SM breakdown into Cer 
by controlling ASMase level56. V Gouazé et al. have demonstrated that ASMase is expressed in lower levels in 
doxorubicin-resistant breast cancer (T47D) cells compared to sensitive cells. This study revealed that doxorubicin 
sensitivity could be increased by the addition of exogenous Cer, which suggests that low ASMase level is critical 
for drug resistance57. In addition, Hao et al. investigated the significantly changed SL profiles in taxol-resistant 
ovarian cancer cells. They demonstrated that ASMase down-regulation is key to regulate formation of SMs and 
degradation of Cer in taxol-resistant ovarian cancer cells (A2780T)58. In our study, the reduction of SMPD1, 
which hydrolyzes SM to ceramide, was confirmed by MRM validation (Supplementary Table S5 and Fig. 3). 
Furthermore, the results of clinical data set analysis supported our findings derived by lipidomic approaches 
(Fig. 5). In this current study, we used the total lipids extracted from whole cells rather than plasma membrane 
or cytosol. Therefore, we were not able to interpret specific lipid-based localization. In order to analyze cytosolic 
lipid and membrane lipid separately, additional lipidomic analysis should be performed after separating each part. 
Therefore, in order to confirm more precise mechanism of sphinoglipids in 5-FU resistance, we plan to isolate 
plasma membrane and cytosol separately and subsequent lipidomic analysis will be performed in another study.

In conclusion, we successfully performed comprehensive profiling and quantification of GPs and SLs in both 
5-FU–sensitive and –resistant CRC cells to investigate the mechanism for 5-FU resistance. The most significantly 
altered SL metabolism pathways in 5-FU–resistant cells were the up-regulation of SMs and down-regulation of 
Cers, which were controlled by SMPD1. We propose that DLD-1/5-FU cells can acquire resistance from inhibi-
tion of ceramide-caused apoptosis principally via the SM/Cer pathway, while SMPD1 was lower in 5-FU–resistant 
cells than in the sensitive cell line. Metabolic regulation of lipids and enzymes associated with the SL pathway is 
a potential target for treatment of 5-FU–resistant CRC. Based on the current lipidomic studies, modulation of SL 
metabolism may be a successful strategy to overcome 5-FU resistance and can provide a variety of therapeutic 
opportunities in the drug development process to aid CRC treatment.
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Methods
Cell culture and establishment of DLD-1/5-FU cells.  Human colorectal cancer DLD-1 cells were 
obtained from the Japanese Collection of Research Bioresources (JCRB) Cell Bank. DLD-1 and its 5-FU–resist-
ant derivative DLD-1/5FU, which was acquired after selection by drug treatment, were cultured in RPMI-1640 
medium supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Sigma, St. Louis, MO, USA) under 
an atmosphere of 95% air and 5% CO2 at 37 °C. DLD-1/5-FU cells were established in our previous reports59,60. 
The cells were then harvested by trypsinization and sub-cultured at a density of 6 × 103 cells/cm2. The media was 
changed after one day of sub-culturing, and all cell cultures were passaged again at 70–80% confluence. Cell line 
authentication was achieved by short tandem repeat (STR) analysis and testing for mycoplasma contamination. 
STR analysis was performed using primers of TH01, TPOX, vWA, amelogenin, CSF1PO, D16S539, D7S820, 
D13S317, D5S818, and D21S11 (GenePrint 10 System; Promega, Madison, WI). Testing for mycoplasma con-
tamination was performed by exploiting the activity of certain mycoplasmal enzymes (MycoAlert mycoplasma 
detection kit; Lonza, Basel, Switzerland). The number of viable cells was determined by the trypan-blue dye 
exclusion test.

Extraction of total lipids from cells.  A total of 6 × 106 cells was used for lipid analyses. Total lipids were 
extracted by the Bligh & Dyer method61. Briefly, each cell pellet was directly transferred into 3 mL of chloroform: 
methanol (1:2, v/v) in a 15 mL conical glass tube. Each sample was vortexed and sonicated for 10 min and allowed 
to cool on ice for about 10 min. Samples were then centrifuged at 2,500 g for 10 min. The bottom organic phase 
was dried in a speed vacuum. All experiments were performed in duplicate for reproducible results.

MALDI-MS analysis of lipids.  For MALDI-MS analysis of lipids, samples dissociated with approxi-
mately 10 µL of methanol/chloroform (70/30, v/v). In positive mode, 10 µL of the binary matrix solution (7 mg 
each of 2, 5-dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid in 1 mL of 70% methanol plus 0.1% 
Trifluoroacetic acid) was mixed with lipid extracts. In negative mode, 10 µL of 9-aminoacridine (10 mg/mL; dis-
solved in isopropanol/acetonitrile (60/40, v/v)) was mixed with each sample62,63. Samples were spotted directly on 
a 384 target plate (Bruker Daltonics, Bremen, Germany) and dried in a desiccator for homogeneous crystalliza-
tion to obtain reproducible results. Samples were spotted onto 14 wells for replicates for positive and negative ion 
modes, respectively. Consequently, we acquired 14 MS spectrum from biological two replicates and 7 instrumen-
tal replicates. MALDI-MS analysis was performed using an Ultraflex III TOF/TOF mass spectrometer (Bruker 
Daltonics, Bremen, Germany) equipped with a 200-Hz smart beam laser as an ionization source. All spectra 
were acquired with the mass range of 500–1200 m/z with the following parameters: delay: 180 ns; ion source 1: 
voltage, 25 kV, ion source 2: voltage, 21.65 kV; and lens voltage: 9.2 kV. External calibration was carried out using 
lipid-mixed calibration standards in ranges of m/z 674–834 Da (in positive ion mode) and m/z 564–906 Da (in 
negative ion mode). The structural identify of lipids was confirmed by LIFT (MS/MS) mode. MS/MS spectrum 
was acquired after manual monoisotopic selection with the following parameters: <LIFT mode condition> CID 
mode = false; PCIS mass limit = 2–4 Da; ion source voltage 1/2 = 8 kV/7.1 kV; LENS voltage = 3.6 kV; LIFT 
voltage 1/2 = 19 kV/4.3 kV in positive mode. CID mode = false; PCIS mass limit = 2–4 Da; ion source voltage 
1/2 = 8 kV/7.1 kV; LENS voltage = 3.6 kV; and LIFT voltage 1/2 = 19 kV/4.2 kV in negative mode. Each lipid was 
assigned based on the LIPID MAPS classification system.

Pre-processing of MALDI-MS data.  The MALDI quant package in R was used for pre-processing64. The 
transformation to a square root and smoothing with a moving average algorithm were applied all the features in 
spectrum for variance stabilization. The spectrum background was estimated with a statistics-sensitive nonlinear 
iterative peak-clipping algorithm and used for baseline correction. The peak intensities of each features were 
normalized using a probabilistic quotient normalization method65. Each spectrum was normalized to a reference 
spectrum, which was the median spectrum of all samples. Briefly, the normalization procedure was as follows: 
(1) normalization of all spectra to TIC, (2) calculation of the reference spectrum, (3) for each spectrum, calcu-
lation of the quotients of the intensities of the spectrum with those of the reference spectrum, (4) calculation of 
the median of these quotients, and (5) division of all intensities of the spectrum by the median of the quotients 
calculated at step 4. The Signal-to-Noise threshold greater than 3 was applied to considered peaks.

Statistical analysis of MALDI MS data.  For relative quantification, the following statistical analyses were 
carried out using MetaboAnalyst 2.0, web-based software for quantitative data analysis66. First, missing values 
obtained from a pre-processing procedure were replaced by half of the minimum positive value. The intensity 
values of each peak across multiple spectra were mean-centered and divided by the standard deviation. Principal 
component analysis (PCA) was carried out to classify the variance among samples between DLD-1 and DLD-
1/5-FU. The lipids that were regulated differentially were identified using the following criteria: (1) averaging 
seven instrumental replicates to one representative value (mean), (2) p values from t-test are less than 0.05 and 
(3) relative fold changes are larger than 1.4 and 1.3 in positive and negative ion mode, respectively. Hierarchical 
clustering of DRLs was performed using “Euclidean distances” and “ward” linkage.

MRM quantification of sphingolipids using LC-QqQ-MS analysis.  Quantification of SLs including 
SM, Cer, DHSM, C1P, So(d18:1), Sa(d18:0), S1P(d18:1), and Sa1P(d18:0) was performed using a triple quadrupole 
(QqQ) mass spectrometer (6490 series, Agilent Technologies, Wilmington, DE, USA) coupled to a 1200 series 
HPLC system (Agilent Technologies, Wilmington, DE, USA). Lipids were separated on a Hypersil GOLD column 
(2.1 × 100 mm ID; 1.9 μm, Thermo Fisher Scientific, USA) with the temperatures of the column oven and sample 
tray were set to 40 °C and 4 °C, respectively. The mobile phase A composition was acetonitrile:methanol:water 
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mixture (19:19:2) with 20 mmol/L ammonium formate and 0.1% (v/v) formic acid, and B composition was 
2-propanol with 20 mmol/L ammonium formate and 0.1% (v/v) formic acid. Sphingolipids were separated with 
30-minutes nonlinear gradient as follow: holding the solvent mixture steady 5% solvent B for 5 min, followed by a 
first linear gradient to 30% solvent B for 10 min, a second linear gradient to 90% solvent B for 7 min, an isocratic 
elution for washing step to 90% solvent B for 3 min, and a third linear gradient to 5% solvent B for 1 min. The col-
umn was equilibrated with 5% solvent B for 4 min at a flow rate of 250 μL/min. The electrospray (ESI) MS method 
was used to analyze lipids, and all acquisition method parameters were set as follows: capillary voltage: 3500 V 
in positive mode and 3000 V in negative mode, sheath gas flow: 11 L/min (UHP nitrogen) at 200 °C, drying gas 
flow: 15 L/min at 150 °C, and nebulizer gas flow at 25 psi. MS/MS collision energies, multiple reaction monitoring 
(MRM) conditions. For relative quantification, respective internal standards (IS) were used to assign the specific 
retention time (RT) of each SL group. After that, the peak area was extracted using Skyline software to quantify 
each lipid species, and then data normalization (lipid species peak area/IS peak area) was performed for lipid 
quantifications. All experiments performed in triplicates.

Verification of sphingolipid-related enzymes by MRM analysis.  The LC-QqQ-MS–based MRM ver-
ification for enzymes in the SL metabolism pathway was performed using 100 μg protein samples from DLD-1 
and DLD-1/5-FU cells in triplicate. The pair of m/z values that are isolated in Q1 and Q3 and optimized colli-
sional energy were referred to the Human SRMAtlas database21,67. Peptides were separated on an Agilent 1290 
LC RP-HPLC equipped with a RP-HPLC column (150 × 2.1 mm ID, Agilent Zorbax Eclipse Plus C18 Rapid 
Resolution HD, 1.8 μm particles), and an Agilent 6490 triple-quadrupole mass spectrometer using a gradient 
from 5% to 40% solvent B (90% ACN, 0.1% formic acid) over 40 min. To gain a sufficient number of data points, 
the dwell time for each transition was determined between 6.55 and 248.88 ms, with transitions being the maxi-
mum number monitored in a given 1000-ms cycle. The areas were extracted using Skyline 3.7 ver. Savitzky-Golay 
smoothing filter was applied to improve the quality of the chromatograms. Peptide areas were normalized to that 
of a ß-galactosidase peptide (APLDNDIGVSEATR, 729.36 m/z (Q1) → 563.28 m/z (Q3)) to correct for exper-
imental variation. The best transition was selected on the basis of intensity and consistency for quantification. 
Independent t-test analysis was conducted to determine the significance of target enzymes68.

Western blot analysis.  The reagents used were as follows: RIPA buffer for preparing cell lysates (Thermo 
Fisher Scientific Inc., Waltham, MA, USA), Protease Inhibitor Cocktail (Sigma-Aldrich Co. LLC, St. Louis, MO, 
USA), polyacrylamide gels for SDS-PAGE (Wako Pure Chemical Industries, Ltd. Osaka, Japan), PVDF mem-
brane (Bio-Rad Laboratories, Inc., Hercules, CA, USA), PVDF Blocking Reagent for Can Get Signal (TOYOBO 
CO., LTD., OSAKA, JAPAN), and Luminata Forte Western HRP Substrate (Millipore Corporation, Billerica, 
MA, USA). The immunoblots were visualized by Fusion-FX7 (Vilber Lourmat, Marne-la-Vallée, France). 
Primary antibodies used were as follow anti-SMPD1 (Proteintech Group, Inc., Chicago, USA, 14609–1-AP) and 
anti-β-actin (Sigma-Aldrich Co. LLC, A2228). Also, β-actin was used as an internal control.

Gene silencing experiments.  siRNAs for SMPD1 (Invitrogen, Carlsbad, CA, USA) were used for the trans-
fection of the cells, which was achieved by using cationic liposomes, Lipofectamine RNAiMAX (Invitrogen), accord-
ing to the manufacturer’s protocol. Silencer Select Negative Control #1 siRNA (Ambion, Inc. Foster, CA, USA)  
was used as control. siR-SMPD1 was designed by BLOCK-iT RNAi Designer and the sequence is 5′-AUCAAGA 
GCCAGAAGUUCUCACGGG-3′. The effects manifested by the introduction of siRNAs into the cells were 
assessed at 48 h after the transfection. DLD-1 cells were seeded in 96-well plates at a concentration of 0.5 × 105  
per well (10–30% confluence) on the day before the treatment. We treated with 5-FU 24 h after transfection 
with siR-SMPD1 (2.5 nM) and the effects were assessed at 48 h after the treatment with 5-FU. The number of 
viable cells was determined by performing the MTT assay. MTT reagent, 3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium-bromide), was purchased from (Sigma-Aldrich). MTT (0.5 mg/ml) was added to each 
well (10 μl/well) and after incubation for 2.5 hr at 37 °C, Supernatant were removed and. Then, Dimethyl sulfoxide 
(DMSO) was added to each well (200 μl/well). Absorbance at 540 nm was measured by SH-1000Lab microplate 
reader (Corona Electric Co., Ltd., Ibaraki, Japan).

Clinical data set analysis.  Oncomine was used in our clinical data set analysis (https://www.oncomine.org/
resource/login.html). The mRNA expression levels were examined in each cohort study. The detailed information 
from each cohort study was cited as a reference.
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