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Correlation-based network analysis 
combined with machine learning 
techniques highlight the role of 
the GABA shunt in Brachypodium 
sylvaticum freezing tolerance
David Toubiana1,5, Nir Sade1,2,5, Lifeng Liu3, Maria del Mar Rubio Wilhelmi1, Yariv Brotman4, 
Urszula Luzarowska4, John P. Vogel3 & Eduardo Blumwald1*

Perennial grasses will account for approximately 16 billion gallons of renewable fuels by the year 
2022, contributing significantly to carbon and nitrogen sequestration. However, perennial grasses 
productivity can be limited by severe freezing conditions in some geographical areas, although these 
risks could decrease with the advance of climate warming, the possibility of unpredictable early 
cold events cannot be discarded. We conducted a study on the model perennial grass Brachypodium 
sylvaticum to investigate the molecular mechanisms that contribute to cold and freezing adaption. 
The study was performed on two different B. sylvaticum accessions, Ain1 and Osl1, typical to warm and 
cold climates, respectively. Both accessions were grown under controlled conditions with subsequent 
cold acclimation followed by freezing stress. For each treatment a set of morphological parameters, 
transcription, metabolite, and lipid profiles were measured. State-of-the-art algorithms were employed 
to analyze cross-component relationships. Phenotypic analysis revealed higher adaption of Osl1 to 
freezing stress. Our analysis highlighted the differential regulation of the TCA cycle and the GABA 
shunt between Ain1 and Osl1. Osl1 adapted to freezing stress by repressing the GABA shunt activity, 
avoiding the detrimental reduction in fatty acid biosynthesis and the concomitant detrimental effects 
on membrane integrity.

The increase in energy demand coupled with the environmental impact of fossil fuels has led to the expansion 
of programs using perennial species as an alternative source of energy. In this context, perennial grasses, tradi-
tionally used as forage and turf, have become the preferred candidates for biomass cropping systems attributed to 
their ability to grow under low input conditions and high interception of sunlight1. Predictions showed that per-
ennial grasses will account for approximately 16 billion gallons of renewable fuels by the year 20222,3. Perennial 
grasses have shown to support carbon (C) and nitrogen (N) sequestration in the soil4–6, contributing to mitigate 
climate change and environmental degradation7–9. Brachypodium sylvaticum is a perennial grass with a simple 
genome, self-fertility, a short life cycle, and low growth requirements. Its recently released genome, expression 
gene atlas10 and well established genetic transformation have made it an efficient model to study the genetic, 
molecular, and physiological components of perennial grasses11,12.

Unfavorable winter conditions, including freezing, limit the geographical range of many important crops and 
reduce their productivity due to growth repression13,14. Low temperatures combined with high light intensity 
provoke the inhibition of the photosystem II and ROS production leading to oxidative stress15. In addition, ice 
formation in the apoplast induces both, cell membrane integrity stress and osmotic stress16. The plant’s response 
to low temperatures involves extensive reprograming of gene expression via transcription factors17, resulting in 
concerted shifts of the metabolic network. Moreover, plants respond to cold stress by increasing the degree of 
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unsaturation of the membrane lipids and by remodeling lipids, which in turn may help the plant to avoid mem-
brane integrity damage and achieve chilling tolerance18. The molecular and biochemical pathways regulating 
winter-hardiness in perennial grasses are poorly understood and deserve further attention.

With the advent of high-throughput platforms in the biological sciences, data driven analysis has become a 
key element for the integration of biological data of different backgrounds. A plethora of tools have been devel-
oped which tackle the complex problem of data integration from different perspectives, e.g.19–24. The biological 
interpretation of the data, however, is always study specific. Many of these tools make use of graph theory and net-
work analysis, in one way or another, as the integration of heterogenic data is accomplished with ease and graph 
theory is readily equipped with a myriad of analytical and interpretational tools25–27. Correlation-based network 
analysis (CNA) is based on mathematically defined (dis)similarity measures that correlate different components 
to each other and the resulting correlation coefficients reflect the magnitude of the co-linear relationship of the 
components. In complex biological data, with thousands of different components assessed at various data points, 
the correlation is synonymous with coordinated behavior. With the exploration of the structural properties of 
graphs, CNA has been successfully used to postulate biological hypotheses which have been verified a posteriori28. 
Recently, a novel approach that combines CNA with machine learning (ML) techniques, was used to predict the 
presence of metabolic pathways in tomato correlation networks (CN)29.

Here, we investigated the response of two Brachypodium sylvaticum accessions (Osl1 and Ain1) to cold 
and freezing stress. Accession Osl1 is endemic to Northern Europe, while Ain1 can be predominantly found 
in Northern Africa (Fig. 1a). We studied traits of the two accessions known to exert different phenotypes. 
Furthermore, we applied a top-down based approach integrating gene expression data and metabolic and lipid 
profiles from high throughput platforms and state-of-the-art algorithms for the analysis of big biological data. We 
employed the aforementioned ‘CNA combined with machine learning techniques’ approach for a comparative 
analysis between two correlation networks to identify genotype-specific ‘active’ metabolic pathways. Furthermore, 
we modified a recently developed genetic search algorithm30 to integrate gene expression data with metabolic pro-
files and detect candidate genes that may be key regulators for the identified ‘active’ metabolic pathways.

Results
Phenotypic analysis reveals Osl1 freezing tolerance.  To morphologically characterize the effect of 
freezing stress on B. sylvaticum, freezing experiments were performed on two different B. sylvaticum accessions, 
Osl1 and Ain1 (Fig. 1a). Plants of both accessions were grown under controlled conditions for 21 days before 
being cold acclimated for additional 21 days. Subsequently, plants were moved into a freezing chamber for a 
freezing challenge (Fig. 1b). Seedling leaf samples were taken (i) before cold acclimation, (ii) at cold acclimation, 
and (iii) during the freezing challenge (Fig. 1b). After the freezing challenge, Ain1 plants were severely damaged 
showing leaf necrosis while Osl1 remained viable (Fig. 1c). Freezing treatment led to increased ion leakage in both 
accessions as compared to the non-stressed control samples. However, the increase was more significant for Ain1 

Figure 1.  Effect of freezing on two B. Sylvaticum accessions (Ain1 and Osl1). (a) Geographical habitat of the 
B. Sylvaticum accessions (b) Experimental setup (c) Ain1 and Osl1 phenotype post-stress (d) Ain1 and Osl1 
Ion leakage and (e) Chlorophyll content (f) Lipid Peroxidation (MDA) and (g) Immunoblot analysis of PSII 
subunits Lhcb2, PsbA (D1), and PsbO1. Values are Mean ± SE (n = 3–12). The data was analyzed using Student’s 
t test. Asterisks indicate significant differences (p ≤ 0.05).
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as compared to Osl1 (Fig. 1d). Chlorophyll content significantly decreased in Ain1 in response to the freezing 
treatment, while Osl1 kept higher chlorophyll content compared to Ain1 (Fig. 1e). To test for lipid peroxidation, 
MDA content was measured. The analysis showed that Ain1 plants displayed higher lipid peroxidation than Osl1 
plants (Fig. 1f). Upon exposure to freezing conditions, the degradation of PSII subunits (D1, PsbO1, and Lhcb2) 
was more evident in Ain1 plants as compared to Osl1 plants (Fig. 1g). Taken together, our results showed that 
Osl1 had a higher freezing-tolerance than Ain1 accession.

Differential gene expression analysis highlights freezing tolerance of Osl1.  To gain an insight into 
differential gene expression profiles between the two accessions and their respective treatments, cDNA libraries 
were prepared and sequenced via a Illumina Hiseq platform, followed by differential gene expression analysis31. 
In total, 14,727 differentially expressed genes (DEGs) were identified when comparing the different treatments of 
Ain1 and Osl1 samples (Fig. 2 - for a full list of genes IDs see Supplementary Data S1). The comparison of Ain1 
control vs. Osl1 control samples identified 561 up-regulated DEGs and 517 down-regulated DEGs. The compar-
ison between Ain1 cold vs. Osl1 cold samples identified 310 up-regulated DEGs and 486 down-regulated DEGs. 
The comparison between Ain1 vs. Osl1 samples during freezing identified 2,153 up-regulated DEGs and 1,183 
down-regulated DEGs.

In summary, the differential gene expression analysis demonstrated that the majority of up-regulated DEGs 
were specific to Ain1 samples as compared to Osl1 samples, i.e. among the 5,721 unique DEGs resulting from the 
comparison between Ain1 and Osl1 treatments, 3,568 were up-regulated in Ain1 while 2,153 were up-regulated 
in Osl1. In particular, the freezing treatment exerted the greatest impact on gene expression in Ain1 supporting 
the notion of cold adaptation of the Osl1 ecotype.

Metabolite and lipid profiles are treatment specific.  In an effort to assess metabolic changes between 
the accessions and their respective treatments, metabolite profiles were generated using a GC-MS platform as 
well as lipid profiles using an LC-MS platform. In total, 139 metabolites (Supplementary Fig. 1) and 195 lipids 
(Supplementary Fig. 2) were unequivocally identified. One-factorial analysis of variance revealed significant dif-
ferences for 17 metabolites (Fig. 3) and 53 lipids (Supplementary Fig. 3a–c); i.e. two out of six diacylglycerols, 
six out of 22 digalactosyl-diacylglycerols, eight of 19 monogalactosyldiacylglycerols, five out of 28 phosphati-
dylcholines, four out of 15 phosphatidylethanolamines, eight out of 21 phosphatidylglycerols, one out of five32 
phosphatidylinositols, four out of 15 phosphatidylserines, six out of 12 sulfoquinovosyldiacylglycerols, and six 
out of 52 triacylglycerides.

Posthoc Tukey test showed that sample means of metabolites (Fig. 3) and lipids (Fig. 4 and Supplementary 
Fig. 3a–c) were accession- and treatment-specific, e.g. for erythritol two significantly different means were identi-
fied – the lower mean level incorporating Ain1 control, cold, freezing, and Osl1 cold (Fig. 3 - Tukey test group a) 
and the significant different higher mean containing Osl1 control and freezing samples (Fig. 3 - Tukey test group b).  
GABA revealed a decrease from control conditions to cold conditions in both accessions followed by a significant 
increase during freezing conditions. Galactinol showed higher levels in Osl1 and a general increase between 
control to freezing conditions in both accessions. Higher levels of erythritol and galactinol in the freezing tol-
erant accession supported the notion of sugar alcohols acting as agents against oxidative and osmotic stress32,33. 
Hydroxyproline and ornithine were also higher in Osl1 than in Ain1. While hydroxoproline is an essential ele-
ment of the cell wall glycoprotein RSH34, elevated levels of ornithine have shown to alleviate the plant from abiotic 

Figure 2.  Intersections among stress differentially expressed genes across accessions and treatments. Number 
above bars indicates the number of genes within each intersection. Set size indicates the total number of 
significant genes in the treatments.

https://doi.org/10.1038/s41598-020-61081-4


4Scientific Reports |         (2020) 10:4489  | https://doi.org/10.1038/s41598-020-61081-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

stresses35. Glycine and tyramine, on the other hand, showed generally higher means levels for Ain1 samples and 
a decrease between control to freezing conditions in both accessions. The sugar maltose showed increased levels 
during freezing conditions in both accessions, while shikimate demonstrated a steep decrease during cold and 
freezing stress (in both accessions). The observation of metabolite specificity to accession and treatments supports 
the notion of the intertwined metabolic network, where metabolites are involved in many different metabolic 
pathways regulating various cellular aspects36,37.

For the 53 significantly changing lipids repetitive patterns were detected for the sulfoquinovosyldiacylglyc-
erols (SQDG) and the triacylglycerides (TAG) (Fig. 4). For the SQDGs elevated levels were observed during 
Osl1 frozen, while for almost all frozen Ain1 a steep decrease was visible in comparison to Ain1 cold. The TAGs 
demonstrated an upward trend between Ain1 control versus frozen Ain1 and Osl1 control versus frozen Osl1. The 
finding of higher levels of SQDGs and TAGs during Osl1 freezing conditions was suggestive of their essential role 
for conserving membrane integrity and preventing ion leakage during cold and freezing38.

PCA emphasizes differences between Osl1 and Ain1 accessions.  For the subsequent analysis, 
the metabolite and lipid profiles were combined into one single dataset (from here on onwards we will refer to 
the combined dataset as the compounds dataset). Principal component analysis (PCA) was applied to the 500 
most variable genes of the normalized gene expression dataset31 and to the entire compounds dataset. For both 
PCAs, principal component (PC) 1 accounted for more than 90% of the variation observed (Fig. 5), while PCs2 
accounted for 3.6% and 2.79% of the observed variation. For the PCA of the gene expression a clear separation 
between accessions was visible on PC1, while PC2 demonstrated a separation between treatments (Fig. 5a). The 
PCA based on the compound profiles revealed a gradual transition between samples on PC1 (Fig. 5b) reflecting 
the specificity of metabolites across treatments, as observed during the analysis for metabolic changes (see above). 
The loadings of PC1 revealed that while mainly metabolites could be identified on the negative end, solely lipids 
dominated the positive end, indicating a negative correlation between lipids and metabolites. On PC2 of the com-
pound PCA (Fig. 5b), on the other hand, a separation between the accessions Ain1 and Osl1 was visible. Here, 

Figure 3.  Significantly changing metabolites. Illustrated are the levels of the 17 significantly changing 
metabolites identified via analysis of variance in two Brachypodium sylvaticum accessions across different 
temperature treatments. X-axes represent the log of relative content, y-axes represent different accessions and 
their respective treatments. Values are the log(mean) ± SE (n = 3). Different letters and color codes indicate 
significant differences (p ≤ 0.05) according to posthoc Tukey’s test.
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the positive loadings were also dominated by the lipids, but several metabolites could be detected amongst them. 
Particularly TAGs and hexacosanoate, ornithine, GABA, proline, hydroxyproline, erythritol, galactinol, and mel-
ibiose recorded similar loadings, indicative of a positive correlation between them.

Figure 4.  Significantly changing SQDG and TAG lipids. Illustrated are the levels of the eight significantly changing 
sulfoquinovosyldiacylglycerols (SQDG) and the triacylglycerides (TAG) identified via analysis of variance in two 
Brachypodium sylvaticum accessions across different temperature treatments. X-axes represent the log of relative 
content, y-axes represent different accessions and their respective treatments. Values are the log(mean) ± SE (n = 3). 
Different letters and color codes indicate significant differences (p ≤ 0.05) according to posthoc Tukey’s test.
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Correlation-based network analysis emphasizes functional group of lipids in Osl1.  Following 
the separation derived from the PCA, a correlation-based network (CN) was constructed for each Ain1 and Osl1 
compounds datasets39. In the CN, the nodes represent compounds and the edges between them the significant 
correlation coefficients (r). Thresholds for the Ain1 and Osl1 CNs were set to r ≥ 0.8 and a q-value ≤ 0.05 to 
remove spurious correlations. The Ain1 CN was composed of 334 nodes, corresponding to the compounds in the 
dataset, and 4,538 edges, of which 3,995 corresponded to positive correlations and 543 to negative correlations, 
resulting in a positive edges to negative edges (pe/ne) ratio of 7.36. The Osl1 CN contained 334 nodes and 6,317 
edges, of which 6,230 corresponded to positive correlations and 87 to negative correlations, resulting in a pe/
ne ratio of 71.6. Due to the greater number of edges in the Osl1 network, it exerted greater values for the edge 
density (Ain1 = 0.08, Osl1 = 0.11) and the average weighted degree of the network (Ain1 = 24.24, Osl1 = 33.53). 
Clustering of metabolites in a CN into communities may identify functional groups of nodes of similar chemical 
properties or groups of metabolites that are tightly connected due to shared regulatory processes26,39,40. Nodes in 
the network were clustered together using the walktrap community detecting algorithm41, revealing four lipid 
communities and one community containing metabolites in the Ain1 network (Fig. 6a) and two lipid commu-
nities and three metabolite communities in the Osl1 network (Fig. 6b). Of the TAG’s identified via statistical 
analysis and PCA, in the Ain1 network TAG’s 50:6, 54:7, 58:8, and 54:9 clustered into community 1, while TAG’s 
52:6 and 60:5 clustered into community 4. In the Osl1 network, on the other hand, all significant TAG’s clustered 
into a single community, namely community 1.

Among the lipid communities a small number of non-lipids were incorporated, mainly sugars, amino acids, 
fatty acids, and unknowns. To identify commonalities and differences between the networks, difference (Fig. 7a,b), 
intersection and symmetric difference networks (Supplementary Fig. 4a,b) were constructed. The analysis showed 
that 1,670 edges were common to both networks (Supplementary Fig. 4b), 2,868 out of the 4,538 edges were spe-
cific to the Ain1 network (Fig. 7a) and 4,647 out of the 6,317 edges were specific to the Osl1 network (Fig. 7b). 
Moreover, among all of the metabolites integrated into the lipid communities, only GABA appeared in both net-
works (Supplementary Fig. 4b), while altrose, maltose, sorbose, sucrose, docosanoate, octacosanoate, asparagine, 
and three unknowns were specific to the Ain1 network and raffinose, histidine, glutamine, hexacosanoate, and 
two unknowns were specific to the Osl1 network. Oligosaccharides and polysaccharides contribute to the stability 
of phospholipidic mono- and bilayers via their inclusion between polar headgroups42. However, while the sugars 
associated with the Ain1 network have shown to be a stabilizing agent for the plasma membrane during cold 
stress43, raffinose (Osl1 network) appeared to be restrained to the chloroplast inner membrane44. Nevertheless, 
raffinose has been demonstrated to act as a cryoprotectant in cold acclimated Arabidopsis ecotypes45. In the same 
study, a positive correlation between raffinose and glutamine was demonstrated. Asparagine, on the other hand, 
decreased during cold adaptation in the perennial ryegrass46. The occurrence of different long chain fatty acids in 
the Ain1 and Osl1 difference network may hint at the discerned regulation of lipid biosynthesis47.

Among the putative functional group of lipids in the Ain1 network, one positive significant connection 
between GABA and TAG 50:6 (correlation coefficient 0.92) and three negative significant correlations to TAG’s 
54:7, 54:8, 54:9 (correlation coefficient < −0.8) were present. Furthermore, maltose maintained two significant 
negative connections to TAGs 54:7 and 54:8 (correlation coefficient < −0.8). In the Osl1 network, the GABA 
and maltose significant correlations did not appear. However, galactinol displayed a significant positive cor-
relation to TAG 60:5, while hexacosanoate displayed significant positive correlations to all TAG’s (correlation 
coefficient > 0.85).

CNA combined with machine learning predicts GABA shunt activities for Ain1.  To put the met-
abolic and expression data into a biological context, we applied novel algorithms for the analysis of big biological 

Figure 5.  Principal component analysis (PCA) of gene expression and metabolite profiles. (a) PCA plot 
of Brachypodium sylvaticum accessions samples according to their normalized gene counts after variance-
stabilizing transformation. The first (PC1) and second (PC2) principal components are illustrated. Samples 
correspond to three biological replicates from two accessions (Ain1 and Osl1) and three different temperature 
regimes were analyzed - represented by different color-codes; (b) PCA plot of metabolite profiles of 
corresponding samples shown in (a).
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data. First, we applied CNA combined with ML techniques29. This approach explores the fact that metabolic 
pathways shape the topology of a CN. By mapping known metabolic pathways into the CN and learning their 
topological conformation, a ML model is generated capable of predicting the presence of unknown pathways. To 
do so, for each CN one ML model was generated (see above and Materials and Methods for details) employing the 
extreme gradient boost algorithm48. Performance evaluation of the ML models showed an AUC of the receiving 
operating characteristic curve of 0.986 for the Ain1 CN model and 0.992 for the Osl1 CN model (Supplementary 
Fig. 5). The confusion matrix of the models demonstrated an accuracy of 0.934 for the Ain1 model and 0.921 
for the Osl1 model (Table 1). The cross-validated models where then used to predict the presence/activity of 
278 different metabolic pathways gathered from the PlantCyc repository36 at a prediction threshold value of 
≥0.5. Sensitivity analysis was applied to validate the prediction values of the metabolic pathways. Only path-
ways that tested positive during prediction and sensitivity analysis were considered positively predicted. The 
analysis suggested the presence of five pathways that occurred in Ain1 and Osl1, 15 pathways specific to Ain1, 
and 19 pathways specific to Osl1 (Table 2). Pathways specific to Ain1 centered mainly on the amino acids GABA, 
glutamate and the organic acids fumarate, succinate, 4-OH-benzoate, and the N-compound putrescine, i.e. 
4-aminobutanoate degradation I and IV, L-glutamate degradation IV, putrescine degradation IV, and the reduc-
tive TCA cycle I. TCA cycle intermediates, putrescine, glutamate, and GABA are inherently related, such that 
2-oxoglutarate is converted via glutamate dehydrogenase (E.C. 1.4.1.3) to glutamate which in turn is decarboxy-
lated via glutamate decarboxylase (E.C. 4.1.1.15) to GABA. Via the conversion of GABA to succinate semialde-
hyde mediated by 4-aminobutyrate-aminotransferase (E.C. 2.6.19) and subsequently to succinate via succinate 
semialdehyde dehydrogenase (E.C. 1.2.1.24), the GABA shunt is completed. Moreover, GABA can be produced 

Figure 6.  Correlation-based networks of Ain1 and Osl1. Network visualization of pairwise correlations of 
metabolites and lipids. The Pearson correlation was used to estimate correlation coefficients. Threshold tests 
for correlation coefficients (r) and p-values were applied to detect significant correlations. Thresholds were set 
tor r ≥ 0.8 and q of ≤0.05. Spurious correlations were removed, while significant correlations were transformed 
into network form. Metabolites are displayed as elliptical nodes and color-coded according to the compound 
classification; lipids are displayed as yellow elliptical nodes. Positive correlations are illustrated as blue edges, 
negative correlations as red edges. Communities in the networks were determined by the walktrap community 
detecting algorithm. (a) B. sylvaticum Ain1 correlation network; (b) B. sylvaticum Osl1 correlation network.
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using putrescine, which is oxidized by diamine oxidase (E.C. 1.4.3.22) to 4-amino-butanal and then catalyzed to 
GABA via aminobutyraldehyde dehydrogenase (E.C. 1.2.1.19). The pronounced occurrence of glutamate, GABA, 
putrescine and TCA cycle intermediates was indicative for the upregulation of the GABA shunt, which is known 
for sustaining the TCA cycle under abiotic and biotic stress conditions49–51. The relation between the GABA 
shunt and the TCA cycle was supported by identification of the reductive TCA cycle I pathway specific to Ain1 
(Table 2). Other noteworthy metabolic pathways detected for Ain1 were free phenylpropanoid acid biosynthe-
sis based on cis- and trans-sinnnapate and 4-OH-cinnamate, fatty acids biosynthesis based on malonate and 
adenosine-5-monophosphate, and photorespiration based on glycerate, glycerate-3-phosphate, glutamate, serine, 
glycine, and 2-oxoglutrate.

Pathways that were specific to Osl1, centered mainly on the amino acids asparagine, aspartate, cysteine, and 
tyrosine and the organic acid 2-oxo-glutarate, suggestive for ammonium and cyanide metabolism. Cyanogenic 
plants liberate cyanide from cyanogenic glucosides and lipids when they are in contact with predatory 

Figure 7.  Difference set correlation-based networks of Ain1 and Osl1. Network visualization of pairwise 
correlations of metabolites and lipids. The Pearson correlation was used to estimate correlation coefficients. 
Threshold tests for correlation coefficients (r) and p-values were applied to detect significant correlations. 
Thresholds were set tor r ≥ 0.8 and q of ≤0.05. Spurious correlations were removed, while significant 
correlations were transformed into network form. Differences between networks can be determined 
using set theory, were the differences sets highlight nodes and edges specific to a network. Metabolites are 
displayed as elliptical nodes and color-coded according to the compound classification; lipids are displayed 
as yellow elliptical nodes. Positive correlations are illustrated as blue edges, negative correlations as red edges. 
Communities in the networks were determined by the walktrap community-detecting algorithm. (a) B. 
sylvaticum Ain1 ⊄ Osl1 difference correlation network; (b) B. sylvaticum Osl1 ⊄ Ain1 difference correlation 
network.

Ain1 ML model Osl1 ML model

Actual class Actual class

Predicted class

1 2 1 2

1 38 5 38 6

2 0 33 0 32

Table 1.  Confusion Matrices of Ain1 and Osl1 ML models. 1 = positive instances, 2 = negative instances.
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herbivores52. Also, accumulation of hydrogen cyanide, as a co-product of ethylene biosynthesis, has been reported 
in sorghum and barley during abiotic stresses, such as water-deficit53 and salinity54.The accumulation of hydrogen 
cyanide in plants has been associated with cell signaling55 and nitrogen-recycling processes54. However, too high 
levels of hydrogen cyanide may result in plant death as for instance caused by bacteria56. In this regard, the occur-
rence of the cyanide detoxification I pathway in Osl1 may render beneficial to counteract cyanide contamination 
under freezing stress. Also, the superpathway of phospholipid biosynthesis based on serine and myo-inositol was 
predicted for Osl1. This pathway is one of the main producers of phospholipids for membranes in plants57 and 
may provide the means to sustain membrane integrity in Osl1. Other noteworthy pathways specific to Osl1 were 
stachyose biosynthesis based on galactinol, sucrose, raffinose and myo-inositol and ajugose biosynthesis based 
on raffinose and sucrose.

Genetic algorithm (GA) identifies accession-specific transcription factors and acetyltransferases.  
To integrate the gene expression data to the metabolic pathway analysis, we employed a GA that optimizes the 
correlation between a trait of interest and a subset of genes within a gene co-expression network, resulting in 
a number of genes that is sufficiently low to facilitate their analysis30. We made adequate modifications to the 
GA in order to correlate groups of metabolites representing the metabolic pathways identified in the previous 

Metabolic pathways Predictionvalue
Sensitivity 
analysis

Ain1 + Osl1

gamma-glutamyl cycle 0.74, 0.96 0.71, 0.92

glutathione degradation 0.74, 0.96 0.71, 0.92

glycine biosynthesis 0.74, 0.74 0.78, 0.81

L-asparagine biosynthesis II 0.74, 0.85 0.82, 0.87

suberin monomers biosynthesis 0.74, 0.85 0.78, 0.85

Ain1

4-aminobutanoate degradation I 0.96 0.94

4-aminobutanoate degradation IV 0.96 0.94

4-hydroxybenzoate biosynthesis I (eukaryotes) 0.74 0.85

4-hydroxybenzoate biosynthesis IV 0.59 0.53

4-hydroxybenzoate biosynthesis V 0.59 0.53

fatty acid biosynthesis (plant mitochondria) 0.59 0.56

free phenylpropanoid acid biosynthesis 0.59 0.50

homocarnosine biosynthesis 0.96 0.94

L-glutamate degradation IV 0.96 0.93

nitric oxide biosynthesis II (mammals) 0.93 0.92

photorespiration 0.74 0.78

putrescine degradation IV 0.74 0.78

reductive TCA cycle I 0.74 0.81

trehalose degradation II (trehalase) 0.93 0.90

UMP biosynthesis II 0.74 0.82

Osl1

(S)-reticuline biosynthesis I 0.96 0.90

2′-deoxymugineic acid phytosiderophore biosynthesis 0.73 0.74

3-cyano-L-alanine + H +  + 2 H2O - > ammonium + L-aspartate 0.73 0.76

4-hydroxyphenylpyruvate biosynthesis 0.96 0.90

ajugose biosynthesis II (galactinol-independent) 0.88 0.80

cyanide detoxification I 0.96 0.91

gamma-glutamyl cycle (plant pathway) 0.73 0.70

hypoglycin biosynthesis 0.73 0.82

L-asparagine biosynthesis I 0.73 0.80

L-asparagine degradation I 0.73 0.76

L-glutamine + L-aspartate + ATP + H2O 
- > L-glutamate + L-asparagine + AMP + diphosphate + H+ 0.73 0.80

L-phenylalanine biosynthesis III (cytosolic, plants) 0.85 0.84

L-tyrosine biosynthesis II 0.96 0.90

L-tyrosine biosynthesis III 0.96 0.90

rosmarinic acid biosynthesis I 0.96 0.90

rosmarinic acid biosynthesis II 0.96 0.90

S-methyl-5-thio-alpha-D-ribose 1-phosphate degradation 0.73 0.79

stachyose biosynthesis 0.73 0.71

superpathway of phospholipid biosynthesis II (plants) 0.96 0.87

Table 2.  Prediction table.
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analysis rather than single traits (see Materials and Methods). Correlations were estimated at absolute values so 
that negative correlating genes were included in the resulting set of genes. As a result of the previous analyses 
pointing to GABA and organic acids in relation to lipid regulation in Ain1, we investigated pathways associated 
with GABA metabolism (4-aminobutanoate degradation I and IV) and the TCA-cycle. For the metabolites asso-
ciated with the 4-aminobutanoate degradation I pathway, 74 genes were identified (Supplementary Data S2). The 
correlation coefficient between the first principal components of the metabolites and genes was computed with 
0.698. The average expression of the 74 genes showed similar patterns in Ain1 and Osl1 (Supplementary Fig. 6), 
revealing decreasing values from control to cold conditions followed by a significant increase under freezing. 
However, the greatest average values were achieved during Ain1 freezing, indicating increased transcription of 
genes associated with GABA, alanine, succinate, metabolism. A similar picture arose for 4-aminobutanoate deg-
radation VI (GABA, alanine, succinate, pyruvate, 2-oxoglurate, and glutamate), where 108 genes were identified 
with a correlation coefficient of 0.796. For the L-glutamate degradation IV pathway (2-oxo-glutrate, alanine, 
glutamate, GABA, pyruvate, and succinate), 104 genes were detected with a correlation coefficient of 0.619. For 
the putrescine degradation IV pathway (putrescine and GABA), 112 genes were found with a correlation coef-
ficient of 0.979. Metabolites associated with the reductive TCA cycle 1 (citrate, fumarate, succinate, pyruvate, 
adenosine-5-monophosphate, 2-oxoglutrate) were also analyzed. Here, 461 genes were detected and the cor-
relation coefficient was estimated at 0.859. The average expression patterns demonstrated a similar pattern as 
before (Supplementary Fig. 6). Examination of the identified genes, highlighted two acetyltransferases of the 
Gcn5-related N-acetyltransferases family (GNAT)58, 10 transcription factor-associated genes, and 14 genes 
encoding membrane proteins. GNAT enzymes catalyze the transfer of an acyl moiety from acyl coenzyme A 
(acyl-CoA) to a large number of different substrates and are essential for lipid biosynthesis59. Here, the two 
acetyltransferases (Brasy3G100400 and Brasy9G171000 – Fig. 8) showed increased transcription in Osl1 and 
particularly in Osl1 under freezing. Out of the 10 transcription factor-associated genes, seven genes displayed 
Ain1- or Osl1-specific expression patterns. Brasy1G190400 (TCP family transcription factor), Brasy3G151900 
(transcription factor HY5), Brasy4G087400 (BHLH transcription factor), Brasy6G010100 (MYB transcription 
factor) were, in general, more abundant in Ain1 and increased during freezing conditions, while Brasy4G312600, 
Brasy4G395200 (MYB family transcription factors) and Brasy5G38300 (RF2a transcription factor) were more 
abundant in Osl1 (Fig. 8). The distinct patterns of transcription associated with GABA and TCA-cycle interme-
diate metabolism and with transcription factors and acetyltransferases hinted at accession-specific regulation of 
lipid biosynthesis.

Discussion
We characterized the responses of two B. sylvaticum accessions, isolated from two geographical areas with con-
trasting climates (i.e., Osl1 from North Europe and Ain1 from North Africa – Fig. 1). Our aim was to characterize 
freezing tolerance mechanism(s) in this model perennial grass that may contribute into unraveling similar mech-
anisms in biomass crops such as switchgrass and Miscanthus2,60. Osl1 plants displayed higher freezing tolerance 
than Ain1, as indicated by increased vigor, higher chlorophyll contents, lower MDA, lower ion leakage and higher 
PSII protein accumulation (Fig. 1).

Next, we profiled all samples for gene expression and metabolites and lipids (compounds dataset). PC1 of 
the gene expression PCA showed a clear separation between accessions and separation of treatments on PC2 
(Fig. 5a). The PCA of the compounds dataset showed a transitional change between treatments on PC1 and a 
separation between accessions on PC2 (Fig. 5b). The conclusions of the PCA were twofold: i) the differences 
observed on a transcriptional and metabolic level were mainly due to genotypic differences ii) posttranscriptional 
and posttranslational events were highly regulated, resulting in transitional rather than separational metabolic 
phenotypes between Ain1 and Osl1. Differential gene expression analysis revealed increased changes of gene 
expression in Ain1 in comparison to the freezing adapted Osl1. A lower degree of adjustment of transcription 
supported the notion of Osl1 adaptability to freezing stress by showing lower levels of response61,62. We con-
structed correlation-based networks for Ain1 and Osl139. Intersection, differences, and symmetric differences 
highlighted the topological differences between the networks (Figs. 6 and 7 and Supplementary Fig. 4). The higher 
network connectivity of the cold-adapted accession Osl1, together with a higher ratio (~10 fold) of positive to 
negative correlations, supported the ability of Osl1 to adapt its metabolism at the initiation of the abiotic stress, 
similar to that observed in grapevine leaves63 or tomato seeds64.

Overwintering plants have evolved various strategies to minimize freezing injuries. These include the modifi-
cation of membrane fatty acid composition, accumulation of carbohydrates and other compatible solutes and the 
production of antioxidants and antifreeze proteins65. Our statistical, multivariate, and correlation-based network 
analyses emphasized the role of GABA, glutamate, putrescine, TCA cycle intermediates, and SQDGs and TAGs 
lipids. While the link between GABA and the TCA cycle, and its involvement in abiotic stress, is well known66,67, 
we were particularly interested in their roles with respect to lipid biosynthesis and their potential impact on the 
membrane integrity of the two B. sylvaticum accessions. We employed state-of-the-art algorithms that place big 
biological data into biological context by combining CNA with machine-learning techniques. The idea behind 
this approach is that the computer learns from existing data. Based on recurring patterns that known metabolic 
pathways imprint onto correlation networks, the computer is able to predict the existence or ‘activity’ of unknown 
metabolic pathways. The approach has proven so powerful that it was able to predict the melibiose degradation 
pathway in tomato, although melibiose was not part of the original dataset29. Rooted on the two correlation-based 
networks, we generated two ML models (ML-Ain1 and ML-Osl1 – Supplementary Fig. 5) and then predicted 
the ‘activity’ of metabolic pathways as annotated in the PlantCyc collection36. While the ML-Ain1 model was 
primarily associated with GABA metabolism and the reductive TCA cycle, these pathways were not predicted 
by the ML-Osl1 model (Table 2), indicative of their downregulation. We also employed a genetic algorithm that 
maximized the correlation between a subset of genes in a gene expression network and a trait of interest30 – in 
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this case, sets of metabolites corresponding to metabolic pathways. The analysis highlighted a TCP family and 
the HY5-transcription factors showing elevated levels for Ain1 in comparison to Osl. Also two acetyltransferases 
were identified with higher expression levels for Osl1 (Fig. 8).

The association between GABA and the TCA cycle intermediates is to replenish the TCA cycle via the GABA 
shunt and to maintain amino acid biosynthesis under low levels of energy49,50,67. GABA accumulation has been 
associated with abiotic stresses50,68. Increased GABA levels were shown in wheat and barley during freezing69. In 
our study, significant GABA increases were seen in both Ain 1 and Osl1 under freezing (Fig. 3). Nevertheless, we 
could predict GABA-associated pathways only in Ain1, indicating that under freezing Ain1 activated the GABA 
shunt, but not Osl1. Given the sensitivity of Ain1 to freezing, the activation of the GABA shunt may have had 
detrimental effects in Ain1. In transgenic Arabidopsis seeds the accumulation of high levels of GABA impaired 
fatty acid biosynthesis70. Bypassing the TCA cycle via the GABA shunt results in decreased levels of CoA moieties 
production, essential for fatty acid biosynthesis. Moreover, high levels of GABA have been associated with low 

Figure 8.  Transcription factors and acetyltransferases. Illustrated are the levels of the seven transcription 
factors activity associated genes (rows 1 and 2) and two acetyltransferases (row 3) identified via a genetic 
algorithm in two Brachypodium sylvaticum accessions across different temperature treatments. X-axes represent 
the normalized gene counts, y-axes represent different accessions and their respective treatments. Values are 
the mean ± SE (n = 3). Different letters and color codes indicate significant differences (p ≤ 0.05) according to 
posthoc Tukey’s test.
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levels of malate, which has been reported to be the preferred fatty acid elongation substrate71,72. In yellow lupine 
seedlings, C atoms from acetate may be preferably incorporated into amino acid synthesis rather than fatty acid 
synthesis73 and similar mechanisms may play a role in reducing fatty acid biosynthesis leading to membrane leak-
age under freezing conditions in Ain1. In Osl1, on the other hand, the GABA shunt activity was downregulated 
as a result of normal TCA cycle activities and the maintenance of fatty acid biosynthesis, which are regulated by 
acetyltransferases, leading to the formation of functional, non-leaky membranes.

Taken together, our top-down-based approach, employing state-of-the-art algorithms for big data, was able 
to filter through physiological, transcription, metabolite and lipid data to provide evidence highlighting different 
regulatory mechanisms taken place in Ain1 and Osl1 during freezing. While the upregulation of the GABA shunt 
activity showed detrimental effects on fatty acid biosynthesis, Osl1 downregulated the GABA shunt activity to 
counteract the inhibition of fatty acid biosynthesis. Consequently, membrane leakage was reduced contributing 
to the survival of Osl1 plants under freezing conditions.

Methods
Plant material, growth conditions, and experimental design.  Seeds from B. sylvaticum accessions 
Ain1 and Osl1 were obtained from the USDA National Plant Germplasm System (https://www.ars-grin.gov/
npgs/). For the cold experiments, the seeds were stratified in a cold room at 10 h/1 h light/dark cycles at 4 °C for 2 
weeks before sown into soil. Germination and growth were achieved in a chamber room 16 h/8 h light-dark cycles 
at 26 °C/18 °C, respectively, for 3 weeks. For cold acclimation, the plants were moved into a cold room at 10 h/14 h 
light/dark cycles at 4 °C, for 3 weeks.

The freezing experiments were conducted in a temperature and light controlled growth chamber. The initial 
24 h were composed of an 8 h light period at 4 °C, followed by a dark period of 2 h at 4 °C, 30 min at 2 °C, 30 min 
at 0 °C, 4 h at −2C, 8 h at −5.5 °C, 30 min at −2 °C, and 30 min at 1 °C. For the subsequent 24 h, plants were kept 
at dark at 4 °C. After the freezing treatment, all plants were moved to growth chambers where they were kept at 
16 h/8 h light-dark cycles at 26 °C/18 °C, respectively.

Leaf samples of seedlings were collected i) before the cold acclimation (CK) treatment was initiated, ii) before 
the freezing challenge was initiated, and iii) after 8 h of freezing at −5.5 °C. All samples were subjected to RNA 
and metabolite extraction for subsequent gene expression and metabolomics analysis, respectively (see below). 
Ion leakage measurements and immunoblot analysis were performed immediately after freezing challenge using 
control plants as a reference control. The plant damage phenotyping and sampling for chlorophyll and MDA 
contents were performed after 2 weeks of recovery in growth chamber rooms using control plants as a reference 
control.

Electrolyte leakage.  Shoot samples for electrolyte leakage were harvested immediately after freezing chal-
lenge. Electrolyte leakage was measured as described previously74.

Inmunoblot analysis.  Plant leaf tissues were weighed, frozen in liquid N2, and ground in three volumes of 
2 × Laemmli sample buffer. Total proteins were separated by SDS-PAGE, transferred to a polyvinylidene difluo-
ride membrane (Bio-Rad), and probed as described previously75. Antibodies raised against PsbA/D1 (AS01016), 
and Lhcb2 (AS01003) and PsbO 1 (AS05092), were obtained from Agrisera (Vannas, Sweden). Horseradish 
peroxidase-conjugated secondary antibodies were purchased from Santa Cruz Biotechnology.

Chlorophyll measurements.  Shoots were grinded in liquid N2 and weighed. Chlorophyll was extracted in 
80% acetone, and the absorbance was measured at 663 nm and 645 nm (Synergy™ Mx Microplate Reader; BioTek, 
USA). Total chlorophyll content was calculated as described elsewhere76.

Malondialdehyde measurements (MDA).  Shoots were grinded in liquid N2 and weighed. Tissue was 
homogenized with 5 ml of 50 mM NaH2PO4-Na2HPO4 buffer pH 7.5 and centrifuged at 20,000 g for 25 min. For 
MDA measurements, 4 ml of 20% trichloroacetic acid containing 0.5% thiobarbituric acid were added to a 1 ml 
aliquot of the supernatant. The mixture was heated at 95 °C for 30 min, quickly cooled in ice, and then centrifuged 
at 10,000 g for 10 min. The absorbance of the supernatant was measured at 532 nm and 600 nm77.

Metabolite profiling by gas chromatography‒mass spectrometry.  Metabolites were extracted 
using the MTBE method as described elsewhere78. One hundred-fifty μl vacuum-dried polar phases samples 
were derivatized and subjected to GC‒MS analysis as described previously79. The GC‒MS data were obtained 
using an Agilent 7683 series auto-sample (Agilent Technologies, http://www.home.agilent.com), coupled to an 
Agilent 6890 gas-chromatograph‒Leco Pegasus two time-of-flight mass spectrometer (Leco: http://www.leco.
com/). Identical chromatogram acquisition parameters were applied to those previously used80. Chromatograms 
were exported from the LECO CHROMATOF software (version 3.34) to the R software. Ion extraction, peak 
detection, retention time alignment and library searching were obtained using the TargetSearch package from 
Bioconductor81. The resulting data matrix was used for further analysis.

Lipid profiling.  Lipids were extracted using the MTBE method as described previously77. Five hundred μl 
vacuum-dried organic phase samples were processed using ultra-performance liquid chromatography, on a C8 
reverse phase column coupled with Fourier transform mass spectrometry (UPLC-FT-MS) (Thermo-Fisher, 
http://www.thermofisher.com) in positive and negative ionization modes. Processing of chromatograms, peak 
detection and integration were performed using REFINER MSH 10 (GeneData, http://www.genedata.com). 
Processing of mass spectrometry data included the removal of the fragmentation information, isotopic peaks and 
chemical noise. Selected features were annotated using an in-house lipid database80.
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Statistical analysis of metabolite and lipid dataset.  All metabolite and lipid data was natural-log 
transformed. Missing values (4.4%) were imputed using data imputation provided by Bioconductor (http://www.
bioconductor.org/) package pcaMethods82. Analysis of variance (ANOVA) was run for each metabolite and lipid. 
To detect significant differences, p-values (threshold ≤ 0.05) were Bonferroni corrected to account for multiple 
hypothesis testing. Subsequently, a posthoc Tukey test was performed.

Library preparation and sequencing.  RNA was extracted with Trizol (Invitrogen) and PureLink RNA 
Mini Kit (Ambion) and then treated with TURBO DNase (Ambion). The RNA quality control was accessed 
using 2100 Bioanalyzer and RNA 6000 Nano Kit (Agilent), Qubit RNA BR Assay Kit (Thermol Fisher Scientific) 
and Nanodrop (Thermol Fisher Scientific). RNA-sequencing libraries were constructed using TruSeq Stranded 
mRNA Library Preparation Kit (Illumina). PolyA + RNA was isolated from 1 μg total RNA and then fragmented. 
The cDNA was synthesized, adenylated at 3′ ends and ligated with adaptors. The libraries were amplified with 8 
cycles of polymerase chain reaction (PCR). Sequencing was done on a Illumina Hiseq platform of 2 × 150 bp. 
Filtered reads from each library were aligned to the reference genome using HISAT version 0.1.4-beta83, feature-
Counts was used to generate the raw gene counts. Gene counts were normalized using DESeq. 2 (version 1.8.1)31 
DESeq. 2 was also used to determine differentially expressed genes between pairs at a q-value of ≤0.05.

PCA and correlation-based network analysis.  Principal component analyses were performed on 
the metabolite combined with the lipid dataset as well as on the gene expression datasets to determine clus-
ters of associated samples. For the identified clusters, metabolite correlation networks (CN) were constructed as 
described before39. In brief, all metabolites were pairwise-correlated using Pearson correlation. Threshold tests for 
correlation coefficients (r) and p-values were applied to detect significant correlations. The threshold for r-values 
was set to ≥0.8 for the Ain1 and Osl1 network, respectively. A false discovery rate84 was applied to adjust for mul-
tiple hypothesis testing at a q-value of ≤0.05. Spurious correlations were removed, while significant correlations 
were transformed into network form.

Identification of metabolic pathways within CN’s.  Identification of metabolic pathways within CN’s was 
performed essentially as described in29. The approach employs machine-learning techniques to train a model based 
on known metabolic pathways and then predicts the presence of pathways. The applied method uses pathways 
based on the PlantCyc repository (https://plantcyc.org/)36 However, a collection of metabolic pathways associated 
with B. sylvaticum has yet to be established. Therefore, for the current study, a consensus set of pathways found in all 
101 plant species listed in PlantCyc version 13 was generated, detecting 38 consensus pathways (positive instances). 
The consensus pathways were mapped to the CN’s upon which for each pathway a set of network features was com-
puted = positive training set29. As a negative training set 19 random pathways (negative instances) from MetaCyc 
collection (https://metacyc.org/)85 that could not be found within the PlantCyc collection but could be mapped to 
the CN’s were selected. In addition, 19 random subsets of metabolites were generated accounting for the other half 
of the negative training set. Also here, for each instance of the negative training set the aforementioned network 
features were computed. To avoid over-fitting, the most important features were selected for each training-set. Next, 
the gradient boosting (xgboost) algorithm48 was employed with a 10-fold cross validation to generate ML models for 
the Ain1 and Osl1 networks. Predictions for all test-set metabolic pathways were generated for the final models. The 
quality of ML models were assessed using performance measures, i.e. the area under the curve (AUC) of the receiv-
ing operating characteristic curve, which was generated by plotting the true positive rate against the false positive 
rate at different prediction thresholds. An AUC close to 1 indicated a perfect classifier, while an AUC of 0.5 indicated 
a poor classifier that could also be achieved by chance. Another mean to demonstrate ML performances is the usage 
of confusion matrices, where the predicted vs. the actual classification of positive and negative instances is captured 
in table form. The classifications of the predicted instances correspond to the rows, while the actual classifications 
correspond to the columns. Positive instances are denoted as ‘1’ and negative instances are denoted as ‘2’. Derived 
from the confusion matrix is the accuracy measure, which is the proportion of correctly classified positive and neg-
ative instances. Finally, sensitivity analyses were performed based on the final models, where subsets (80%) of the 
training-instances were randomly chosen to recreate models with identical settings. Sensitivity analyses were per-
formed to test for the robustness of the ML model. After each model generation, the test-set instances were subjected 
to prediction. This analysis was performed with 100 repetitions, after which the average prediction values and their 
corresponding variance values were computed. Test-set pathways that demonstrated prediction values ≥ 0.5 in the 
original model as well as in the average values of the sensitivity analysis were considered validly predicted.

Genetic algorithm.  To identify genes associated with metabolic pathways, a genetic algorithm to optimize 
the correlation between a trait of interest and a subset of genes within a gene co-expression network trait to gene 
was used as described previously30. The genetic algorithm was adapted so that essentially:

| ⋅ ⋅ |ARGMAX cor prcomp Expr C prcomp Pr M{ ( ( [ , ]), ( [ , ])) }C

where C is a subset of genes in the module, Expr ⋅ C[ , ] is the expression matrix narrowed down to C, M is a subset 
of metabolites corresponding to the metabolic pathway, Pr ⋅ M[ , ] is the metabolite profile matrix narrowed down 
to M, prcomp is the 1st principal component of a matrix, and cor is the Pearson correlation.

Data availability
Data associated with the current study can be found under: https://figshare.com/account/home#/projects/68999.
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