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Plumage iridescence is associated 
with distinct feather microbiota in a 
tropical passerine
Veronika Gvoždíková Javůrková   1,2, Erik D. Enbody3, Jakub Kreisinger4, Kryštof Chmel4,5, 
Jakub Mrázek6 & Jordan Karubian3

Birds present a stunning diversity of plumage colors that have long fascinated evolutionary 
ecologists. Although plumage coloration is often linked to sexual selection, it may impact a number 
of physiological processes, including microbial resistance. At present, the degree to which differences 
between pigment-based vs. structural plumage coloration may affect the feather microbiota remains 
unanswered. Using quantitative PCR and DGGE profiling, we investigated feather microbial load, 
diversity and community structure among two allopatric subspecies of White-shouldered Fairywren, 
Malurus alboscapulatus that vary in expression of melanin-based vs. structural plumage coloration. We 
found that microbial load tended to be lower and feather microbial diversity was significantly higher 
in the plumage of black iridescent males, compared to black matte females and brown individuals. 
Moreover, black iridescent males had distinct feather microbial communities compared to black matte 
females and brown individuals. We suggest that distinctive nanostructure properties of iridescent male 
feathers or different investment in preening influence feather microbiota community composition and 
load. This study is the first to point to structural plumage coloration as a factor that may significantly 
regulate feather microbiota. Future work might explore fitness consequences and the role of 
microorganisms in the evolution of avian sexual dichromatism, with particular reference to iridescence.

Avian plumage is a unique integumentary structure that is critical for multiple functions including flight1–3, ther-
moregulation4–6, and socio-sexual communication7,8. Feather coloration is a product of deposited pigments (e.g. 
carotenoids, melanins and psittacofulvins) responsible for pigment coloration9,10, feather integumentary nanos-
tructures responsible for structural coloration11–13, or a combination of both14–17. Elaboration of feather colora-
tion generated by combinations of these factors is considered to be primarily driven by sexual selection18. In this 
context, studies have demonstrated that variation in pigment-based and structural plumage coloration is under 
sexual selection by advertising quality and/or reproductive success16,19–22. Carotenoid-based coloration is more 
prone to diet, foraging strategy and an individual’s physiological state23–25. On the contrary, association between 
melanin-based plumage coloration and reproductive parameters and/or survival in birds is species-specific and 
dependent on adaptation to local environmental conditions26,27 that may include interactions with omnipresent 
microorganisms.

Feathers are subject to exposure to the external environment and host diverse microbial communities28–31 
including antibiotic compounds-producing microorganisms31, pathogens32 or feather-degrading bacteria29,33. 
The latter can deteriorate feather structure34,35 and negatively affect signaling function of both pigment based 
and structural plumage coloration36–38. In addition, plumage bacterial load may significantly impair individual 
immunity and fitness39–41. However, experimental evidence suggests that feather pigments, particularly melanins 
and also parrot psittacofulvins, significantly improve resistance of feathers against bacterial degradation34,42,43. 
Moreover, feather melanization was found to inhibit attachment and colonization of keratinolytic bacterium B. 
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licheniformis on black- and white-striped feathers44. Prevention of feather bacterial degradation via increased 
deposition of melanins into the feathers is one functional explanation in several studies that have documented 
more melanized individuals in colder, wetter and more densely vegetated habitats45–48. Yet, a study comparing 
feather microbial load and diversity in individuals adopting different melanin-based plumage phenotypes in 
natural population of birds is lacking.

Recent studies have highlighted the role of structural based plumage coloration such as iridescence, in the 
evolution of avian plumage coloration and dichromatism13,49–51. Iridescent feathers (which seem to be ancestral 
in birds52) have decreased hydrophobicity53 and are more sensitive to bacterial degradation54, which provide a 
potential mechanism for honest signaling of individual quality. However, increased plumage bacterial load has 
been shown to diminish brightness of iridescent neck feathers in pigeons38. Moreover, iridescent plumage phe-
notypes show greater diversity in tropical and sub-tropical species12,49,55–58 that are exposed to higher and more 
diversified microbial loads59,60. It follows, therefore, that apart from a protective role of feather pigments, birds 
may have developed other defense mechanisms for preventing detrimental effects of external parasites including 
microorganisms on feather wear61.

To date, no study has investigated the relationship between iridescent plumage phenotype and indices of 
feather microbiota in free living populations of birds. In the present study, we used molecular approaches to inves-
tigate feather microbial load and diversity in two populations of a tropical passerine bird, the White-shouldered 
Fairywren (Malurus alboscapulatus), of New Guinea that vary in the extent of melanin-based and structural 
plumage coloration both between populations and between sexes. No other study has investigated the conse-
quences of feather microbial load and diversity for divergent plumage phenotypes in melanin-based and struc-
tural coloration for a natural bird population. We leverage this unique variation to ask how feather microbial load 
and diversity varies between plumage phenotypes and discuss mechanistic underpinnings and consequences for 
plumage signaling and evolution.

Material and Methods
We analyzed feather microbial load, diversity and community profile in two subspecies of White-shouldered 
Fairywren (family Maluridae, Meyer, 1874), a socially breeding, tropical, insectivorous passerine endemic to 
grassland environments62 in New Guinea. Both subspecies are sexually dichromatic, yet their plumage pheno-
types differ in melanin-based and structural coloration. While females and first year males of subspecies M. a. 
lorentzi are brown dorsally and white ventrally63 (“brown individuals” hereinafter), adult males are black with 
white shoulder patches including an iridescent blue satin sheen. In contrast, males and females of M. a. moretoni 
exhibit cryptic sexual dichromatism as they are similar in appearance and both are black with white shoulder 
patches, yet black females are matte, lack the male’s iridescent blue satin sheen and have lower barbule density 
compared to iridescent black males64 (Fig. 1).

All individuals were sampled under permit 2194 issued by the Australian Bird and Bat Banding Scheme and 
protocols were reviewed under the Tulane University IACUC number 0395 and all experiments were performed 
in accordance with relevant institutional guidelines and regulations.

Study area and sampling procedure.  We collected chest contour feathers from 24 individuals of 
White-shouldered Fairywren that were mist-netted during February-March 2016 in two provinces of Papua New 

Figure 1.  Photographs and localities (i.e. populations) of White-shouldered Fairywren subspecies included 
in this study and sampled in Papua New Guinea. Within the M. a. lorentzi subspecies, we sampled white chest 
feathers from brown females and first-year males and black chest feathers from iridescent males, while within 
M. a. moretoni subspecies, black chest feathers from ornamented black males with iridescent plumage and black 
females with matte plumage were sampled (photographs: Erik D. Enbody).
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Guinea. Specifically, white chest feathers from two first-year males and three females of the subspecies M. a. lor-
entzi were sampled in Western Province, Papua New Guinea (141°19′E, 7°35′S, 10–20 m ASL; Fig. 1). Black chest 
feathers from four matte black females of the M. a. moretoni subspecies were sampled in Milne Bay Province, 
Papua New Guinea (150°30′E, 10°15′S, 0–20 m ASL; Fig. 1) and fifteen iridescent black males were sampled 
between two allopatric subspecies populations; Western Province (n = 11), and Milne Bay Province (n = 4).

Chest contour feathers (approx. 10–15) were plucked from each individual using sterile forceps and imme-
diately placed into a sterile tube filled with 1 mL of 96% sterile-filtered ethanol. To avoid contamination, feathers 
for microbiological analyses were collected directly from individuals trapped in mist net (i.e. prior to handling). 
After removing the individuals from the mist net, age and sex of each individual was assigned. We also collected a 
blood sample from each brown individual of M. a. lorentzi and stored it in Longmire’s lysis buffer for subsequent 
genetic determination of sex.

Sex identification.  We assigned sex in the field to individuals with cloacal protuberances, brood patches, or 
sex-specific plumage phenotypes. As first year males and adult females of M. a. lorentzi are apparently identical 
in appearance (Fig. 1), we used molecular markers to sex the five brown individuals sampled in this population. 
We extracted DNA from blood samples using a DNeasy blood and tissue kit (Qiagen) and amplified a sex-specific 
intron within the CHD gene using primers 2550F/2718R65. We ran CHD intron fragments through electrophore-
sis using a 2% agarose minigel and stained with SYBR Safe DNA gel stain (Life Technologies). Bands were scored 
visually following66, using positive controls to confirm accuracy.

Analyses of feather microbial load and diversity.  DNA extraction.  To measure feather microbial load 
and diversity, microbial genomic DNA was isolated from feather samples stored in ethanol. See Supplementary 
Material and Methods for complete DNA extraction protocol.

Quantification of feather microbial load.  To analyze feather microbial load, we used quantitative PCR target-
ing 16S rRNA in extracted microbial DNA from feather samples using a LightCycler®480 Instrument (Roche, 
Mannheim, Germany). See Supplementary Material and Methods for complete qPCR amplification conditions.

Analysis of feather microbial diversity and community profiling.  Denaturing Gradient Gel Electrophoresis 
(DGGE) was used to assess feather microbial diversity and community profile. See supplementary Material and 
Methods for detailed DGGE protocol.

DGGE gel image was processed in BioNumerics software v 7.6 (Applied Maths, Belgium) for normalization, 
bands detection and band matching table construction. Bands were detected using the band-search algorithm 
with densitometric curves describing the optical density along each lane and enabling background subtraction. 
Band detection criterions was set as 5% relative to maximum densitometric value of lane to eliminate uncertain 
bands. Then, for each sample running on DGGE gel, the number of Operational Taxonomic Units (OTUs) and 
Shannon-Wiener diversity index (Hsw) were calculated based on equation:
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where n is the total number of bands, hi the intensity of the individual band i and H the total intensity of all bands 
in a profile, were calculated. Band matching tables were computed using band densitometric peak height, peak 
surface, and 2D band areas. We measured the relative OTUs abundances with band matching optimization and 
tolerance set as 0.5%. This semi-quantitative band matching table was used for the computation of Bray-Curtis 
and Jaccard distance matrices using the R package phyloseq.67.

Taxonomy of feather microbial communities.  To identify the most representative and abundant bacteria within 
White-shouldered Fairywren plumage microbial communities, the 12 most pronounced DGGE bands (see 
Supplementary Fig. S1) were cut out of the stained polyacrylamide gels by the sterile scalpel in a dark room on 
a UV light-box. DNA was eluted by the addition of 100 µL of sterile dH2O and centrifuged at 10,000 rpm for 
10 minutes. Then, 2 µL of this solution with primers FP341 (5′-CCTACGGGAGGCAGCAG-3′) and RP534 (see 
above) was used for amplification under the PCR-DGGE program68. The resulting PCR products were cleaned 
with QIAquick PCR purification kit (Qiagen, Germany) and sequenced using standard Sanger methods from 
both sides (SeqMe service, Czech Republic).

Taxonomy assignment of obtained representative sequences were done with the RDP classifier69 by combin-
ing the Greengenes database (version 13_8)70 with 80% posterior probability limit and Geneious Prime (ver-
sion 2019.0.4). To assess prevalence of the most representative OTUs among plumage phenotypes, presence vs. 
absence data for all 12 sequenced DGGE bands within White-shouldered Fairywren indiviudals was extracted 
from the normalised DGGE gel (see Supplementary Fig. S1) using Bionumerics software v 7.6 (Applied Maths, 
Belgium). Heatmap showing the phylogeny and prevalence of the 12 representative OTUs (i.e. DGGE bands) 
within White-shouldered Fairywren plumage phenotypes were generated using the R packages ggtree71 ape72 and 
ggplot273.

Statistics.  All statistical analyses were performed in RStudio (Version 1.1.453)74. We used Analysis of 
Variance (ANOVA) models with log-transformed 16S rRNA copy number per mg of feather and Shannon diver-
sity index as response variables to evaluate factors affecting differences in feather microbial load, and feather 
microbial alpha diversity in White-shouldered Fairywren subspecies, respectively. Plumage phenotype (brown vs. 
black), sex (male vs. female) nested within plumage phenotype, and age coded as binary variable (0 = first-year 
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birds, 1 = birds older than first-year) were included as categorical explanatory variables in each ANOVA model. 
Tukey HSD post-hoc tests were used for multiple comparison of significant effects and their means between 
tested categories.

Iridescent black males were sampled in two geographically distinct populations; Milne Bay and Western (see 
Material and Methods for details), and we used Welch’s Two Sample t-test due to unequal variance in the case 
of microbial load, and Student’s t-test in the case of alpha diversity testing between-population effect on feather 
microbial load and diversity.

To assess factors responsible for divergence in similarity (i.e. β-diversity) of feather microbial communities 
among White-shouldered Fairywren individuals, we used a PERMANOVA permutation test (R package vegan, 
function: adonis) by fitting a linear model based on both Bray-Curtis and presence/absence version of Jaccard 
similarity coefficients including plumage phenotype (brown vs. black) sex (male vs. female) nested within plum-
age phenotype and age as response variables. Due to unbalanced sampling design, we also assessed heterogeneity 
of variance (i.e. inter-individual variation of feather microbiota composition) between plumage phenotypes using 
the betadisper function75. Principal Coordinates Analysis (PCoA) was used to visualize among-sample diver-
gence in composition of feather microbial communities.

Results
Feather microbial load.  We found sex nested within plumage phenotype as significant predictor of White-
shouldered Fairywren microbial load (ANOVA: F(2,21) = 3.856, p = 0.038), with iridescent black males tended to 
have lower feather microbial loads than did matte black females (Tukey’s HSD test: p = 0.053; Table S1, Fig. 2). 
However, neither iridescent black males nor matte black females significantly differed in feather microbial load 
compared to brown individuals (Table S1, Fig. 2). Moreover, there was no effect of individual’s age on feather 
microbial load (ANOVA: F(1,22) = 0.252, p = 0.621).

We found no differences in microbial loads of iridescent black males sampled in the two geographically dis-
tinct populations (Welch Two sample t-test: t = −1.398, df = 8.825, p = 0.196).

Feather microbial diversity and taxonomic profile.  Alpha diversity of feather microbial communi-
ties varied within sex nested in plumage phenotypes (ANOVA: F(2,21) = 11.555, p < 0.001) with iridescent black 
males having significantly more diversified microbial communities than matte black females (Tukey’s HSD test: 
p = 0.001, Table S2, Fig. 3), brown females (Tukey’s HSD test: p = 0.017; Table S2, Fig. 3) and brown males where 
the effect was marginally non-significant (Tukey’s HSD test: p = 0.051; Table S2, Fig. 3). Effect of age on feather 
microbial alpha diversity was not significant (ANOVA: F(1,22) = 1.668, p = 0.213). In addition, we did not find 
between-population differences in feather microbial alpha diversities between iridescent black males sampled in 
two geographically distinct populations (Student’s Two sample t-test: t = −1.375, df = 12, p = 0.194).

Similarity (i.e. β-diversity) of feather microbial communities between White-shouldered Fairywren indi-
viduals was best explained by sex nested in plumage phenotype (PERMANOVAs: Bray-Curtis - 23% variance 
explained, F = 1.571, p = 0.001; Jaccard - 21% variance explained, F = 1.380, p = 0.002) with age having no signif-
icant effect (PERMANOVAs: Bray-Curtis - 10% variance explained, F = 1.361, p = 0.054; Jaccard - 9% variance 
explained, F = 1.147, p = 0.135). Heterogeneity of inter-individual variance among plumage phenotypes was sig-
nificant for Bray-Curtis (betadisper: F = 26.123, p < 0.001) as well as Jaccard (betadisper: F = 37.400, p < 0.001). 
PCoA ordination shown that composition of feather microbial communities of iridescent black males varied 
from microbial communities of matte black females and brown individuals (Fig. 4a,b). PCoA visualization of 
between-population microbial community divergence showed no apparent dissimilarities in feather microbial 
community profiles of iridescent black males sampled in geographically distinct populations (Fig. 4a,b).

Taxonomic composition of the most representative feather microorganisms was dominated by the phyla 
Betaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Prevalence of the most 
representative bacterial genera differed among plumage phenotypes, with brown individuals dominated by the 

Figure 2.  Differences (mean ± 95% CI) in feather microbial load (log10 16S rRNA copy numbers per mg 
of feather) between White-shouldered Fairywren plumage phenotypes. Significant differences are based on 
Tukey’s HSD.
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genera Bradyrhizobium, Rhizorhapis and Ralstonia while black individuals hosted other genera with various prev-
alence depending on presence/absence of structural coloration (Fig. 5). A detailed taxonomy of the most repre-
sentative bacterial genera found in White-shouldered Fairywren plumage and their prevalence among plumage 
phenotypes is presented in Fig. 5.

Discussion
We show that the presence or absence of iridescent plumage, not melanized plumage per se, was associated with 
differences in feather microbiota in free-living populations of a tropical bird. Iridescent black males had the low-
est feather microbial load, the highest microbial diversity and harbored a distinct microbial community relative 
to brown and matte black individuals of either sex. Our findings regarding feather microbial load are inconsist-
ent with a recent study investigating bacterial load on ornamental throat feathers in free-living population of 
spotless starling (Sturnus unicolor), which documented higher bacterial load on iridescent feathers compared to 
un-ornamented adjacent or female feathers54.

Most existing research has shown that feather microbial diversity and community structure are primarily 
driven by horizontal transmission of microbes from the environment31,76. However, species-specific feather 
microorganisms that are able to produce antimicrobial substances31, or particular chemical substances contained 

Figure 3.  Differences (mean ± 95% CI) in feather microbial α-diversity (Shannon-Wiener index) between 
White-shouldered Fairywren plumage phenotypes. Significant differences are based on Tukey’s HSD (statistical 
significance: *p < 0.05, **p < 0.01).

Figure 4.  Principal Coordinates Analysis (PCoA) for among-sample divergence in composition (β-diversity) 
of White-shouldered Fairywren feather microbial communities based on (a) Bray-Curtis and (b) Jaccard 
dissimilarities. Different colors denoted plumage phenotypes and different shapes geographically distinct 
provinces (i.e. sampling localities).
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in preen gland secretions77–79 may also affect feather microbiota diversity. Our data show that iridescent individu-
als originating from two geographically (>1000 km apart) and ecologically distinct populations63 do not differ in 
feather microbial diversity and harbor similar microbial communities on their feathers. Due to the similarity in 
microbial communities between individuals living in different environments, it is unlikely that horizontal trans-
mission of microbes from the environment drive differences we observe in microbiota communities. Instead, 
chemical composition of preen gland secretions or physical properties of iridescent feathers based on UV reflec-
tance and absorbance of solar radiation may be more important contributors to feather microbiota diversity and 
community structure in iridescent individuals.

We found no evidence that feather melanization impacts White-shouldered Fairywren feather microbiota. 
These findings did not necessarily exclude the hypothesis that melanins play a protective role against bacterial 
degradation of plumage34,35,46,48, as we did not directly test changes in degradability of differently melanized 
White-shouldered Fairywren feathers. Existing evidence suggests a preferential colonization and attachment of 
bacteria on white (i.e. non-melanized) compared to black (i.e. fully melanized) feathers or feather parts44,80, which 
we did not observe in our study system. A negative correlation between feather melanization and preening effort 
has been shown in barn owls81, suggesting that it is possible that brown individuals balance the feather microbi-
ota via increased preening effort compared to matte black individuals that may comparatively invest less into the 
preening.

White-shouldered Fairywren individuals with iridescent feathers tended to have reduced feather microbial 
load compared to non-ornamented individuals. One possible explanation for this is differences in investment 
for plumage maintenance. Presently, we have no observational data proving that iridescent White-shouldered 
Fairywren individuals invest more into preening, but there is evidence that ornamented males of the Red-backed 
Fairywren (Malurus melanocephalus), the White-shouldered Fairywren’s sister species, preen at higher rates than 
do unornamented males (J. Karubian, unpublished data). In other avian species, studies have documented that 
preening behavior can significantly reduce feather microbial load38,82, enhance feather condition including water-
proofness83, or increase feather visual signaling properties84,85. There is also evidence for associations between 
degree of feather microbial load and preen gland size86–88 supporting significant role of preen gland and its secre-
tions in alterations of feather microbiota. Furthermore, allopreening (e.g. preening between mates) is important 
for maintaining social bonds across the genus Malurus62 and may be a mechanism through which male iridescent 
plumages are maintained by reducing microbial load. In this sense, our findings may be consistent with the 
“attractive preening” hypothesis, which suggests that ornamental iridescent plumage is linked with increased 
investment in plumage maintenance via preening89, which may come with a high energetic costs39,90 and may thus 
reflect bearer quality91.

However, it is certainly possible that other factors may drive this pattern. For example, iridescent plumage in 
this system differs in terms of nanostructure from non-iridescent plumage64, which may in turn influence many 
physical properties, including solar reflectivity92. It has been hypothesized that iridescent nanostructuring of 
feathers might reduce heat loss of colorful sexually selected pigment-based coloration by reflecting solar energy92 
and iridescent feathers often have reflectance peaks in UVA and UVB spectrum93,94, which may inactivate or be 
lethal for most microorganisms95–97. Consequently, the solar heat absorption properties of iridescent feathers 
might have temperature-dependent effects on microorganisms present on feathers. Some of the bacterial genera 
detected in our study (Staphylococcus, Aquabacterium) and having different prevalences among plumage phe-
notypes, have been found in digestive tract of feather mites98. Consequently, another explanation is that feather 
mites may act as effector symbionts able to digest and thus selectively affect (based on plumage phenotype) feather 
microbiota99, which has been found in other species98. Feather mites have been detected on White-shouldered 
Fairywrens (E. Enbody, unpublished data), but further testing is needed to evaluate the interplay between feather 
mites and microbiota in this system.

Our observation of distinct microbiota communities and abundance between feather types suggests an 
overlooked role for structural coloration in complex plumage evolution and for the wild microbiome in host 
evolution. A better understanding of the proximate mechanisms behind the documented association between 

Figure 5.  Heatmap showing taxonomic assignment and prevalence (%) of the most representative microbial 
genera detected in feather of White-shouldered Fairywren with different plumage phenotypes.
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iridescent plumage phenotype and feather microbiota diversity, particularly in relation to preening gland secre-
tions chemistry and preening behavior, is a priority for future research into the feather microbiome and plumage 
evolution.

Data Availability
The nucleotide sequence data reported are uploaded in the GenBank database under the submission Numbers: 
MK215669, MK215670, MK215671, MK215672, MK215673, MK215674, MK215675, MK215676, MK215677, 
MK215678 and MK215679. The datasets generated during and/or analyzed during the current study are available 
from the corresponding author on reasonable request.
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