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The complexity of tumor shape, 
spiculatedness, correlates with 
tumor radiomic shape features
Elaine Johanna Limkin1,2, Sylvain Reuzé   2,3,4, Alexandre Carré2,3,4, Roger Sun   1,2,3,  
Antoine Schernberg1,2,3, Anthony Alexis2,4, Eric Deutsch1,2,3, Charles Ferté2,5 & 
Charlotte Robert2,3,4

Radiomics extracts high-throughput quantitative data from medical images to contribute to precision 
medicine. Radiomic shape features have been shown to correlate with patient outcomes. However, 
how radiomic shape features vary in function of tumor complexity and tumor volume, as well as with 
method used for meshing and voxel resampling, remains unknown. The aims of this study are to create 
tumor models with varying degrees of complexity, or spiculatedness, and evaluate their relationship 
with quantitatively extracted shape features. Twenty-eight tumor models were mathematically created 
using spherical harmonics with the spiculatedness degree d being increased by increments of 3 (d = 11 
to d = 92). Models were 3D printed with identical bases of 5 cm, imaged with a CT scanner with two 
different slice thicknesses, and semi-automatically delineated. Resampling of the resulting masks on a 
1 × 1 × 1 mm3 grid was performed, and the voxel size of each model was then calculated to eliminate 
volume differences. Four MATLAB-based algorithms (isosurface (M1), isosurface filter (M2), isosurface 
remeshing (M3), and boundary (M4)) were used to extract nine 3D features (Volume, Surface area, 
Surface-to-volume, Compactness1, Compactness2, Compactness3, Spherical Disproportion, Sphericity 
and Fractional Concavity). To quantify the impact of 3D printing, acquisition, segmentation and 
meshing, features were computed directly from the stereolithography (STL) file format that was used 
for 3D printing, and compared to those computed. Changes in feature values between 0.6 and 2 mm 
slice acquisitions were also compared. Spearman’s rank-order correlation coefficients were computed 
to determine the relationship of each shape feature with spiculatedness for each of the four meshing 
algorithms. Percent changes were calculated between shape features extracted from the original 
and resampled contoured images to evaluate the influence of spatial resampling. Finally, the percent 
change in shape features when the volume was changed from 25% to 150% of their original volume 
was quantified for three distinct tumor models and compared to the percent change observed when 
modifying the spiculatedness of the model from d = 11 to d = 92. Values extracted using isosurface 
remeshing method are the closest to the STL reference ones, with mean differences less than 10.8% 
(Compactness2) for all features. Seven of the eight features had strong significant correlations with 
tumor model complexity irrespective of the meshing algorithm (r > 0.98, p < 10-4), with fractional 
concavity having the lowest correlation coefficient (r = 0.83, p < 10-4, M2). Comparisons of features 
extracted from the 0.6 and 2 mm slice thicknesses showed that mean differences were from 2.1% 
(Compactness3) to 12.7% (Compactness2) for the isosurface remeshing method. Resampling on a 
1 × 1 × 1 mm3 grid resulted in between 1.3% (Compactness3) to 9.5% (Fractional Concavity) mean 
changes in feature values. Compactness2, Compactness3, Spherical Disproportion, Sphericity and 
Fractional Concavity were the features least affected by volume changes. Compactness1 had a 90.4% 
change with volume, which was greater than the change between the least and most spiculated 
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models. This is the first methodological study that directly demonstrates the relationship of tumor 
spiculatedness with radiomic shape features, that also produced 3D tumor models, which may serve 
as reference phantoms for future radiomic studies. Surface Area, Surface-to-volume, and Spherical 
Disproportion had direct relationships with spiculatedness while the three formulas for Compactness, 
Sphericity and Fractional Concavity had inverse relationships. The features Compactness2, 
Compactness3, Spherical Disproportion, and Sphericity should be prioritized as these have minimal 
variations with volume changes, slice thickness and resampling.

Radiomics is the process of extracting high-throughput quantitative data from medical images to contribute to 
current paradigms in disease diagnosis, staging, management and prognostication1–3. In recent years, there has 
been a rapid increase in publications on radiomics, but their routine utilization in the clinics is still to be achieved.

In complement to textural features, shape features are often extracted in radiomic analysis to describe tumor 
aggressiveness. Using CT (Computed Tomography) or MR (Magnetic Resonance) images, some tumors are 
described as spiculated or having ‘ill-defined borders’, which indicates potential to spread to contiguous struc-
tures and association with advanced stages4. On the contrary, less aggressive and benign tumors frequently have 
well-defined margins5. Shape-based features have been extracted in a number of studies, but not all have retained 
them in their final radiomic signature. Compactness index has been found to be helpful in differentiating benign 
from malignant lung nodules6,7, to aid in nodule segmentation8, and to be associated with distant metastases. 
In head and neck cancers9, the same index has been likewise shown to predict survival2 and HPV (Human 
Papillomavirus) status10. Spherical disproportion has been associated with prediction of malignant lung nod-
ules6, distant metastases in lung cancers9, and HPV status in head and neck cancers10. Sphericity was also linked 
to increased micropapillary component, which portends poorer prognosis, in lung adenocarcinoma11. Table 1 
summarizes the shape features found significant in publications.

Radiomic features often suffer from being highly correlated, either with tumor volume or with each other, 
making some of them redundant12,13. Too many features, compared to sample size, result in high false discovery 
rates, over-fitting, and decreased generalizability1,14,15. A recent study has shown that certain radiomic features 
extracted from CT scans, including a shape-based one (compactness), have a high dependency on tumor volume, 
with Spearman rank correlation coefficients ranging from 0.71 to 0.9816.

Moreover, with the field still developing, standards with regards to feature extraction or selection are few and 
not universally accepted. Because of this, feature nomenclature is not homogenous among publications. A specific 
example is compactness, which describes how much the shape of a tumor resembles that of a sphere, which has 
at least three different formulas in the literature8,17. Published studies likewise suffer from lack of standardization, 
making reproducibility of the results a challenge. To tackle these issues, a list of formulas for radiomic feature 
calculation was proposed by the Image Biomarker Standardization Initiative18.

Although different types of medical images such as MRI19 or Positron-Emission Tomography (PET) scan20 
can be analyzed for shape characterization, the use of CT imaging has dramatically increased in the past years21,22 
leading to numerous shape-based studies using this modality. However, datasets are usually retrospective with a 
wide range of imaging equipment, acquisition techniques and reconstruction parameters used23. Several publi-
cations have focused on the influence of these technical aspects on radiomic features (Table 2). A phantom study 
showed the significant impact of slice thickness on textural features24, although shape features generally exhibit 
more stability13. In lung nodules, feature extraction from seven different centers showed that 68% of shape fea-
tures are robust to segmentation, with concordance correlation coefficients (CCC) > 75%25. Another multicentric 
study showed that shape features were repeatable on test-retest CTs, with standard deviations of 3 to 11%26. By 
adding uncorrelated noise to original images, shape descriptors were however shown to vary more importantly in 
CT than in PET imaging, with values of 13% and 4%, respectively27.

Thus, the aims of this study were (i) to create mathematical models of tumors with increasing degrees of 
spiculatedness/complexity, (ii) to extract radiomic shape features and determine their relationship with spicu-
latedness, and (iii) to evaluate the impact of slice thickness, resampling, algorithm used for surface and volume 
calculations, and change in volume on these features. The ultimate goal is to identify shape features that are least 
affected by technical parameters such as slice thickness, resampling, and volume, and thus may be prioritized in 
future radiomic studies.

Results
The validity of the use of spherical harmonics to model the tumor complexity was verified by asking five different 
operators to independently classify the forms in order of spiculatedness based on their visual assessment. They 
were able to classify the tumors correctly, with a maximum error of five forms for one participant, which were 
consecutive models (d = 47 and 50, 86, 89 and 92).

Comparison of features computed directly from stl models versus after 3d printing, acquisi-
tion, segmentation and meshing.  Compared to the 2 mm, the 0.6 mm slice thickness results to increased 
differences for the feature Volume for all four meshing methods, as seen in Fig. 1. For the 2 mm slice thickness, 
the differences between the STL derived and the post-processing shape features are lower for the M3 meshing 
method with mean differences equal to 4.8% (1.0–14.8%, Surface-to-volume), 4.4% (0.7–14.0%, Compactness1), 
10.8% (1.5–36.5%, Compactness2), 1.8% (0.3–6.2%, Compactness3), 3.6% (0.5–12.3%, Spherical Disproportion), 
3.6% (0.5–12.3%, Sphericity). Standard deviations are slightly decreased for the M1 meshing method compared 
to M2 and M3 for all features, with values ranging from 1.2 (Compactness3) to 7.1 (Compactness2) and 1.6 
(Compactness3) to 9.5 (Compactness2), for the M1 and M3 methods, respectively, when the slice thickness is 
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equal to 2 mm. Standard deviations are lower for the 2 mm slice thickness compared to the 0.6 mm slice thick-
ness, with values ranging from 2.8 (Compactness3) to 16.2 (Compactness2) and 1.6 (Compactness3) to 9.5 
(Compactness2), for the 0.6 mm and 2 mm slice thicknesses of the M3 method, respectively.

Impact of slice thickness on feature values.  The nine shape features were first extracted from native 
binary masks obtained from 2 mm and 0.6 mm slice thickness CT images without any pixel size modifica-
tion. Change of the slice thickness during the acquisition process leads to mean differences equal to 12.3% 
(Surface-to-volume, 6.2–26.6%), 13.4% (Compactness1, 5.6–29.1%), 21.4% (Compactness2, 13.1–44.9%), 3.6% 
(Compactness3, 2.2–7.6%), 7.2% (Spherical Disproportion, 4.4–15.2%), 7.2% (Sphericity, 4.4–15.2%) and 2.6% 
(0.1–7.5%, Fractional Concavity) for the M1 meshing method. Values were equal to 9.3% (Surface-to-volume, 
2.8–23.3%), 11.3% (Compactness1, 3.2–26.9%), 12.7% (Compactness2, 4.1–35.2%), 2.1% (Compactness3, 0.7–
5.9%), 4.2% (Spherical Disproportion, 1.3–11.8%), 4.2% (Sphericity, 1.3–11.8%) and 3.0% (0.1–6.1%, Fractional 
Concavity) for the M3 meshing method.

Impact of the meshing algorithm on feature values.  Pixel dimensions varied from 0.643 mm to 
0.835 mm (X and Y directions) and from 0.565 to 0.733 mm (Z direction) after volume equalization for the masks 
extracted from the 0.6 mm slice thickness images. These values ranged between 0.639 mm and 0.840 mm (X and 
Y directions) and between 1.870 to 2.459 mm (Z direction) for the masks extracted from the 2 mm slice thick-
ness images. Figure 2 shows the meshes obtained from the 0.6 mm slice thickness acquisitions for a represent-
ative model d = 47 for the four algorithms. Figure 3 illustrates the impact of the meshing algorithm and slice 

Shape feature Author article Tumor localization Clinical outcome

Compactness

Aerts2, Naturecomms, 2014 Lung cancers, Head and neck 
cancers

CI of 0.65 (NSCLC) and 0.69 (HNSCC) for 
survival prediction, with 3 other features 
(Statistics total energy, GLRL GLN, Wavelet 
HLH GLN)

He8, IOP Science, 2014 Lung lesions (LIDC-IDRI)
2 features (with average gray value) had CI 
between computer scores and the reader 
scores of 0.789 ± 0.014 for nodule subtlety/
automatic segmentation

Wang6, IEEE, 2016 Lung lesions (LIDC-IDRI)
Prediction of malignant lung tumor 
(accuracy: 86% TS, 76% VS) from 15 random 
forest selected features, 3 of which were 
shape-based

Pena7, Academic Radiology, 
2017 Lung lesions

Prediction of malignant lung tumor with an 
AUC of 0.92 ± 0.05 (P < 0.0001), with 2 shape 
features included in a signature of 4 features

Bogowicz10, IJROBP, 2017 Head and neck cancers Nine features predicted HPV status, including 
2 shape features, with AUC = 0.66

Huynh9, PLOS ONE, 2017 Early stage NSCLC (post SBRT)
7 AIP features were associated with distant 
metastases, 3 of which were shape-based, with 
CI = 0.648

Spherical Disproportion

Wang6, IEEE, 2016 Lung lesions (LIDC-IDRI)
Prediction of malignant lung tumor 
(accuracy: 86% TS, 76% VS) from 15 
random forest selected features, 3 of which 
were shape-based

Bogowicz10, IJROBP, 2017 Head and neck cancers Nine features predicted HPV status, including 
2 shape features with AUC = 0.66

Huynh9, PLOS ONE, 2017 Early stage NSCLC (post SBRT)
7 AIP features were associated with distant 
metastases, 3 of which were shape-based, with 
CI = 0.648

Sphericity

Huynh9, PLOS ONE, 2017 Early stage NSCLC (post SBRT)
7 AIP features were associated with distant 
metastases, 3 of which were shape-based, with 
CI = 0.648

Song11, IASLC, 2017 LADC
3 features, one of which was shape-based, 
were predictors of > 5% micropapillary 
component in LADCs with AUC = 0.61

Surface-To- Volume Wang6, IEEE, 2016 Lung lesions (LIDC-IDRI)
Prediction of malignant lung tumor (accuracy 
86% TS, 76% VS) from 15 Random Forest 
selected features, 3 of which were shape-based

Surface Area Chaddad28, Oncotarget, 
2017 NSCLC (TCIA)

Surface area was correlated with the survival 
time of patients with large cell carcinoma, T2, 
N0 and Stage I tumors with p < 0.05

S1 (Max. Thickness of The 
Lesion Skeleton) in 2d

Pena7, Academic Radiology, 
2017 Lung lesions

Prediction of malignant lung tumor 
AUC = 0.92 ± 0.05 (P < 0.0001), with 2 shape 
features included in a signature of 4

Table 1.  Shape features found significant in publications. NSCLC: non-small cell lung cancer, HNSCC: head 
and neck squamous cell carcinoma, CI: concordance index, GLRL: gray level run length, GLN: gray level non-
uniformity, LIDC-IDRI: Lung Image Database Consortium, SBRT: stereotactic body radiotherapy, AIP: average 
intensity projection, LADC: Lung adenocarcinoma, TS: Training Set, VS: Validation Set, TCIA: The Cancer 
Imaging Archive, AUC: area under the curve, HPV: Human Papilloma Virus.
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thickness on feature values for all the 28 tumor models after volume equalization. Outliers are observed using the 
Boundary M4 method. Differences ranged from 4.1% (Compactness3, d = 77) to 43.2% (Compactness2, d = 11) 
between M1 and M2 methods. Surface area, Surface-to-volume, and Spherical Disproportion had direct rela-
tionships with spiculatedness (increasing value with increasing tumor spiculatedness). The three formulas for 
Compactness, Sphericity and Fractional Concavity had inverse relationships. All features exhibit large variations 
between d = 11 to d = 41. Compactness2 is able to highlight shape differences even for the least spiculated models. 
For this feature, no slope breaking is observed until d = 65 irrespective of the slice thickness and meshing method. 
Subsequent analyses were performed on the 2 mm slice thickness acquisitions, as this is more coherent with what 
is used in the clinics.

Correlations between tumor complexity and features.  Spearman’s rho correlation coefficients 
between each shape feature and tumor complexity were computed for the M1, M2 and M3 meshing algorithms 
(Table 3). Seven of the eight features had strong significant correlations with tumor model complexity irrespec-
tive of the meshing algorithm (r > 0.98, p < 10-4). Fractional Concavity showed the lowest correlation coefficient 
(r = 0.83, p < 10-4, M2).

Correlations between shape features.  Correlations among the eight shape features, with the exception 
of volume that was fixed at a constant value, were calculated using Spearman’s rho coefficients for the M1, M2 and 
M3 meshing algorithms. Almost all of the features were highly correlated with each other with r = 1, as seen in the 
correlation matrix plots (Supplementary Figure S1). Only Fractional Concavity was slightly less correlated with 
the others, with r values from 0.85 to 0.99, with M2 having the lowest correlation.

Effect of grid resampling.  All of the feature values changed when resampling on a 1 × 1 × 1 mm3 grid 
was performed on native masks deduced from the 2 mm thickness original CT images (M1 and M3 meshing 

Author/title Cancer site
Images used for 
analysis Radiomics shape features

Other feature 
classes included Results

Zhao, 201424 Exploring 
Variability in CT 
Characterization of Tumors: A 
Preliminary Phantom Study

Thorax phantoms with 
22 lesions of varying 
sizes, shapes and 
densities

1.25, 2.5 and 5 mm 
slice thickness, 
Lung and standard 
reconstruction 
filters

Compactness, shape index 9 
(proportion of the “spherical cap” 
of the nine types of shapes), fractal 
dimension, fractal lacunarity

First order 
statistics and 
texture features

All 14 features were significantly 
different between images with 1.25 and 
5 mm slice thickness

Kalpathy-Cramer, 201625 
Radiomics of Lung Nodules: 
A Multi-Institutional Study of 
Robustness and Agreement of 
Quantitative Imaging Features

Lung nodules

40 NSCLC and 
12 phantoms 
with 9 different 
segmentations 
each

7 different centers with varying 
definitions and number of extracted 
features including the categories: 
global shape descriptors, local shape 
descriptors, margins

First order 
statistics and 
texture features

68% of the total 830 features (and 63% 
of shape features) exhibit stability 
to different segmentations with 
CCC ≥ 0.75

Lu, 201613 Assessing 
Agreement between Radiomic 
Features Computed for 
Multiple CT Imaging Settings

32 NSCLC patients 
(raw imaging data 
from RIDER dataset)

Varying slice 
thicknesses (1.25, 
2.5 and 5 mm) and 
reconstruction 
filter (Lung [L] and 
Standard [S])

Compact-Factor, Eccentricity, Round-
Factor (2D), Solidity (ratio of the 
object area over the area of the convex 
hull bounding the object), Shape 
Index features capturing the intuitive 
notion of ‘local surface shape’ of a 
3D object (spherical cup, trough, rut, 
saddle rut, saddle, saddle ridge, ridge, 
dome, spherical cap)

First order 
statistics, texture 
and wavelet 
features

Hierarchical clustering grouped 89 
features to 23 nonredundant groups. 
Majority of the shape-based features 
showed stability with average CCC 
values > 0.8 across all of the 15 inter-
setting comparisons. Using the same 
reconstruction filter with either a 1.25 or 
a 2.5 mm slice thickness showed the best 
agreement

Desseroit, 201726 Reliability 
of PET/CT shape and 
heterogeneity features in 
functional and morphological 
components of NSCLC tumors: 
a repeatability analysis in 
a prospective multi-center 
cohort

Stage IIIB-IV NSCLC 
Merck MK-0646-008 
(40 pts in 17 sites); 
ACRIN 6678 (34 pts in 
14 sites) trials

71 primary tumors 
and 5 additional 
lesions

Four shape descriptors: sphericity, 
irregularity, major axis, 3D surface

First order 
statistics and 
texture features

Quantization/discretization was 
important in the reliability of features, 
with CT-based features more stable 
with fixed bin width. Morphological 
irregularity, sphericity and 3D surface 
were the most repeatable (Bland-Altman 
analysis of the differences between 
standard deviations of 3.3%, 10.0% and 
11.6%, respectively)

Oliver, 201727 Sensitivity of 
Image Features to Noise in 
Conventional and Respiratory-
Gated PET/CT Images of Lung 
Cancer: Uncorrelated Noise 
Effects

31 NSCLC patients

4 image sets per 
patient (original, 
low, medium, and 
high noise for 3D 
& 4D PET, 3D & 
4D CT)

11 shape features: Volume, Surface 
area, Surface-to-volume, Sphericity, 
Compactness Spherical disproportion, 
Long axis, Short axis, Eccentricity, 
Convexity

22 first order, 
26 GLCM, 11 
GLRLM, and 11 
GLSZM features

In both PET and CT, shape features 
exhibit the least change when 
uncorrelated noise is added (<13% 
average difference in CT)

Ul-Hassan, 201731 Intrinsic 
dependencies of CT radiomic 
features on voxel size and 
number of gray levels

ABS 3D printed 
phantoms, with a 
spherical contoured 
ROI of 4.2 cm3

116 CT scans, 
resampled to 
1 × 1 × 2 mm3 
voxel size

10 shape features: Convexity, Volume, 
Surface area, Surface-to-volume, 
Compactness, Long axis, Sphericity, 
Spherical disproportion, Short axis, 
Eccentricity

First order 
statistics(16), 
GLCM (24), 
GLZSM 
(11), fractal 
dimensions, 
texture and 
wavelet features

Shape features are robust, with eight 
out of the 10 having COVs < 50% with 
a negligible effect of resampling. The 
remaining two had diminished COV 
(<30%) after resampling

Table 2.  Radiomic articles on methodology, detailing effects of different acquisition and reconstruction 
parameters on shape features. LoG: Laplacian of Gaussian; NSCLC: Non-small cell lung cancer; CCC: 
concordance correlation coefficient; GLCM: Gray-Level Co-occurrence Matrix; GLZSM: Gray-Level Size 
Zone Matrix; GLRLM: Gray-Level Run Length Matrix; SD: standard deviation; ACRIN: American College 
of Radiology Imaging Network; RIDER: Reference Image Database to Evaluate Therapy Response; ABS: 
Acrylonitrile Butadiene Styrene; COV: coefficient of variation.
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methods, no volume equalization). Absolute mean percent changes from the 28 tumor models were equal to 
7.8% (5.5–15.7%) for Volume, 7.8% for Surface Area (7.1–10.7%), 1.4% for Surface-to-volume (0.0–5.0%), 2.7% 
for Compactness1 (0.7–8.6%), 7.5% for Compactness2 (0.6–10.8%), 1.3% for Compactness3 (0.1–1.8%), 2.6% 
for Spherical Disproportion (0.2–3.6%), 2.6% for Sphericity (0.2–3.6%) and 14.7% for Fractional Concavity 
(13.8–17.4%) for M1 (Fig. 4) and 7.9% (5.7–16.0%) for Volume, 2.6% for Surface Area (2.0–4.9%), 5.3% for 
Surface-to-volume (3.2–11.2%), 6.2% for Compactness1 (4.1–12.8%), 8.0% for Compactness2 (4.1–17.4%), 1.3% 
for Compactness3 (0.7–2.9%), 2.6% for Spherical Disproportion (1.4–5.8%), 2.6% for Sphericity (1.3–5.8%) and 
9.5% for Fractional Concavity (8.8–11.6%) for M3 (Figure 4). The ranking of the models was not influenced by 
the resampling.

Figure 1.  Relative differences between reference shape feature values computed from STL format compared 
with shape features evaluated after the whole radiomics process including 3D printing, acquisition, image 
segmentation, and meshing. M1, M2, M3 and M4 meshing methods as well as two slice thicknesses are 
illustrated here for comparison.

Figure 2.  Representation of the meshes obtained for the d = 47 tumor model using the M1, M2, M3 and M4 
meshing algorithms. CT-images acquired with a 0.6 mm slice thickness were used to extract the binary masks.

https://doi.org/10.1038/s41598-019-40437-5
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Impact of change in volume on shape features.  The absolute percent changes of each feature with 
regards to the change in volume from 25% to 150% were compared to the percent change observed when mod-
ifying the spiculatedness of the model from d = 11 to d = 92 for M3 (Table 4). Compactness2, Compactness3, 
Spherical Disproportion, Sphericity and Fractional Concavity were less affected by volume changes. 
Surface-to-volume and Compactness1 were more affected by change in volume than tumor complexity, with 
the Surface-to-volume feature having a 69.9% change from the least to most spiculated models versus 54.2% 
change with volume; and Compactness1 having a 47.5% change with spiculatedness compared to 90.4% change 
with volume. Figure 5 illustrates the change in feature values with changes in volume for the three representative 
phantoms d = 11, 47, 92.

Figure 6 summarizes the effect of the technical parameters slice thickness, resampling, and change in volume 
on the radiomic shape features, reiterating that Compactness1 has important variations with changes both in slice 
thickness and in volume, and Surface-to-volume with change in volume.

Comparison with actual tumors.  To confirm the clinical relevance and applicability of our method, 
three representative patients from the RIDER database were contoured, and radiomic shape features were 
extracted thereafter. The range of values for each of the features among the three patients are within the range of 
the values from the shape phantoms, even if the volume after equalization was greater in the phantoms (range: 
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Figure 3.  Variation of radiomic shape features as a function of slice thickness, tumor spiculatedness and 
meshing algorithm used for surface and volume calculation.

M1 M2 M3

r (95% CI) p-value* r (95% CI) p-value* r (95% CI) p-value*
Surface Area −0.98 (−0.992–0.960) p < 10-4 −0.98 (−0.990–0.952) p < 10-4 −0.98 (−0.992–0.962) p < 10-4

Surface-to-Volume −0.98 (−0.992–0.960) p < 10-4 −0.98 (−0.990–0.952) p < 10-4 −0.98 (−0.992–0.962) p < 10-4

Compactness1 0.98 (0.960–0.991) p < 10-4 0.98 (0.952–0.990) p < 10-4 0.98 (0.961–0.992) p < 10-4

Compactness2 0.98 (0.960–0.991) p < 10-4 0.98 (0.952–0.990) p < 10-4 0.98 (0.961–0.992) p < 10-4

Compactness3 0.98 (0.960–0.991) p < 10-4 0.98 (0.952–0.990) p < 10-4 0.98 (0.961–0.992) p < 10-4

Spherical Disproportion −0.98 (−0.992–0.960) p < 10-4 −0.98 (−0.990–0.952) p < 10-4 −0.98 (−0.992–0.962) p < 10-4

Sphericity 0.98 (0.960–0.991) p < 10-4 0.98 (0.952 –0.990) p < 10-4 0.98 (0.961–0.992) p < 10-4

Fractional Concavity 0.94 (0.882–0.975) p < 10-4 0.83 (0.661–0.921) p < 10-4 0.96 (0.920–0.983) p < 10-4

Table 3.  Spearman’s correlation coefficients evaluating the relationship of each shape feature with tumor 
complexity. *p-values: Surface Area, Surface-to-Volume, Compactness 1, Compactness 2, Compactness 3, 
Spherical Disproportion, Sphericity M1: 2.2.10-16, M2: 2.2.10-16, M3: 2.2.10-16, Fractional Concavity M1: 
1.2.10-13, M2: 7.44.10-8, M3: 8.4.10-16.
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28257–28265 mm3). Patient volumes ranged from 5890 mm3 to 21045 mm3. The results for the three patients as 
well as the mean values for the phantoms are shown in the Supplementary Table S2.

Discussion
This is the first methodological study that directly demonstrates the relationship of tumor spiculatedness with radi-
omic shape features. Models with increasing degrees of spiculatedness were created to examine the behavior of quan-
titative shape features with known incremental degrees of tumor border complexity. It was seen that specific features 
increase monotonically with increasing tumor spiculatedness, in particular Surface Area, Surface-to-volume, and 
Spherical Disproportion. Conversely, certain features exhibit a monotone decreasing correlation with increasing 
spiculatedness (Compactness, Sphericity, Fractional Concavity). Quantitative extracted shape features have already 
been demonstrated to give insights on tumor behavior, underlying their importance in radiomic analysis. Based on 
CT scans, several publications have shown that shape features differentiate between benign and malignant nodules6–8 
as well as correlate with patient outcomes2,9,28. In addition, a radiomic study of pre-treatment contrast-enhanced T1 
MRI images in glioblastoma showed that tumor surface regularity was a powerful predictor of survival in the dis-
covery (p = 0.005, hazard ratio [HR] = 1.61) and validation groups (p = 0.05, HR = 1.84)29.

It can be seen that many of the features exhibit strong correlations with each other, either positive or negative. 
If the behaviors of certain features are known to depend on specific parameters, calculating all may not necessar-
ily give complementary information but instead redundant ones. In particular, Surface-to-volume, Compactness, 
Spherical Disproportion and Sphericity are all calculated from tumor volume and surface area17, which explains 
the strong relationships among them. In this regard, features might eventually be grouped into clusters instead of 
being analyzed individually12. For instance, different formulas for compactness have been previously published 
and used in radiomic studies8,17. In clinical studies, it needs to be determined whether correlations seen with 
radiomic shape features are inherent, or if tumor volume is a confounding factor. In our study, it is seen that 
Surface-to-volume and Compactness1 are affected with volume changes, and should thus be used with caution 
when comparing tumors with differing volumes. Indeed, even if it has been widely used in previous publications, 
the result obtained from the formula for Compactness1 is not dimensionless, and thus is not ideal in feature anal-
ysis. Compactness2, Compactness3, Spherical Disproportion, and Sphericity’s percent changes between d = 11 
and d = 92 were noticeably higher than the percent change with volume variations, which may make these fea-
tures more useful in analyses of patient tumors as they are not volume dependent. In addition, it was also seen 
that in general, the features highlight differences in complexity better in more spiculated tumors. For instance, in 
this study, the slope of the relationship between feature and spiculatedness was steep until d = 41, and thereafter 
relatively flattened out for the less spiculated models.
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Figure 4.  Comparison of feature values extracted from 2 mm thickness original images for each model without 
and with resampling. Resampling was performed on a 1 × 1 × 1 mm3 grid. M3 method was used for feature 
extraction.

d = 11 to 92 d = 11 d = 47 d = 92

Surface-to-volume 69.9% 53.9% 54.0% 54.6%

Compactness1 47.5% 90.7% 90.0% 90.3%

Compactness2 160.0% 17.4% 7.8% 6.4%

Compactness3 36.2% 2.9% 2.3% 1.1%

Spherical disproportion 70.2% 5.8% 4.7% 0.8%

Sphericity 70.2% 5.8% 4.7% 0.8%

Fractional concavity 14.8% 8.4% 5.4% 1.1%

Table 4.  Absolute percent changes in shape feature values between the most (d = 11) and least spiculated 
models (d = 92, first column), and with change in volume of 25% to 150% for the 3 representative models 
(d = 11, 47, 92) obtained for the M3 meshing algorithm.
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In this study, four meshing algorithms have been used and the differences between the features computed 
directly from the STL files and those computed after meshing have been compared (Fig. 1). Values extracted 
using M3 meshing method are the closest to the STL reference ones, with mean differences lower than 10.8% 
(Compactness2) for all features. The decrease of the standard deviation when comparing the values from STL 
files versus from M1 and M3 with 0.6 or 2 mm slice thickness (Fig. 1) validates the fact that a 2 mm slice thickness 
should be preferred for shape-based radiomic analysis. With a 2 mm slice thickness, shape features are impacted 
in a more homogeneous way by the entire radiomics process. The associations of the deduced shape features with 
change in tumor complexity have also been analyzed for each method (Fig. 3). Using the MATLAB Boundary 
function, a non-monotone behavior of the features with phantom spiculatedness was observed, with the presence 
of outliers. The use of this function is thus not recommended in in-house MATLAB-based softwares. Comparison 
of the M1, M2 and M3 methods shows that different meshing implementations can lead to different quantitative 
values. As a consequence, thresholds determined in the literature should be used with caution. Numerical phan-
toms such as the ones developed in this study can be also of major interest for the evaluation of the pertinence of 
meshing algorithms as well as for the development of new shape features. Notable is that in this study, we chose 
to use meshing for volume extraction, which is not performed in most of the radiomic software that typically 

Figure 5.  Graphs depicting the change in feature value for changes in volume of 25, 50, 75, 100, 125, and 150% 
for the three representative features d = 11, 47, 92 (M3).
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multiplies the voxel size by the number of voxels in the volume of interest30. This choice is of importance for 
maintaining consistency between surface and volume quantities.

Comparisons of feature values between scans acquired with 0.6 mm versus 2 mm slice thickness reveal that 
this parameter affects all radiomic shape features, with changes of up to 12.7% (Compactness1, M3). Resampling 
the CT images on a 1 × 1 × 1 mm3 grid likewise resulted in small differences of between 1.3 to 9.6% changes in 
extracted features for the isosurface remesher M3 method. In a phantom study that computed the differences 
between original features and those resampled on a 1 × 1 × 2 mm3 grid with original pixel sizes ranging from 
0.39 to 0.98 mm, shape features belonged to the group that were generally not significantly affected by resam-
pling31. In this study, the Credence Cartridge Radiomics (CCR) phantoms used were rectangular in shape and 
created primarily for texture analysis, whereas ours had fine spiculations specifically created for shape analysis. 
Another study using the same phantoms showed that radiomic features were affected by slice thickness, but that 
this effect could be reduced by resampling the images before feature extraction. However, this study focused on 
114 first order and textural features and did not include shape32. In yet another phantom study using spherical, 
elliptical, lobulated and spiculated forms, it was shown that shape features were significantly different between 
1.25 and 5 mm slice thickness scans24, from which we can infer that voxel size affects results of feature extraction. 
At present, we therefore recommend not to constitute a cohort with images having too different slice thicknesses 
particularly if the Compactness1, Surface-To-Volume and Fractional Concavity indices are computed, given their 
dependence on slice thickness. However, the ideal is prospective studies with homogenous acquisition parame-
ters, as resampling alone does not completely eliminate bias resulting from differences in acquisition such as slice 
thickness.

There are disadvantages to this study. First, only 3D features were calculated as the tumor models were 
contoured on axial CT slices and had discontinuous islets on some slices (usually at the top and edges of the 
tumor) because of the spiculations. In addition, the tumor phantoms were printed with a flat base, instead of a 
spherical-based shape with no flat edges due to technical considerations for 3D printing. However, all the phantoms 
were created in the same manner (with a flat base) such that all shape feature variations are expected to be compa-
rable. Another limitation is that although the shape phantoms have increasing degrees of complexity, the variations 
of these are all based on the formula of spherical harmonics and thus have a consistent mathematical progression. 
Actual tumors are rarely symmetric and regularly shaped. However, theoretical knowledge of how radiomic shape 
features vary remains of value in deducing the complexity of actual tumors. Also, in studying variations with vol-
ume, the volumes were modified mathematically by recomputing the pixel sizes, which are inherently correct; but 
another way would have been to do a 3D reprint of each model with each corresponding volume change. Another 
limitation in the conduct of radiomics studies in general is that there is no generally accepted and universally uti-
lized meshing method, and as illustrated in this study, different methods do not result to identical values.

In summary, majority of radiomic shape features have strong monotone direct or inverse correlations with 
tumor spiculatedness. However, we have shown that quantitative values of these features can vary with slice thick-
ness, volume, and resampling; and depend on the meshing algorithm used for surface and volume extraction. 
The radiomic shape features Compactness2, Compactness3, Spherical Disproportion, and Sphericity have been 
shown to have minimal variations with the aforementioned parameters, and should thus be prioritized in future 
studies. It is clear that quantitative radiomic shape features provide important information on tumor characteris-
tics, underlining the importance of their integration into future radiomic models and notably their combination 
with clinical, textural and genomic features. Refinements in the methodology of conducting radiomic studies as 
well as transparency in the exact nomenclature and formula used for each feature are indispensable to enable its 
eventual translatability to clinical utility.

Figure 6.  Summary of the effect of technical parameters on the radiomic shape features (M3 meshing method). 
Effects of the different parameters were compared to the ability of each feature to distinguish change in 
spiculatedness. Green cases correspond to a ratio of less than 5% between the effect of the technical parameter 
to the percent change observed when modifying the spiculatedness of the model from d = 11 to d = 92. Orange 
cases correspond to ratios ranging from 10 to 20% and red cases to ratios superior to 20%.
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Material and Methods
Shape phantoms.  Spherical harmonics were used to create mathematical tumor models with increasing 
degrees of complexity28.
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In the presented work, ℓ was arbitrarily set to 10, m to 5 and A to 10. The degree of the spherical harmonic, d, was 
increased in increments of 3 from 11 to 92 to create a total of 28 models. Model “11” corresponded to the most 
spiculated model and model “92” to the least one.

The 3D models were cut in the middle of the horizontal plane which permitted these to have a flat base for 
printing. Then, models were set with identical bases of 5 cm by adjusting the height ratio of the original models 
to the new base. Each of the tumor models was created using a 3D printer (Discoeasy200, dagoma.fr), using a 
polylactic acid filament (ρ = 1.25 g.cm−3) with standard printing speed (Supplementary Figure S3).

The models were then scanned using a Siemens Sensation Open CT scan (Siemens Healthineers, Erlangen, 
Germany) with 0.6 mm and 2 mm slice thicknesses, 100 kVp tube voltage, 300 mAs and a 350 mm reconstruction 
field of view. The phantoms were scanned on top of a cardboard box, with only the bases being in contact with 
a surface. Original pixel size was 0.68 mm × 0.68 mm in the transverse planes. Scans were contoured using the 
thresholding function of 3DSlicer (http://www.slicer.org), with lower limit at −700 Hounsfield Units (HU) and 
upper limit at 3000 HU, resulting in binary masks.

Feature extraction.  Four different approaches based on MATLAB libraries (R2017b software (The 
Mathworks Inc., Natick, MA, USA) were used to generate a mesh for all tumor models, which involved creating 
a surface mask from the contours (Supplementary Table S4). The first method (M1) used the Isosurface function 
of MATLAB. This method connects points having the same value to generate the mask. The isovalue was set to 
0.9. The second method (M2), Isosurface filter, consisted of smoothing the triangulated mesh generated with 
the first method by using the normalized curvature operators as weights. The mesh was mainly smoothed in the 
normal direction to preserve the original ratio in length between edges. One smoothing iteration was used and 
the smoothing quantity was set to 5. The third strategy (M3), Isosurface remesher, is an iterative triangle optimi-
zation for meshing. In this method, all the closed meshes obtained with the first method are cleaned according 

Feature Description Formula

Volume
Compute the enclosed volume of the object of interest. The 
enclosed volume is evaluated by triangulation (i.e. dividing the 
surface into connected triangles)

Green-Ostrogradski formula: 
∇
→→

. =
→

.∭ ∬F dV F dS
V S

 where 
F corresponds to the vector field 
deduced from the triangulation

Surface area17 Area of the surface encompassing the volume of interest, 
calculated by triangulation = ∑ ×=A a b a ci

N
i i i i1

1
2

Surface-to-volume ratio17 Ratio of surface to volume =Surface to volume ratio A
V

Compactness117

Describes how much the shape of a tumor resembles that of a 
sphere/can be encompassed by a sphere
Compactness of a sphere = 1

=
π .

compactness 1 V

A2/3

Compactness217 π= . .compactness 2 36 V

A

2

3

Compactness38 = π.compactness 3 V
A

1/3 (36 )1/6

Spherical disproportion17 The ratio of the surface area of the tumor to the surface area of a 
sphere with the same volume as the tumor =

π
Spherical disproportion A

R4 2

Sphericity17 Measure of the roundness or spherical nature of the tumor, 
where the sphericity of a sphere is the maximum value of 1 = πSphericity V

A
( )1/3(6 )2/3

Fractional concavity34 The ratio between the surface of the convex hull encompassing 
the tumor, and the actual surface of the tumor. =-Fcc D3 Surface of the convex hull

A

Table 5.  Radiomic shape feature formulas. A: area, V: volume, R: radius.
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to a targeted edge length. The edge length was set to 2 and only one iteration was used. The last method (M4) 
used the Boundary function of MATLAB that returns a triangulation corresponding to a single conforming 3D 
boundary around the points. A shrinking factor of 1 was used to obtain the concave hull of the shape of interest.

Nine three-dimensional (3D) shape features were deduced from the surface and volume values extracted using 
the four meshing methods previously described. These included Volume, Surface Area, Surface-to-volume, three 
formulas for Compactness8, Spherical Disproportion, Sphericity17 and Fractional Concavity34. Table 5 shows the 
description and formulas of the computed features. The surface of the convex hull included in the fractional con-
cavity formula was obtained using the Boundary function and a shrinking value of 0.

To quantify the impact of 3D printing, acquisition, segmentation and meshing on the radiomic shape features, 
features were computed directly from the stereolithography (STL) file format that was used for 3D printing, and 
compared to those computed using the aforementioned Matlab functions.

To study the effect of resampling, masks extracted from the original images were resampled on a 1 × 1 × 1 mm3 
grid using a 3D linear interpolation. To remove the inherent variation on volume between objects, a homothetic 
transformation was then applied to bring back all the volumes to the value corresponding to the average of all vol-
ume values calculated for the 28 shapes for the M1 method. Finally, three representative phantoms (d = 11, 47, 92)  
were resampled to have 25, 50, 75, 125 and 150% of their original volume.

To validate the clinical relevance of the phantoms, CT-scans of lung tumors of three patients from the publicly 
available RIDER database35 were contoured. Radiomic features were extracted and compared to the range of the 
values extracted from the 28 printed phantoms.

Statistical analysis.  All statistical analyses were performed with R version 3.3.2 (https://www.r-project.org/). 
Differences between features computed directly from the STL files and those computed after meshing were compared. 
Percent changes between scans acquired with 0.6 and 2 mm slice thicknesses were quantified. To determine the rela-
tionship of each shape feature with tumor complexity, Spearman’s rank-order correlation coefficients were computed 
for each of the four meshing methods. Complexity was considered as an ordinal variable with numeric values ranging 
from 11 (most spiculated) to 92 (least spiculated). Pairwise correlations among variables were also computed. To eval-
uate the effect of resampling on feature variation, percent changes were computed between features extracted from 
original and resampled (1 × 1 × 1 mm3 grid) 3D masks for the M1 and M3 meshing methods. To evaluate the effect of 
changes in volume, the percent change in shape features when the volume varied from 25% to 150% was computed for 
d = 11, 47 and 92 and compared to the percent change observed when modifying the spiculatedness of the model from 
d = 11 to d = 92 for M3. Figure 7 summarizes the general schema of the methodology.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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