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Mutations in DNA repair genes 
are associated with increased 
neoantigen burden and a distinct 
immunophenotype in lung 
squamous cell carcinoma
Young Kwang Chae1,2, Jonathan F. Anker   1, Michael S. Oh   1, Preeti Bais3, 
Sandeep Namburi3, Sarita Agte1, Francis J. Giles1,2 & Jeffrey H. Chuang   3,4

Deficiencies in DNA repair pathways, including mismatch repair (MMR), have been linked to higher 
tumor mutation burden and improved response to immune checkpoint inhibitors. However, the 
significance of MMR mutations in lung cancer has not been well characterized, and the relevance of 
other processes, including homologous recombination (HR) and polymerase epsilon (POLE) activity, 
remains unclear. Here, we analyzed a dataset of lung squamous cell carcinoma samples from The Cancer 
Genome Atlas. Variants in DNA repair genes were associated with increased tumor mutation and 
neoantigen burden, which in turn were linked with greater tumor infiltration by activated T cells. The 
subset of tumors with DNA repair gene variants but without T cell infiltration exhibited upregulation 
of TGF-β and Wnt pathway genes, and a combined score incorporating these genes and DNA repair 
status accurately predicted immune cell infiltration. Finally, high neoantigen burden was positively 
associated with genes related to cytolytic activity and immune checkpoints. These findings provide 
evidence that DNA repair pathway defects and immunomodulatory genes together lead to specific 
immunophenotypes in lung squamous cell carcinoma and could potentially serve as biomarkers for 
immunotherapy.

Immune checkpoint inhibitors have reshaped the landscape of treatment for multiple cancers, including squa-
mous cell carcinoma (SCC) of the lung and other types of non-small cell lung cancer (NSCLC)1,2. These treat-
ments inhibit immune regulatory molecules such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), 
programmed death 1 (PD-1), and programmed death ligand 1 (PD-L1), which normally function to suppress 
immune cell activity3,4. Blocking immune checkpoints with therapeutic antibodies can augment the anti-tumor 
immune response, thereby providing the mechanistic basis for immunotherapy. In NSCLC, treatment with 
immune checkpoint inhibitors has yielded dramatic results with improved clinical response in comparison to 
standard chemotherapy in certain subpopulations of patients5,6.

The specificity of the immune response promoted by these therapies is dependent on neoantigens, which 
are immunogenic cancer-related peptides formed by distinct somatic mutations in tumor cells7. The unique 
epitopes of these neoantigens are able to elicit a tumor-specific immune response8, which can then be amplified 
by the immune-activating actions of immunotherapy. Neoantigens have been associated with improved clinical 
response to inhibitors of CTLA-49,10, PD-111, and PD-L112. In many solid tumors, deleterious mutations in DNA 
repair genes can drive a substantial increase in the number of neoantigens13. Deficient DNA repair has accord-
ingly been associated with improved clinical responses to PD-1 blockade. Specifically, insufficiencies in mismatch 
repair (MMR) conferred greater clinical benefit with pembrolizumab in patients with colorectal cancer14, as well 
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as in a study of multiple solid tumor types15. These results have now led to the landmark FDA approval for PD-1 
inhibitors in MMR-deficient tumors, which represents a paradigm-altering shift towards oncologic treatments 
centered on molecular profile15.

Several other DNA repair pathways have been implicated in contributing to neoantigen load. In an analysis of 
NSCLC patients, mutations in POLD1, POLE, and MSH2 were identified in tumors with the highest neoantigen 
burden11, which in turn correlated with improved response to PD-1 inhibitors. Further, endometrial cancers with 
polymerase epsilon (POLE) mutations contained increased neoantigen burden and PD-L1 expression16, and cases 
of exceptional responders to immunotherapy have been reported with these mutations17. Similarly, alterations 
in the homologous recombination (HR) apparatus, such as BRCA1 and BRCA2 mutations, were associated with 
higher neoantigen load and increased overall survival after anti-PD-1 treatment18.

Though DNA repair mutations have been shown to be relevant to immunotherapy response in a variety of 
solid tumors, limited data exists detailing the importance of these pathways in lung cancer. We had previously 
utilized datasets from The Cancer Genome Atlas (TCGA) to demonstrate that DNA repair status was strongly 
associated with tumor neoantigen burden and immune cell infiltration in lung adenocarcinoma19. We hypoth-
esized that a comparable relationship would be elucidated in squamous cell carcinoma (SqCC) of the lung, and 
that mutations in DNA repair pathways could thus function as biomarkers predictive of response to immune 
checkpoint blockade.

Results
Tumors with DNA repair pathway mutations have increased mutational and neoantigen bur-
den.  To study the effect of DNA repair gene mutations on tumor mutation burden (TMB) in lung SqCC, 
we analyzed 178 annotated samples from TCGA20. We evaluated tumors for somatic variants in genes related 
to MMR, HR, or in POLE, and identified changes predicted to be deleterious by the SIFT21 and CADD v1.422 
scoring systems. Tumors with defects in MMR and HR had a significantly higher number of overall mutations 
(Student’s t-test, p < 0.0001 for both; Fig. 1a). Within HR genes, BRCA1 and BRCA2 were the most commonly 
mutated (7.9% of tumors), and were associated with increased TMB (Student’s t-test, p < 0.0001) (Supplementary 
Fig. S1a). Tumors with multiple DNA repair gene variants had corresponding increases in TMB. For example, 
tumors with 1 affected gene had an average of 293.8 ± 27.0 tumor mutations, while those with 3–5 affected genes 
had 815.8 ± 248.6 mutations (Fig. 1b). POLE variants were rare (n = 8) but were also associated with increased 
TMB (Student’s t-test, p = 0.010). There was no difference in smoking history between tumors with low and high 
TMB (Supplementary Fig. S1c).

We next calculated neoantigen burden in the samples by filtering total non-synonymous mutations based on 
predicted MHC binding affinity as a surrogate for immunogenicity. Strong putative binders were then further 
selected by assessing for poor immunogenicity of the non-mutated parental epitope. This total predicted neoan-
tigen burden was significantly greater in tumors with somatic variants in HR (Student’s t-test, p = 0.0003) and 
MMR (p < 0.0001), but not POLE (p = 0.538) (Fig. 1c). Neoantigen burden was also positively associated with the 
number of affected DNA repair genes (Fig. 1d).

High mutation burden is associated with increased tumor infiltration by activated T cells.  To 
determine the association between TMB and tumor-infiltrating lymphocytes (TILs), we divided TCGA samples 
into high- and low-mutation groups based on the median mutation count of 232. We then assessed immune cell 
infiltration from gene expression data as previously described23 (see Methods). Tumors with high TMB were 
more likely to be infiltrated by activated CD4+ (proportion Z-score, p = 0.013) and activated CD8+ (p = 0.036) 
T cells (Fig. 2a), but this finding was not statistically significant after adjusting for multiple comparisons (adjusted 
p = 0.38 and 0.52, respectively). Infiltration by activated CD4+ and CD8+ T cells was positively correlated with 
infiltration by CD4+ effector memory T cells, type 2 helper cells, memory B cells, myeloid dendritic cells, and 
myeloid-derived suppressor cells (Fig. 2b).

DNA repair gene variants are not associated with T cell infiltration, possibly due to compensa-
tory immunosuppressive signals.  Presence of variants in HR, MMR, and POLE did not predict infiltra-
tion by CD4+, CD8+, or total activated T cells (Fig. 3a). To explain this finding, we categorized the samples into 
a 2 × 2 classification scheme based on DNA repair status and activated T cell infiltration (Fig. 3b). This grouping 
delineated four types of tumor: DNA repair variant absent without T cell infiltration (group I), DNA repair vari-
ant present without T cell infiltration (group II), DNA repair variant absent with infiltration (group III), and DNA 
repair variant present with infiltration (group IV).

We then evaluated the mRNA expression of genes previously shown to impair T cell infiltration, including 
those related to transforming growth factor beta (TGF-β) and the β-catenin/Wnt pathway24. Both group I and 
II tumors, which lack activated T cells, had significantly increased expression of TGF-β genes. Specifically, there 
were significant differences when comparing group II and IV tumors in regards to TGFB1 (one-way ANOVA 
with Tukey’s test for multiple comparisons, p = 0.002) TGFB3 (p = 0.049), and WNT2 (p = 0.029) (Fig. 3c and 
Supplementary Fig. S2a). There was no significant association between groups based on VEGF-A expression 
(Fig. 3c and Supplementary Fig. S2a). We also performed a multivariate logistic regression analysis to determine 
the influence of these expression levels on group identity. When compared to group IV as a baseline, TGFB1 and 
WNT2 were significant predictors for groups I and II, while decreased levels of WNT7A was a significant predic-
tor for group III (Table 1).

Presence of somatic variants in genes related to antigen presentation, including HLA-A, HLA-B, HLA-C, B2M 
(β-2-microglobulin), TAP2, and PSMB8 (LMP-7), did not predict tumor classification (Supplementary Fig. S2b). 
Variants in the β-catenin/Wnt pathway were similarly not associated with tumor groups (Supplementary 
Fig. S2b).
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A combined score incorporating DNA repair status, TGFB1, and WNT2 predicts T cell infiltra-
tion.  As a proof of principle, we sought to compute a score based on the above data that could better predict 
T cell infiltration. Given the results of our logistic regression model, we conferred 1 point each for an expression 
z-score greater than the median for TGFB1 and WNT2. We then added another point for absence of any DNA 
repair gene variants. Thus, a score of 3 indicates intact DNA repair pathways and high TGF-β/Wnt2, while a score 
of 0 indicates presence of DNA repair pathway variants and low TGF-β/Wnt2. We hypothesized that low scores 
would lead to increased T cell infiltration. Using a threshold of ≤1, tumors with low scores indeed demonstrated 
a significantly increased likelihood of CD4+ (false discovery rate-adjusted proportion Z-score, p < 0.0003) and 
CD8+ (p = 0.012) activated T cell infiltration (Fig. 3d).

We compared the expression of TGFB1 and WNT2 in tumors with and without activated T cells infiltration, 
after stratifying tumors based on DNA repair gene status (Supplementary Fig. S3a,b). TGFB1 gene expression 
was significantly associated with activated CD4 and CD8 T cell infiltration regardless of DNA repair status, while 
WNT2 was associated with T cell infiltration only in tumors with wild-type DNA repair genes (Supplementary 
Fig. S3a,b). Furthermore, we found that the combined score exhibited stronger correlations with immune cell 
infiltration than did either TMB or neoantigen burden (Supplementary Fig. S3c).

Mutation and neoantigen burden are associated with increased expression of pro-inflammatory 
and immune checkpoint markers.  We next utilized RNA-Seq expression data from TCGA to identify any 
potential immune signature related to increased tumor mutations and neoantigens. We first assessed associations 

Figure 1.  DNA repair gene variants are associated with increased mutation and neoantigen count. (a) Presence 
of somatic variants in homologous recombination (HR), mismatch repair (MMR) or polymerase epsilon 
(POLE) were associated with increased mutation burden. (b) Mutation count increases with higher number 
of DNA repair gene variants. (c) Neoantigen burden similarly was associated with DNA repair gene variants 
and (d) with the number of affected genes. Statistical analysis completed with Student’s t-test (a,c) and one-way 
ANOVA with Tukey’s test for multiple comparisons (b,d), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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between tumor mutation burden and mRNA levels of an immunomodulatory gene set23. SqCC samples with 
increased TMB had significantly increased expression of genes associated with immune activity, including 
GZMA, GZMB, and PRF1 (Fig. 4a,b). They had higher levels of IFNG (interferon-γ) and the interferon-stimulated 
chemokine CXCL9. Meanwhile, high TMB tumors demonstrated decreased expression of TGFB1 and PRDM1 
(Fig. 4a,b). Genes related to M1 and M2 tumor-associated macrophages (TAMs) did not have either higher or 
lower expression in these tumors (Fig. 4a).

In addition, we assessed for a comprehensive set of genes encoding immune-related cytokines and cytokine 
receptors. Expression levels of the cytokines CCL8, CCL17, TNFSF13B, XCL1, and XCL2 were significantly 
increased in high TMB tumors (see Supplementary Fig. S4). Expression of the cytokines CCL17, CCL22, CX3CL1, 
CXCL12, TNF, and TSLP, as well as the cytokine receptors CX3CR1, IL17RA, and IL31RA were decreased in these 
tumors.

We subsequently classified SqCC samples by neoantigen load and immunophenotypic group and assessed 
the resulting immune signature. High-neoantigen tumors exhibited increased gene expression of the 
pro-inflammatory markers GZMA, GZMB, PRF1, CD8A, EOMES, CXCL9, and IFNG, as well as the immune 
checkpoint marker LAG3 (Fig. 4c and Supplementary Table S1). The immunophenotypic groups (i.e. the clas-
sification based on DNA repair status and T cell infiltration) likewise demonstrated unique immune signatures 

Figure 2.  Activated T cell infiltration is increased in high-mutation tumors and associated with a specific 
immunophenotype. (a) Tumors with higher mutation burden were more likely to contain activated (Act) CD4+ 
and CD8+ activated T cells, though this difference was not significant after adjusting for multiple comparisons. 
(b) Activated CD4+ and CD8+ T cells were both positively correlated with CD4+ effector memory T cells 
(Tem), type 2 helper cells (Th2), memory (Mem) B cells, myeloid dendritic cells (mDC), and myeloid-derived 
suppressor cells (MDSC). Additional cell types analyzed include central memory T cells (Tcm); follicular helper 
T cells (Tfh); regulatory T cells (Tregs); gamma-delta T cells (Tgd); dendritic cells (DC); immature dendritic 
cells (iDC); plasmacytoid dendritic cells (pDC); macrophages (Mac); neutrophils (Neu); monocytes (Mono); 
eosinophils (Eos); mast cells (Mast); natural killer cells (NK); CD56 bright NK cells (NK Bright); CD56 dim NK 
cells (NK Dim); and natural killer T cells (NKT).
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(Fig. 4d and Supplementary Table S2). Notably, there was no significant difference in genes related to cytolytic 
activity, such as GZMA, GZMB, and PRF1 (Supplementary Table S2). These groups did differ in expression levels 
of immune activation genes, including CD28, CD80, CD86, ICOS, ICOSLG, and CD40. They also had significant 
differences in regards to the immune checkpoint markers CTLA4, PDCD1, and HAVCR2 (TIM-3).

Figure 3.  DNA repair gene variants and immune signals together predict infiltration by activated T cells. (a) 
DNA repair gene variants did not lead to a change in activated T cell infiltration. (b) These findings suggested 
that the tumors could be divided into four immunophenotypic groups based on DNA repair status and T cell 
infiltration. (c) A heat map of immunosuppressive genes showed differential mRNA expression among these 
groups. (d) A combined score incorporating DNA repair gene variants as well as TGFB1 and WNT2 expression 
was significantly associated with activated T cell infiltration (proportion Z-score, *FDR-adjusted p-value < 0.05, 
***p < 0.001).

Group I Group II Group III

Coef. SE p-value Coef. SE p-value Coef. SE p-value

APC −0.166 0.235 0.480 0.104 0.228 0.649 −0.279 0.225 0.215

CTNNB1 −0.019 0.229 0.935 0.114 0.230 0.620 −0.015 0.217 0.944

WNT1 2.240 1.226 0.068 2.130 1.242 0.086 2.117 1.225 0.084

WNT2 0.970 0.410 0.018* 0.967 0.425 0.023* 0.331 0.437 0.449

WNT3A 0.141 0.235 0.547 −0.146 0.291 0.615 −0.032 0.237 0.891

WNT5A 0.232 0.277 0.401 −0.607 0.329 0.065 0.078 0.246 0.751

WNT7A −0.323 0.303 0.286 −0.501 0.316 0.113 −0.828 0.402 0.039*

TGFB1 1.030 0.409 0.012* 1.341 0.421 0.001** 0.736 0.418 0.079

TGFB2 −0.232 0.179 0.195 −0.242 0.200 0.226 −0.318 0.219 0.145

TGFB3 0.097 0.355 0.785 −0.098 0.385 0.799 −0.034 0.390 0.930

VEGFA 0.203 0.234 0.385 0.321 0.235 0.172 0.312 0.216 0.148

Table 1.  Predictors of immunophenotypic group based on logistic regression analysis. A multinomial logistic 
regression model showed that WNT2 and TGFB1 had the strongest influence on determining group identity, 
using Group IV as a baseline. This table lists regression coefficients (Coef.) and standard errors (SE), *p < 0.05, 
**p < 0.01.
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Figure 4.  Mutation burden is associated with a unique immune and clinical profile. (a) High mutation burden 
was associated with an immune signature that includes increased expression of genes related to cytolytic and 
interferon-γ signaling. (b) A volcano plot shows differential mRNA expression in low versus high mutation 
tumors (Student’s t-test with FDR-adjusted p-values). Unique immune signatures were associated with (c) 
neoantigen load and (d) immunophenotypic group. (e) Mutation burden was not associated with significant 
differences in overall and disease-free survival. (f) High neoantigen burden was not associated with overall 
survival, but did lead to worse disease-free survival (g) Presence of DNA repair gene variants did not affect 
overall or disease-free survival. Kaplan-Meier plots shown, **p < 0.01 based on log-rank test.
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Clinical analysis of this SqCC cohort has previously classified tumors into four subtypes that reflect their 
underlying biologic processes25. Mutation burden alone did not have strong association with any subtype 
(Supplementary Fig. S5a). However, MMR-variant tumors were more likely to have a secretory subtype (false 
discovery rate-adjusted proportion Z-score, p = 0.029) (Supplementary Fig. S5b).

DNA repair status is not associated with overall survival.  Mutation burden has been shown to affect 
both treatment response26 as well as intrinsic survival27 in multiple cancer types. In our cohort, overall survival 
was not affected by high mutation burden (HR 0.98 with 95% confidence interval 0.73–1.32) or neoantigen bur-
den (HR 0.82 [0.61–1.11]) (Fig. 4e,f). Disease-free survival was not increased in the high TMB group (HR 0.90 
[0.63–1.29]), but it was significantly improved in the high neoantigen group (HR 0.64 [0.44–0.93], p = 0.007). 
Presence of DNA repair variants was not associated with change in overall survival (HR 0.84 [0.62–1.14]) or 
disease-free survival (HR 0.89 [0.61–1.30]) (Fig. 4g). The immunophenotypic group also did not significantly 
affect survival outcomes (Supplementary Fig. S6a,b).

Discussion
Defects in DNA repair pathways have been shown to strongly affect the tumor immune profile and consequently 
the clinical response to immunotherapy. We here sought to characterize the role of DNA repair gene mutations in 
shaping immunological characteristics in lung squamous cell carcinoma.

Our results overall support findings seen in other cancer types, and demonstrate that mutations in DNA 
repair pathways are associated with high tumor mutation burden (TMB). We also used mutation data to predict 
presence of tumor-specific neoantigens, which may be more relevant to anti-tumor immunity28, and showed that 
presence of DNA repair gene variants was associated with high neoantigen load. DNA repair status could thus 
serve as a surrogate marker for identifying patients with increased TMB. Recent clinical trials have demonstrated 
greater efficacy of immune checkpoint inhibitors in patients with NSCLC and high TMB26,29. Though targeted 
next-generation sequencing has been shown to be a viable method for measuring TMB30, assessing for mutation 
load remains a resource-intensive process. Use of more limited gene panels, such as one focused on DNA repair 
pathways, may be more practical for widespread clinical implementation.

An effective immune response requires not only the immunogenic impetus provided by tumor mutations, 
but also the ability of immune cells to infiltrate the tumor parenchyma24,31. In order to evaluate tumor infil-
tration, we utilized a comprehensive set of immune “metagenes” previously validated to estimate immune cell 
subpopulations23. In tumors with greater mutation load, there was a higher percentage of tumors infiltrated by 
activated CD4 + and CD8 + T cells. Though this difference was not statistically significant when adjusted for 
multiple comparisons, high TMB tumors had increased mRNA expression of genes that indicate T cell cytolytic 
activity, such as GZMA and PRF132. High-mutation and high-neoantigen tumors also had significantly elevated 
expression of IFN-γ-inducible chemokines such as CXCL9, which promotes trafficking of activated T cells33. 
Furthermore, infiltration by activated T cells correlated with an increased presence of effector memory CD4 + T 
cells and myeloid dendritic cells, both of which play important roles in T cell stimulation and functionality34,35. 
These data together suggest that a real association between increased mutation load and T cell infiltration exists 
in lung SqCC.

Despite the relationship between mutation load and T cell infiltration, we did not find a direct association 
between DNA repair gene variants and tumor immunophenotype. Notably, there was a sizeable sub-group of 
tumors with repair gene variants (many with high mutation burden) that nonetheless did not exhibit T cell infil-
tration. This corresponds to prior categorizations of tumors into distinct categories based on the cancer-immunity 
cycle24: “immune desert” tumors with low neoantigen burden, “immune excluded” tumors that suppress T cell 
infiltration despite adequate neoantigens, and “inflamed” tumors with increased T cell activity. Our group of 
DNA repair gene-variant tumors without infiltrated T cells (i.e. “group II”) could thus represent an immune 
excluded phenotype.

Several factors have been postulated as contributing to immune exclusion. TGF-β represents a family of 
cytokines that regulate immune activity and have been demonstrated to reduce functionality of TILs36,37. High 
levels of TGF-β therefore represent a mechanism for tumors to impair immune cell infiltration despite the pres-
ence of adequate neoantigens. The β-catenin/Wnt pathway has also been implicated as contributing to decreased 
TILs and abrogating efficacy of immunotherapies38. In order to assess their potential role in lung SqCC, we looked 
at mRNA expression of TGF-β, β-catenin, and 5 Wnt genes known to be overexpressed in NSCLC39. We found 
that expression levels of genes related to TGF-β and the Wnt pathway were significantly increased in our putative 
immune excluded group. Deficiencies in the antigen presenting apparatus have been linked to low anti-tumor 
immune activity40, but mutations in relevant genes (including HLA molecules and β-2-microglobulin) were not 
predictive of immunophenotypic groups. HLA defects have been linked specifically to escape mechanisms in 
the context of acquired resistance to immunotherapy41, and they thus may not have relevance in a broader set of 
tumors.

By combining DNA repair status with expression of TGFB1 and WNT2 genes, we were able to calculate a mul-
tifactorial score that better predicted infiltration by activated T cells. This score is a crude measure but serves as a 
proof of concept demonstrating that DNA repair gene aberrations, when adjusted for tumor microenvironment 
factors, can help identify inflamed tumors. This finding does exist at odds with studies showing that MMR status 
alone can predict TIL presence and subsequent response to immunotherapies15. The use of somatic variants with 
unknown functional significance may have limited our analysis. However, it may also be that lung SqCC biol-
ogy exhibits a greater propensity to create an immunosuppressive tumor milieu, especially when compared to 
colorectal42, endometrial16, and other cancer types whose immune responsiveness have been closely tied to DNA 
repair deficiencies.

https://doi.org/10.1038/s41598-019-39594-4
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In contrast to the results in SqCC, our prior study in lung adenocarcinoma did observe a direct relationship 
between DNA repair gene variants and activated T cell infiltration19. Important clinical differences have previ-
ously been observed between SqCC and adenocarcinoma; in particular, many recent advances in NSCLC treat-
ment have had less impact on SqCC1,43. Nevertheless, these two subtypes frequently are grouped together, and 
few studies have explored the potential differences in their response to immune checkpoint inhibitors6. Our data 
imply that DNA repair status and TMB, when used as individual biomarkers, may be less predictive of immu-
nophenotype in SqCC when compared to adenocarcinoma. Comprehensive immune signatures may instead be 
necessary to sufficiently capture relevant immune parameters in SqCC. In this dataset, we found significant differ-
ences between low- and high-mutation tumors in regards to immune-related gene expression, including in genes 
related to cytolytic activity and IFN-γ-inducible pro-inflammatory factors.

Increased mutation burden did not affect survival outcomes, but high neoantigen burden was associated with 
worse disease-free survival, possibly due to greater clinical relevance of tumor-specific neoantigens7. Meanwhile, 
presence of DNA repair gene variants did not relate to patient survival. This discrepancy seems to again imply 
that DNA repair status may have limited utility in SqCC. Variants in MMR genes, however, were associated with 
a secretory subtype, which interestingly has been defined by enhanced immune response25. It is possible that any 
clinical effect of DNA repair deficiencies would only be uncovered after treatment with immunotherapy. This 
SqCC cohort did not select for any treatment type, which may be relevant to several results. For example, we spec-
ulate that the link between neoantigen load and T cell infiltration might be stronger in a dataset obtained from 
immunotherapy responders. Similarly, high neoantigen load would be expected to lead to improved survival in 
those patients, while in these tumors, an increased number of neoantigens may represent more aggressive disease.

Identifying patients who will respond to immunotherapy, and tailoring treatments to their specific tumor biol-
ogy, will rely on the ability to accurately assess the immune parameters of their tumors. To our knowledge, this 
work represents the largest analysis of the tumor immune profile in lung SqCC. Our data overall provide evidence 
that DNA repair pathway variants are closely associated with mutation and neoantigen burden in lung SqCC, and 
together with other immune-related signals are important factors in determining the tumor immunophenotype. 
Due to direct relevance of these parameters on the efficacy of immunotherapies, defects in DNA repair should be 
evaluated further as predictive biomarkers for these rapidly-developing treatments.

Methods
Data sets, mutation analysis, immune cell prediction.  A previously annotated cohort of lung squa-
mous cell carcinoma samples (n = 178) in The Cancer Genome Atlas (TCGA), as previously published20, was 
obtained from cBioPortal44. These data included DNA mutations, RNA-sequencing expression, and clinical 
descriptors. To identify mutations in homologous recombination, samples were assessed for mutations in the fol-
lowing genes: ATR, ATM, CHEK1, CHEK2, BRCA1, BRCA2, BAP1, BARD1, FANCD2, FANCE, FANCC, FANCA, 
RAD50, RAD51, and PALB245. The mismatch repair pathway was assessed using the following gene list: MLH1, 
MLH3, MSH2, MSH3, MSH4, MSH5, MSH6, PMS1, PMS2, PMS2L3, PCNA, EXO1, POLD1, RFC1, RFC2, RFC3, 
RFC4, and RFC545. All gene names are based on the HUGO Gene Nomenclature Committee (HGNC) data-
base (https://www.genenames.org/)46. Gene transcripts were obtained using the HGNC-linked NCBI Reference 
Sequence (RefSeq) identifier47, with full data available at https://www.ncbi.nlm.nih.gov/refseq. Somatic variants 
in these genes were then filtered by including only those causing nonsense mutations, splicing errors, indels, or 
missense mutations predicted to be deleterious based on SIFT21 (sift.bii.a-star.edu.sg) score <0.05 or CADD 
v1.422 (https://cadd.gs.washington.edu/) score >20. Splicing errors were defined as a 2-basepair variant in an 
intron adjacent to the intron/exon junction.

Infiltration of tumor samples by specific immune cell types was performed as previously described23. In brief, 
expression of 812 immune “metagenes,” which were derived from 813 microarrays over 36 studies, was entered 
into Gene Set Enrichment Analysis (GSEA)48,49 release 2.2.1. Any immune cell types with a false discovery rate 
(q-value) of ≤10% were considered as positively infiltrating into that tumor sample.

Neoantigen prediction.  Neoantigen prediction was done using CloudNeo pipeline (https://github.com/
TheJacksonLaboratory/CloudNeo)50 on the NCI Cancer Genomics Cloud (CGC) in the Seven Bridges Genomics 
implementation. A list of non-synonymous mutations in maf file format was downloaded from TCGA which 
was converted into the vcf file format (https://github.com/mskcc/vcf2maf/blob/master/maf2vcf.pl). The genomic 
variants were translated into amino acid changes using the Variant_Effect_Predictor (release-83) tool51 and a cus-
tom script in the CloudNeo pipeline50 using the programming language R (version 3.5.1, https://www.r-project.
org). The output of the custom tool is a list of N-amino-acid-long peptide sequences in a fasta format, such that 
the single peptide change is in the middle of the N-mer. The HLA prediction was done using the HLAminer tool 
version v1.352, which takes HLA allele database file which can be downloaded from the CloudNeo github (http:/
cloudneo.readthedocs.io/en/latest/cloudneo/inputs.html).

Peptides of 9 amino acids containing mutated sites were tested against 6 predicted HLA types using the 
CloudNeo pipeline in order to generate a neoantigen affinity score using the Netmhcpan (v3.0a) tool53. A control 
analysis was performed with the homologous non-mutated peptides. Neoantigens were identified as mutated 
peptides with strong binding affinity, as defined by IC50 <500 nM, with positive gene expression and corre-
sponding non-mutated wild-type peptides with weak MHC binding (IC50 > 500 nM). Supplementary Fig. S7 
displays the representative schematic diagram of the CloudNeo pipeline along with the actual commands that 
were invoked for a sample to illustrate the parameter settings for various tools within the pipeline. Please note that 
we have substituted our actual project and sample path with simple strings.

Statistical analysis.  Comparison of data was carried out using the z-score between two population propor-
tions, unpaired two-tailed Student’s or Welch’s t-test, ANOVA analysis, and the Pearson correlation coefficient as 
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appropriate. These calculations were performed in GraphPad Prism version 7 (La Jolla, CA). P-values obtained 
by ANOVA were adjusted for multiple comparisons using Tukey’s test. Adjustment for false discovery rate (FDR) 
was performed using Storey’s q-value estimation in R54. Logistic regression analysis was also performed using 
R. Results are presented as percentages, means ± standard error of the mean (SEM), Pearson correlation coef-
ficient, or RNA-Seq z-score, as indicated. P-values are represented by *p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001.

Data Availability
The datasets analyzed during the current study are available in the cBioPortal repository of The Cancer Genome 
Atlas, found at http://www.cbioportal.org, last accessed 10/28/2018. Lists of primary variants for tumors are avail-
able from The Cancer Genome Atlas at the National Institutes of Health website, found at https://tcga-data.nci.
nih.gov/docs/publications/lusc_2012/, last accessed 10/26/2018.

References
	 1.	 Reck, M. & Rabe, K. F. Precision Diagnosis and Treatment for Advanced Non-Small-Cell Lung Cancer. N Engl J Med 377, 849–861 

(2017).
	 2.	 Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. 

Cancer Cell 27, 450–461 (2015).
	 3.	 Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252–264 (2012).
	 4.	 Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).
	 5.	 Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer 

(KEYNOTE-010): a randomised controlled trial. The Lancet 387, 1540–1550 (2016).
	 6.	 Brahmer, J. et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med 373, 

123–135 (2015).
	 7.	 Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).
	 8.	 McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 

351, 1463–1469 (2016).
	 9.	 Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371, 2189–2199 (2014).
	10.	 Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).
	11.	 Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. 

Science 348, 124–128 (2015).
	12.	 Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed 

following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. The Lancet 387, 1909–1920 (2016).
	13.	 Tomlinson, I. P., Novelli, M. R. & Bodmer, W. F. The mutation rate and cancer. Proc Natl Acad Sci USA 93, 14800–14803 (1996).
	14.	 Le, D. T. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 372, 2509–2520 (2015).
	15.	 Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).
	16.	 Howitt, B. E. et al. Association of Polymerase e-Mutated and Microsatellite-Instable Endometrial Cancers With Neoantigen Load, 

Number of Tumor-Infiltrating Lymphocytes, and Expression of PD-1 and PD-L1. JAMA Oncol 1, 1319–1323 (2015).
	17.	 Mehnert, J. M. et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest 126, 

2334–2340 (2016).
	18.	 Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-

infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016).
	19.	 Chae, Y. K. et al. Mutations in DNA repair genes are associated with increased neo-antigen load and activated T cell infltration in 

lung adenocarcinoma. Oncotarget 9, 7949–7960 (2018).
	20.	 Cancer Genome Atlas Research, N. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 

(2012).
	21.	 Ng, P. C. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Research 31, 3812–3814 (2003).
	22.	 Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics 46, 

310–315 (2014).
	23.	 Angelova, M. et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape 

mechanisms and novel targets for immunotherapy. Genome Biol 16, 64 (2015).
	24.	 Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).
	25.	 Wilkerson, M. D. et al. Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and 

correspond to normal cell types. Clin Cancer Res 16, 4864–4875 (2010).
	26.	 Goodman, A. M. et al. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. 

Mol Cancer Ther 16, 2598–2608 (2017).
	27.	 Miller, A. et al. High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple 

myeloma. Blood Cancer J 7, e612 (2017).
	28.	 Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 

572–576 (2014).
	29.	 Hellmann, M. D. et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med 378, 

2093–2104 (2018).
	30.	 Rizvi, H. et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 

1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J Clin 
Oncol 36, 633–641 (2018).

	31.	 Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 
1960–1964 (2006).

	32.	 Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local 
immune cytolytic activity. Cell 160, 48–61 (2015).

	33.	 Tokunaga, R. et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat 
Rev 63, 40–47 (2017).

	34.	 Church, S. E., Jensen, S. M., Antony, P. A., Restifo, N. P. & Fox, B. A. Tumor-specific CD4+ T cells maintain effector and memory 
tumor-specific CD8+ T cells. Eur J Immunol 44, 69–79 (2014).

	35.	 Tran Janco, J. M., Lamichhane, P., Karyampudi, L. & Knutson, K. L. Tumor-infiltrating dendritic cells in cancer pathogenesis. J 
Immunol 194, 2985–2991 (2015).

	36.	 di Bari, M. G. et al. TGF-beta modulates the functionality of tumor-infiltrating CD8+ T cells through effects on TCR signaling and 
Spred1 expression. Cancer Immunol Immunother 58, 1809–1818 (2009).

	37.	 Massague, J. TGFbeta in Cancer. Cell 134, 215–230 (2008).

https://doi.org/10.1038/s41598-019-39594-4
http://www.cbioportal.org
https://tcga-data.nci.nih.gov/docs/publications/lusc_2012/
https://tcga-data.nci.nih.gov/docs/publications/lusc_2012/


1 0Scientific Reports |          (2019) 9:3235  | https://doi.org/10.1038/s41598-019-39594-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

	38.	 Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523, 
231–235 (2015).

	39.	 Stewart, D. J. Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst 106, djt356 (2014).
	40.	 Cabrera, C. M. et al. Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta2-microglobulin 

inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens 61, 211–219 (2003).
	41.	 Restifo, N. P. et al. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J 

Natl Cancer Inst 88, 100–108 (1996).
	42.	 Boland, C. R. & Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 138, 2073–2087 e2073 (2010).
	43.	 Hanna, N. et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously 

treated with chemotherapy. J Clin Oncol 22, 1589–1597 (2004).
	44.	 Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer 

Discov 2, 401–404 (2012).
	45.	 Chae, Y. K. et al. Genomic landscape of DNA repair genes in cancer. Oncotarget 7, 23312–23321 (2016).
	46.	 Yates, B. et al. Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res 45, D619–D625 (2017).
	47.	 O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. 

Nucleic Acids Res 44, D733–745 (2016).
	48.	 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. 

Proceedings of the National Academy of Sciences of the United States of America 102, 15545–15550 (2005).
	49.	 Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human 

diabetes. Nature genetics 34, 267–273 (2003).
	50.	 Bais, P., Namburi, S., Gatti, D. M., Zhang, X. & Chuang, J. H. CloudNeo: a cloud pipeline for identifying patient-specific tumor 

neoantigens. Bioinformatics 33, 3110–3112 (2017).
	51.	 McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 

26, 2069–2070 (2010).
	52.	 Warren, R. L. et al. Derivation of HLA types from shotgun sequence datasets. Genome Med 4, 95 (2012).
	53.	 Andreatta, M. & Nielsen, M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. 

Bioinformatics 32, 511–517 (2016).
	54.	 Storey, J. D., Bass, A. J., Dabney, A. & Robinson, D. qvalue: Q-value estimation for false discovery rate control, http://github.com/

jdstorey/qvalue (2015).

Acknowledgements
JHC was supported by the National Cancer Institute of the NIH under award R21CA191848 and supplement 
R21CA191848-01A1S1. Research was also partially supported by the National Cancer Institute under award 
P30CA034196.

Author Contributions
Y.K.C. formulated hypotheses, designed experiments, and aided in manuscript review. J.F.A. designed 
experiments, performed data analyses, and aided in manuscript review. M.S.O. performed data analyses and 
manuscript writing. P.B. and S.N. performed neo-antigen predictions. S.A. aided in data analyses. F.J.G. aided in 
manuscript review. J.H.C. designed experiments, performed neo-antigen predictions, and aided in manuscript 
review.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-39594-4.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-39594-4
http://github.com/jdstorey/qvalue
http://github.com/jdstorey/qvalue
https://doi.org/10.1038/s41598-019-39594-4
http://creativecommons.org/licenses/by/4.0/

	Mutations in DNA repair genes are associated with increased neoantigen burden and a distinct immunophenotype in lung squamo ...
	Results

	Tumors with DNA repair pathway mutations have increased mutational and neoantigen burden. 
	High mutation burden is associated with increased tumor infiltration by activated T cells. 
	DNA repair gene variants are not associated with T cell infiltration, possibly due to compensatory immunosuppressive signal ...
	A combined score incorporating DNA repair status, TGFB1, and WNT2 predicts T cell infiltration. 
	Mutation and neoantigen burden are associated with increased expression of pro-inflammatory and immune checkpoint markers. 
	DNA repair status is not associated with overall survival. 

	Discussion

	Methods

	Data sets, mutation analysis, immune cell prediction. 
	Neoantigen prediction. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 DNA repair gene variants are associated with increased mutation and neoantigen count.
	Figure 2 Activated T cell infiltration is increased in high-mutation tumors and associated with a specific immunophenotype.
	Figure 3 DNA repair gene variants and immune signals together predict infiltration by activated T cells.
	Figure 4 Mutation burden is associated with a unique immune and clinical profile.
	Table 1 Predictors of immunophenotypic group based on logistic regression analysis.




