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A PET Radiomics Model to Predict 
Refractory Mediastinal Hodgkin 
Lymphoma
Sarah A. Milgrom1, Hesham Elhalawani1, Joonsang Lee2, Qianghu Wang3,  
Abdallah S. R. Mohamed1, Bouthaina S. Dabaja1, Chelsea C. Pinnix1, Jillian R. Gunther1, 
Laurence Court2, Arvind Rao1,5, Clifton D. Fuller   1, Mani Akhtari1, Michalis Aristophanous1, 
Osama Mawlawi6, Hubert H. Chuang7, Erik P. Sulman1,3,4, Hun J. Lee8, 
Frederick B. Hagemeister8, Yasuhiro Oki8, Michelle Fanale8 & Grace L. Smith1

First-order radiomic features, such as metabolic tumor volume (MTV) and total lesion glycolysis 
(TLG), are associated with disease progression in early-stage classical Hodgkin lymphoma (HL). 
We hypothesized that a model incorporating first- and second-order radiomic features would more 
accurately predict outcome than MTV or TLG alone. We assessed whether radiomic features extracted 
from baseline PET scans predicted relapsed or refractory disease status in a cohort of 251 patients 
with stage I-II HL who were managed at a tertiary cancer center. Models were developed and tested 
using a machine-learning algorithm. Features extracted from mediastinal sites were highly predictive 
of primary refractory disease. A model incorporating 5 of the most predictive features had an area 
under the curve (AUC) of 95.2% and total error rate of 1.8%. By comparison, the AUC was 78% for both 
MTV and TLG and was 65% for maximum standardize uptake value (SUVmax). Furthermore, among the 
patients with refractory mediastinal disease, our model distinguished those who were successfully 
salvaged from those who ultimately died of HL. We conclude that our PET radiomic model may improve 
upfront stratification of early-stage HL patients with mediastinal disease and thus contribute to risk-
adapted, individualized management.

In early-stage classical Hodgkin lymphoma (HL), individualized, risk-adapted therapy is desirable to main-
tain high cure rates while minimizing treatment-related toxicity. For most patients, prognosis is excellent, so 
de-intensification of therapy is advised to reduce the risk of late treatment-related toxicity1,2. However, a small 
minority of patients develop relapsed or refractory disease, which may be fatal. Primary refractory disease is asso-
ciated with particularly poor outcomes3,4. For patients with refractory disease, therapy should not be minimized5. 
Thus, upfront identification of patients at high risk for refractory disease would be extremely valuable.

The intensity of frontline therapy is dictated by the presence of risk factors at the time of diagnosis. In today’s 
practice, these risk factors are defined using historic methods. In particular, tumor bulk has long been recognized 
as an important poor prognostic factor6. Historically, bulk was defined based on the width of the mediastinum 
on an upright chest x-ray7,8. Subsequently, in the era of computed tomography (CT) scanning, various retro-
spective studies defined CT criteria for bulky disease, with proposed cut-off values ranging from 5 to 10 cm9–12. 
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Most recently, measurements that reflect both the 3-dimensional disease volume and metabolic activity, such as 
metabolic tumor volume (MTV) and total lesion glycolysis (TLG), have been associated with patient outcomes in 
HL13–15. These functional measurements of tumor volume provide additional prognostic information beyond the 
classical risk factors that include a unidimensional measurement of tumor bulk13. While these metabolic tumor 
volume metrics may improve risk stratification, further study and validation are needed before they can be incor-
porated into current daily practice and risk stratification systems.

As a next step, additional data beyond MTV and TLG may be derived from 18F-fluorodeoxyglucose (FDG) 
positron emission tomography (PET) scans. Radiomics involves the extraction of a large number of quantitative 
features from digital images, which can be mined for hypothesis generation16,17. When extracted from PET scans, 
these features signify aspects of radiotracer intensity (concentration), heterogeneity, and shape within the tumor, 
reflecting biological characteristics, such as cellular density, proliferation rate, hypoxia, necrosis, and angiogene-
sis18. “First-order” features are global measurements that do not convey spatial information, such as standardized 
uptake value (SUV), MTV, and TLG. Second-order features reflect spatial relationships between ≥2 voxels due 
to variability in the distribution of radiotracer uptake. These data can be derived from gray-level co-occurrence 
matrices (GLCM). Examples of second-order features include contrast, energy, entropy, and homogeneity19. In 
multiple other malignancies, first- and second-order features of baseline PET scans have been associated with 
patient outcomes20–31. Furthermore, textural and shape parameters evaluated on baseline PET scans predicted 
early metabolic response in a cohort of patients with bulky Hodgkin and non-Hodgkin lymphoma32. We hypoth-
esized that a model incorporating first- and second-order radiomic features would more accurately predict refrac-
tory or relapsed disease status, when compared to MTV, TLG, or maximum SUV (SUVmax) alone, in a cohort of 
early-stage HL patients.

Materials and Methods
We obtained approval from the University of Texas MD Anderson Cancer Center Institutional Review Board. 
All work was done in accordance with institutional guidelines and regulations. The status of this study as a 
HIPAA-compliant, retrospective project waived the prerequisite for informed consent.

Study cohort.  Records were reviewed retrospectively for all patients treated at a single tertiary cancer center 
for classical HL from 2003 through 2013. Inclusion criteria included Ann Arbor stage I or II disease, age of ≥18 
years at the time of diagnosis, and availability of an analyzable pre-chemotherapy PET-CT scan. Patients with a 
disease volume measuring <5 cc were excluded.

PET-CT scans.  PET-CT scans were acquired on 1 of 4 scanners: a DST machine, 2 DRX machines, or a DSTE 
machine (GE Healthcare, Milwaukee, WI). The corresponding CT scanners were 8-slice (DST model), 16-slice 
or 64-slice (DRX model), or 64-slice machines (DSTE model). All PET-CT scanners used the same DISCOVERY 
platform by General Electric.

Patients fasted for at least 6 hours and were confirmed to have a blood glucose level of <150 mg/dL prior to 
the FDG injection. An intravenous FDG injection of 555–629 MBq (15–17 mCi) or of 333–407 MBq (9–11 mCi) 
was administered for 2-dimensional (2D) and 3-dimensional (3D) imaging, respectively, and emission scans 
were acquired at 3 minutes per field of view. The injection-to-scan time of all patients had a median of 70 minutes 
(standard deviation 17 minutes). PET images were reconstructed with vendor-provided algorithms. Diagnostic 
quality CT images were acquired in helical mode with a 3.75-mm slice thickness (pitch of 1.35, rotation speed of 
0.5 sec, kVp of 120, and noise index of 30).

All PET-CT scanners at our institution are subject to a rigorous quality assurance/quality control program on 
a daily, quarterly, and annual basis. Additionally, reconstruction parameters are optimized to ensure harmoniza-
tion of SUV measurements between scanners. PET data were acquired in 2D mode before January 2008 and in 
3D mode after that date. The equivalence between the 2D and 3D reconstruction data have been confirmed using 
phantom data.

Disease volume definition.  PET-CT images were transferred to MIM software (version 6.4.9, MIM 
Software Inc., Cleveland, OH) and co-registered for further analysis. All sites of nodal disease were contoured 
manually on the CT scan. Disease was contoured separately by anatomic region, as defined by the Ann Arbor 
staging method (i.e. mediastinum, left neck, right neck, left axilla, right axilla, etc). Then, an auto-thresholding 
technique was used to delineate all tumor on the PET scans that was present within the manually contoured vol-
umes and had a body weight SUV ≥2.533.

MTV and TLG were defined using the fixed SUV threshold of 2.5, with all voxels containing SUVs above this 
cut-off contributing to the MTV. MTV2.5 was calculated in cubic centimeters (cc) by summation of these voxels. 
For cases in which SUVmax of the primary lesion was lower than that of the threshold, MTV2.5 was considered to 
be 0. TLG2.5 was computed by multiplying the MTV2.5 by its SUVmean.

Radiomics analysis.  Thirty-three quantitative radiomic features, listed in Table 1, were extracted from the 
MTV2.5 using the in-house imaging software “Imaging Biomarker Explorer” (IBEX)34. This software was designed 
based on the MATLAB (v8.1.0, MathWorks, Natick, MA) and is available at http://bit.ly/IBEX.MDAnderson. Any 
disease volume <5 cc was excluded, because quantitative features extracted from small lesions yield less repro-
ducible results than those from larger tumors35. Clean MaskEdge was applied before feature extraction to specify 
how much of the edge voxel to include in the calculations. IBEX can extract features from discontinuous regions 
of interest, so all involved nodes within the site of interest were included. Texture features were derived from the 
GLCM in 2.5D (i.e. first computed on each 2D image and then combined into 2.5D features by averaging of 2D 
features across the 3D volume).
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Clinical outcomes.  The primary clinical outcome was refractory or relapsed disease, with the clinical ration-
ale that patients who suffer refractory or relapsed disease outcomes are at higher risk for mortality, need for 
salvage chemotherapy, and need for stem cell transplantation3,4,36,37. Primary refractory disease was defined as 
persistent HL during or within 90 days of completion of upfront therapy (i.e. the final cycle of chemotherapy 
in patients treated with chemotherapy alone, or the final day of RT in patients treated with combined modality 
therapy). Relapsed disease was defined as progression more than 3 months after upfront therapy. As a secondary 
outcome, we assessed death from HL.

Statistical analysis.  We aimed to build an imaging biomarker-based model predictive of relapsed or refrac-
tory HL. We hypothesized that this model would more accurately predict patient outcomes than MTV, TLG, 
or SUVmax. Training-validation subsets were used to identify prognostic radiomic features. To investigate the 
association of primary refractory disease with mediastinal radiomic features specifically, patients with medias-
tinal involvement (167 patients, 12 refractory cases) were separated randomly into 12 groups, with 1 refractory 
case per group. Ten training groups established a support vector machine-based AdaBoost iterating algorithm 
enhanced classifier38, and the remaining 2 groups tested the model.

Receiver operating characteristic (ROC) curves were used to test the predictive performance of this model, 
compared to single variable MTV-, TLG-, and SUVmax-based prediction. Classifier and statistical analyses were 
built and performed using R3.2.2. The clustering analysis was conducted based on the unsupervised hierarchical 
clustering via pheatmap R package with default parameters.

Results
The cohort comprised 251 patients with stage I-II HL. Patient characteristics are summarized in Table 2. The 
radiomic features listed in Table 1 were extracted from the baseline PET scans. We assessed for an association of 
these features with the presence of relapsed or refractory disease.

Radiomic features extracted from mediastinal sites on the pre-treatment scans were highly predictive of pri-
mary refractory status. Of the 169 patients with mediastinal involvement, 12 had refractory disease. In each case, 
the primary refractory site included the mediastinum; in 2 patients, refractory disease was present within the 
neck, as well. When considering mediastinal sites only (n = 169), the baseline radiomic features that were most 
predictive of primary refractory disease included the first-order features GlobalMax (i.e. SUVmax) and Volume, 
and the second-order features InformationMeasureCorr1, InformationMeasureCorr2, and InverseVariance 
derived from the GLCM2.5. Background information regarding these features is summarized in Table 3. These 5 
features were included in a model that predicted the risk of primary refractory HL with an area under the curve 

Category Features

Intensity histogram Global Entropy
Global Uniformity

Global Max
Inter quartile Range

Global Mean
Kurtosis

Global standard deviation
Skewness

GLCM2.5D*

Auto Correlation
Contrast
Energy
Information Measure 1
Inverse Variance
Sum Variance

Cluster Prominence
Correlation
Entropy
Information Measure 2
Max probability
Variance

Cluster Shade
Difference Entropy
Homogeneity
Inverse Diff. Norm
Sum Average

Cluster Tendency
Dissimilarity
Homogeneity 2
Inverse Diff. Moment Norm
Sum Entropy

Shape Max 3D Diameter Volume Roundness

Table 1.  Radiomic features. *Gray-Level Co-Occurrence Matrix, computed in 2.5D fashion.

Characteristic Total Cohort (n = 251)
Subset with Mediastinal 
Disease (n = 169)

Subset with Refractory 
Mediastinal Disease (n = 12)

Median age (range) 31 years (18–88) 30 years (18–60) 29 years (20–57)

Female 144 (57%) 113 (67%) 7 (58%)

Median Karnofsky performance status at diagnosis 
(range) 90% (70–100%) 90% (70–100%) 90% (80–100%)

Stage I/Stage II 37 (15%)/214 (85%) 8 (5%)/161 (95%) 0 (0%)/12 (100%)

B symptoms 57 (23%) 40 (24%) 4 (33%)

Bulk (>10 cm) 76 (30%) 55 (33%) 7 (58%)

Extranodal disease 11 (4%) 6 (4%) 1 (8%)

ABVD or ABVD-like chemotherapy 246 (98%) 166 (98%) 11 (92%)

Median number of chemotherapy cycles (range) 5 (2–6) 6 (2–6) 6 (2–6)

Consolidative radiation therapy as part of frontline 
therapy 175 (70%) 116 (69%) 1 (8%)

Primary refractory cases 19 (8%) 12 (7%) 12 (100%)

Relapsed cases 9 (4%) 7 (4%)

Table 2.  Patient, treatment, and disease characteristics. ABVD = doxorubicin, bleomycin, vinblastine, 
dacarbazine.
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(AUC) of 95.2% (95% CI: 87.0–100.0%) and total error rate of 1.8%. By comparison, the AUC was 78% (95% CI: 
66.6–90.3%) for both MTV and TLG and was 65% (95% CI: 48.1–83.4%) for SUVmax alone (Fig. 1).

Based on these 5 features, the expression profiles were subject to unsupervised hierarchical clustering, and the 
patients were divided into 5 subgroups (Fig. 2 and Table 4). No patient in Group 1 (n = 27) or 2 (n = 72) had pri-
mary refractory disease. The other 3 groups included all 12 patients with refractory disease. Furthermore, these 
groups distinguished patients with highly refractory disease who died of HL from those with initially refractory 
disease who were salvaged successfully. Group 3 (n = 36) included 5 patients (14%) with refractory disease, none 
of whom died of HL; Group 4 (n = 15) included 3 patients (20%) with refractory disease, 1 (33%) of whom died 
of HL; and Group 5 (n = 19) included 4 patients (21%) with refractory disease, 3 (75%) of whom died of HL 
(Table 4).

In contrast, features extracted from the total disease volume, inclusive of all anatomic sites, did not predict the 
risk of refractory disease (49.5% error rate). Additionally, radiomic features did not predict the risk of relapsed 
disease (51% error rate for the largest volume and 49% for the highest SUV volume).

Conclusion
We have identified a model for imaging biomarker-based risk stratification in early-stage HL patients with medi-
astinal disease. Our model incorporated 5 of the most highly predictive PET radiomic features. Two of these 
features, GlobalMax (SUVmax) and Volume (MTV) are known prognostic markers in HL13–15. With the addition 
of 3 other features, all measures of texture, our model more accurately predicted the risk of primary refractory 
disease than MTV, TLG, or SUVmax. This model not only identified the risk of primary refractory disease, but also 

Feature Definition Equation Reference

Intensity Global Max The intensity maximum among all the 
voxels (SUVmax).

53

Volume
The physical volume. For positron emission 
tomography, volume is equivalent to the 
metabolically active tumor volume (MTV).

54

Inverse variance

Random variables are aggregated to 
minimize the variance of the weighted 
average where each random variable is 
weighted in inverse proportion to its 
variance.

= ∑ ∑. . = > −
F 2cm inv var i

Ng
j
Ng pij

i j1 1( )2
42

InformationMeasureCorr1*
First measure of information theoretic 
correlation, where HXY is the entropy for 
joint probability.

=. . .
−Fcm info corr

HXY HXY
HX1

1 55

InformationMeasureCorr2*
Second measure of information theoretic 
correlation, a grey level co-occurrence 
textural feature.

= − − −. . .F HXY HXY1 exp( 2( )cm info corr 2 2
55

Table 3.  PET radiomic features that were most predictive of refractory mediastinal disease. *Information 
theoretic correlation is a grey level co-occurrence textural feature and an index of tumor heterogeneity. It is 
estimated using 2 different measures that incorporate entropy chiefly in the computation process56.

Figure 1.  Receiver Operating Curves for the model incorporating 5 radiomic features (red), metabolic tumor 
volume (blue), total lesion glycolysis (black), and GlobalMax (SUVmax, green) in the subset of patients with 
mediastinal disease.
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distinguished a high-risk refractory subgroup that could not be salvaged. Thus, advanced imaging biomarkers 
may identify patients who would benefit from escalation vs. de-intensification of therapy. Such individualization 
of treatment could improve the therapeutic ratio, contributing to superior patient outcomes.

The management of early-stage HL patients is guided by the presence of known clinical and radiographic risk 
factors5. The radiographic finding included in current risk stratification schemas is tumor bulk. The definition 
of bulk varies among investigators and is typically defined by a single measurement of tumor diameter8,39–41. 
However, such unidimensional measurements do not fully represent disease burden. Several groups have shown 
that 3-dimensional assessments of disease volume, such as MTV, enable superior prediction of clinical outcomes 
when compared to standard risk factors, including unidimensional measurements of tumor bulk13–15. As the next 
step, our findings suggest that additional PET radiomic features may enhance the predictive capability of MTV. 
Consistent with our findings, Bouallègue et al. published a report of 57 patients with bulky lymphoma (14 HL 
and 43 non-Hodgkin lymphoma). In this cohort, a model incorporating baseline PET textural and shape param-
eters more accurately predicted disease response on interim PET scans than other factors, including MTV and 
histology32.

This work adds to a growing body of literature demonstrating an association between radiomic features and 
clinical outcome. Advanced radiomic features have been shown to predict treatment response in multiple other 
malignancies, such as sarcoma, breast cancer, non-small cell lung cancer, head-and-neck cancer, esophageal can-
cer, and cervical cancer22–31,42,43. In other malignancies, some of the optimal models have incorporated both PET 
and CT features25 or pre- and post-therapy imaging findings28, suggesting possible future directions for our work.

In this analysis, we found that baseline PET radiomic features predicted the risk of refractory disease, but, in 
contrast, did not predict for relapsed disease. This distinction may reflect underlying biological differences in the 
pathways toward relapsed versus refractory disease, and further, could have clinical implications. In contrast with 
refractory disease, relapsed disease occurs later in follow-up, after a disease-free interval. With a longer latency 
before disease failure, it is possible that early data from the initial PET is less predictive of the relapse outcome. 
Future studies exploring associations between radiomic biomarkers and relapse may benefit from analyses of 
interim or post-treatment imaging results. Clinical data also suggest that relapsed and refractory disease may be 
distinct processes. For example, the long-term survival for patients with relapsed disease tends to be more favora-
ble. It ranged from 27% to 83% in the German Hodgkin Study Group trials, depending on clinical risk factors36,37. 
In contrast, for patients with refractory disease, long-term survival ranges between 8% and 50%3,4. Therefore, the 
imaging biomarker features on initial staging PET scans may provide an early clue as to fundamentally differing 
biological behaviors of relapsed versus refractory disease and response to current systemic agents.

The optimal method for tumor volume segmentation is debated. We used a fixed threshold for tumor deline-
ation. This method yields reproducible volumes; however, a disadvantage of the fixed threshold approach is that 
tumor with low FDG-uptake is excluded, which may bias heterogeneity assessments. Additionally, this approach 

Figure 2.  Heatmap demonstrating the prognostic subgroups based on the 5 most predictive mediastinal 
radiomic features.

Group n
Refractory Cases 
(n = 12)

Deaths from Refractory 
HL (n = 4)

1 27 0 0

2 72 0 0

3 36 5 (14%) 0

4 15 3 (20%) 1 (33%)

5 19 4 (21%) 3 (75%)

Table 4.  Prognostic groups based on radiomic feature analysis.
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does not take background uptake into consideration44. In future work, segmentation methods may be compared 
to identify the preferred approach in this patient population.

Our hypothesis-generating study is not without limitations. For example, PET technology evolved over the 
course of the study period, so some scans were obtained in 2D mode and others in 3D mode. Significant care was 
taken to minimize differences between scans obtained in 2D versus 3D mode; however, we cannot exclude the 
possibility that PET acquisition mode influenced the radiomic features and, thus, affected our findings.

A second critical limitation is that our findings are based on a single institutional dataset with a small number 
of events and have not been validated using an external cohort. Radiomic features may be influenced by PET 
acquisition and reconstruction parameters45–48. Therefore, models based on data from one scanner or institution 
may not be directly applicable to data from another scanner or institution. Methods to standardize PET scanning 
have been proposed49,50; nonetheless, variability across institutions exists. External validation of our model is an 
important next step. Its robustness and reproducibility must be confirmed, before it can be applied in clinical 
practice. One PET acquisition factor that warrants particular attention in mediastinal lymphoma texture feature 
analysis is respiratory motion, which may result in blurring across the tumor volume51,52.

Despite these limitations, to the best of our knowledge, this is the first study to demonstrate an association 
between advanced PET radiomic features and refractory disease status in early-stage HL patients. We suggest that 
our model be tested in future studies. We used an open-source platform for feature extraction, so researchers at 
other institutions can explore our findings. Development and validation of an imaging biomarker-based prognos-
tic schema could aid a risk-adapted, individualized therapeutic approach.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
request.
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