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Comprehensive Investigation 
on Controlling for CT Imaging 
Variabilities in Radiomics Studies
Rachel B. Ger   1,2, Shouhao Zhou   2,3, Pai-Chun Melinda Chi1, Hannah J. Lee1, 
Rick R. Layman2,4, A. Kyle Jones2,4, David L. Goff   5, Clifton D. Fuller   2,6, 
Rebecca M. Howell1,2, Heng Li1,2, R. Jason Stafford2,4, Laurence E. Court1,2,4 & 
Dennis S. Mackin   1,2

Radiomics has shown promise in improving models for predicting patient outcomes. However, to 
maximize the information gain of the radiomics features, especially in larger patient cohorts, the 
variability in radiomics features owing to differences between scanners and scanning protocols must 
be accounted for. To this aim, the imaging variability of radiomics feature values was evaluated on 
100 computed tomography scanners at 35 clinics by imaging a radiomics phantom using a controlled 
protocol and the commonly used chest and head protocols of the local clinic. We used a linear mixed-
effects model to determine the degree to which the manufacturer and individual scanners contribute 
to the overall variability. Using a controlled protocol reduced the overall variability by 57% and 52% 
compared to the local chest and head protocols respectively. The controlled protocol also reduced 
the relative contribution of the manufacturer to the total variability. For almost all variabilities 
(manufacturer, scanner, and residual with different preprocesssing), the controlled protocol scans 
had a significantly smaller variability than the local protocol scans did. For most radiomics features, 
the imaging variability was small relative to the inter-patient feature variability in non–small cell lung 
cancer and head and neck squamous cell carcinoma patient cohorts. From this study, we conclude that 
using controlled scans can reduce the variability in radiomics features, and our results demonstrate the 
importance of using controlled protocols in prospective radiomics studies.

Research interest in radiomics has been growing, as radiomics has shown promise in improving models for pre-
dicting patient outcomes. Radiomics involves evaluating images on a voxel-level basis on the assumption that 
there is more data to be extracted than can be observed by the human eye1. This process combined with conven-
tional prognostic factors (e.g., age) has been able to improve survival models, demonstrated through the exten-
sive studies in non–small cell lung cancer (NSCLC)2–8. Radiomics features for improving head and neck cancer 
models have recently been studied and have shown similar positive results of incorporating radiomics features in 
outcome models9–14.

Many of these radiomics studies are conducted at one facility. However, as the field of radiomics has grown, 
researchers have sought larger patient cohorts by combining data from multiple facilities. This means that patients 
are scanned on different computed tomography (CT) scanners using different protocols, which may affect radi-
omics features15. The impacts of differences in kernel, pixel size, and image thickness have been studied16–21. For 
parameters such as pixel size, it has been shown that resampling can reduce imaging differences16,21, while for 
parameters such as the reconstruction kernel, it has been shown that combining patient data that includes both 
sharp and smooth kernels can lead to large discrepancies18.
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These uncertainty studies often involve only a few scanners at one facility, which provides valuable informa-
tion about imaging variability, but these results may not be generalizable to a larger population of CT scanners 
at multiple facilities. Mackin et al. created a radiomics phantom to investigate the imaging variability among 17 
scanners using the routine chest protocol on each22. They found that radiomics feature value differences due to 
the different scanners were similar to the inter-patient radiomics feature variability among NSCLC patients and 
thus recommended that these imaging differences be considered in future studies.

In this study, we aimed to obtain a large sample of CT scanners for an in-depth analysis of imaging variability 
to determine how retrospective radiomics studies should select patients and how prospective radiomics studies 
should design CT protocols. The large sample would allow for the conclusions to be applied generally to all CT 
scanners. Local protocols were used, as many studies use retrospective data and it is of interest whether protocol 
differences will cause large radiomics feature value differences, thus causing patient stratification to be dominated 
by scan protocol and not true patient radiomics feature values. Also, a controlled scan was used to see whether 
imaging differences could be minimized using a harmonized protocol across different vendors.

Methods
Materials.  We used an updated version of the Credence Cartridge Radiomics phantom originally described 
by Mackin et al.22 in 2015. This version of the phantom, shown in Fig. 1, is comprised of six round cartridges 
encased in high-density polystyrene buildup. The six cartridges were held within the buildup in an acrylic case 
with a notch designed to keep the cartridges in the same position. This case can be seen in Fig. 1 as the bright line 

Figure 1.  Axial views from a computed tomography scan of the radiomics phantom used. The cartridges are 
(a) 50% acrylonitrile butadiene styrene (ABS), 25% acrylic beads, and 25% polyvinyl chloride (PVC) pieces 
(percentages are by weight), (b) 50% ABS and 50% PVC pieces, (c) 50% ABS and 50% acrylic beads, (d) hemp 
seeds in polyurethane, (e) shredded rubber, and (f) dense cork. The high-density polystyrene buildup is seen 
outside the cartridges with dimensions of 28 cm × 21 cm × 22 cm. The cartridges had a diameter of 10.8 cm. 
Window width: 1600, window level: −300.
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around each cartridge before the buildup. The size of the buildup, 28 cm × 21 cm × 22 cm, is based on the mean 
physical dimensions of a European woman’s chest23. The six cartridges are each comprised of different materials: 
50% acrylonitrile butadiene styrene (ABS), 25% acrylic beads, and 25% polyvinyl chloride (PVC) pieces (per-
centages are by weight); 50% ABS and 50% PVC pieces; 50% ABS and 50% acrylic beads; hemp seeds encased in 
polyurethane; shredded rubber; and dense cork. These materials were chosen to produce a range of radiomics 
feature values similar to those of NSCLC tumors for the original materials22, the new materials followed the same 
analysis as the original materials. Additional details on the differences between this phantom and the original 
phantom are described in the Discussion.

CT Scans.  A controlled CT scan was acquired using the following parameters for each scanner: tube voltage, 
120 kV(p); tube current, 200 mA∙s; helical scan type; spiral pitch factor, 1.0; 50-cm display field of view; and image 
thickness, 3 mm (except for GE scanners, which used an image thickness of 2.5 mm). The acquisition parameters 
were designed to give about 13 mGy CTDIvol (average 16 mGy, standard deviation 4 mGy) in order to produce 
the same noise characteristics. A recent study by Mackin et al.24 showed that features were not affected by noise 
levels in the image, thus variations in CTDIvol should not impact the radiomics features. The convolution kernel 
was standard for GE; C for Philips; B31f, B31s for Siemens; and FC08 for Toshiba. These kernels were chosen to 
minimize the difference in radiomics feature values across vendors as described in Mackin et al.’s abstract25. Also, 
the local chest protocol and local head and neck protocol were used to acquire scans of the phantom. For the local 
protocols, no parameters were changed in order to estimate the variability in protocols across institutions and 
scanners. The parameters for each of the local protocol scans is supplied in the Supplemental Material.

Patient Scans.  A phantom alone cannot provide insight into the impact of feature variability within a patient 
study. Thus, we have included patient cohorts to determine the size of the imaging variability with respect to 
inter-patient variability, providing an estimate on the impact of the imaging variability for each feature.

For this study, we retrospectively reviewed the images and medical records of 20 patients with NSCLC and 
30 patients with head and neck squamous cell carcinoma (HNSCC) with a waiver of informed consent from the 
Institutional Review Board at the University of Texas MD Anderson Cancer Center. These two cohorts of patients 
were used to compare the imaging variability to inter-patient variability. Radiomics features have been shown to 
improve the patient outcome models for both of these patient types2,5,10,12,26.

The NSCLC cohort had 10 men and 10 women, mean age of 67 years (range, 52–78 years), mean weight of 
72.9 kg (range, 41.0–97.6 kg), and mean height of 170 cm (range, 154–182 cm). The CT scans were acquired on a 
GE Discovery CT scanner (GE Healthcare, Little Chalfont, UK) at 120 kVp, 300 mA, 0.5 s rotation time, 2.5-mm 
image thickness, 1.35 pitch, and 0.976 mm × 0.976 mm pixel size.

The HNSCC cohort had 25 men and 5 women, mean age of 64 years (range, 50–87 years), mean weight of 
80.5 kg (range, 43.9–114.9 kg), and mean height of 175 cm (range, 149–193 cm). The CT scans were acquired using 
a GE LightSpeed CT scanner at 120 kVp, 220 mA, 1.0 s rotation time, 1.25-mm image thickness, 1.375 pitch, and 
0.488 mm × 0.488 mm pixel size. For both patient cohorts, the tumors were contoured by a radiation oncologist.

Radiomics Feature Extraction.  The phantom was semi-automatically contoured using an in-house 
MATLAB (version 2016b, MathWorks, Natick, MA, USA) script. A cylindrical region of interest (ROI) was cre-
ated for each cartridge. Each ROI was 8.2 cm in diameter. The ROIs for the cartridge with 50% ABS and 50% 
acrylic beads and the cartridge with hemp seeds in polyurethane each had a height of 1.9 cm. All other ROIs 
each had a height of 2 cm. Mackin et al. showed that the size of the ROI did not impact conclusions of a phantom 
study24, therefore we maximized the acceptable region within each cartridge. The ROIs were automatically placed 
into IBEX, an open-source radiomics tool27,28, and then viewed to determine acceptability. Generated contours 
were scrutinized and edited as needed.

Forty-nine features were calculated using IBEX: 22 gray level co-occurrence matrix features29, 11 gray level 
run length matrix features30,31, 11 intensity histogram features, and five neighborhood gray tone difference matrix 
features32 (Table 1). Four different preprocessing techniques were used for each feature: (1) thresholding; (2) 
thresholding and 8-bit depth resampling; (3) thresholding and a Butterworth smoothing filter (order of 2, cut-off 
of 125); and (4) thresholding, 8-bit depth resampling, and Butterworth smoothing33. The thresholds for the 
NSCLC patient cohort were a lower threshold of −100 HU and a higher threshold of 200 HU. A lower threshold 
of −100 HU was used for the HNSCC patient cohort with no upper threshold. No thresholding was applied to 
the phantom images. The settings for each feature were the same as those listed by Fave et al. in the Supplemental 
Material3. For the local scans, the pixel size was resampled to 1 mm × 1 mm using trilinear interpolation as sug-
gested by the results from Mackin et al.21. For features that have been previously found to correlate with volume, 
the updated formulae were used as described by Fave et al.33.

Statistical Methods.  Feature Stability.  The features were tested for reproducibility by moving the ROIs on 
one controlled scan of the phantom. The ROIs were shifted 10 times within the acceptable region of the cartridges. 
The coefficient of variation was calculated for each feature. Features for which more than 50% of instances (with 
four preprocessing types and six cartridges, there were 24 total instances for each feature) had a coefficient of var-
iation above 10% were removed from further analysis. It was important to remove these features as features that 
are very sensitive to the positioning of the ROI may not properly represent the imaging variation and may only 
represent placement of the ROI on the different scans.

Resampling the z Dimension.  For the local protocol scans, the image thickness was not consistent. The impact 
of the image thickness on feature value was evaluated by computing the Pearson correlation for each ROI-feature 
combination. Additionally, the impact of resampling the image thickness was investigated by resampling the z 
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dimension from 1 mm to 7 mm in 1 mm increments. Features were acquired using all z dimension resampling 
values and without resampling the z dimension. The intra-class correlation coefficient (ICC) was computed for 
each feature using the eight resampling options to determine if resampling changed the feature values and thus 
reduced the correlation of feature values with image thickness. The ICC (2, 1) (two-way random effects, absolute 
agreement, single rater/measurement) and ICC (3, 1) (two-way random effects, consistency, single rater/meas-
urement) as described by Shrout and Fleiss34 were computed in R (version 3.4.3) using the psych package (version 
1.7.8)35. For these tests, features were calculated with thresholding preprocessing on the local chest protocol scans. 
The other preprocessing techniques and the head protocol scans were not used as this step was simply to deter-
mine the relationship between image thickness and feature values, and the additional preprocessing and protocol 
scans produced redundant data.

Imaging Variability.  Our goal was to determine how the manufacturer and scanner uncertainties contribute to 
the overall variability in the feature values. To determine these uncertainties, we first built a linear mixed-effects 
model, which estimates the contribution of the manufacturer, the additional scanner-wise variability within a 
given manufacturer, the cartridge material, and the residual to the variability in the measurements. The standard 
deviations of the distributions are used to provide estimates of the variability contributed from the manufacturer, 
scanner, cartridge material, and residual. The term scanner is used here to indicate an individual scanner (e.g., 
multiple of the same type of scanner from the same manufacturer are each considered distinct). There are many 
factors that could affect the images from a particular scanner, including the quality assurance (QA) technique/
periodicity, scanner maintenance, and scanner design. Thus, radiomics features calculated from images taken 
using CT scanners of the same manufacturer/model may be different. The term residual typically implies a small 
contribution. However, for this study the term is simply used to represent anything that is not included within the 
formula (i.e., anything that is unknown).

A linear mixed-effects model was created for each scan type (control, local chest, and local head and neck 
protocol):

µ α β ε= + + + +f g t( ) , (1)m i m i m i, ,

where f is the feature, µ is the mean, m is the cartridge material, i is the scanner, α is the material-wise contribu-
tion, β is the scanner-wise contribution, g(t) is the fixed effect of the impact of image thickness on feature value, 
and ε is the residual. βi is normally distributed with a mean of γv,i and a variance of σ σ σ= ×β β β

ˆ( )fm m m,
2

,
2 2 2 . γv,i is 

the vendor-wise contribution which is normally distributed with a mean of 0 and a variance of 
f̂( )m m m,

2
,
2 2 2

σ σ σ= ×γ γ γ . fm is the mean feature value for the cartridge material. εm,i is normally distributed with a 
mean of 0 and variance of σ σ σ= ×ε ε ε

ˆ( )fm m m,
2

,
2 2 2  The model computes a significance test before producing the 

Gray Level Co-occurrence Matrix Gray Level Run Length Matrix Intensity Histogram
Neighborhood Gray 
Tone Difference Matrix

Auto Correlation Gray Level Nonuniformity Energy Busyness

Cluster Prominence* High Gray Level Run Emphasis Entropy Coarseness

Cluster Shade* Long Run Emphasis Kurtosis Complexity

Cluster Tendency Long Run High Gray Level Emphasis Maximum Contrast

Contrast Long Run Low Gray Level Emphasis Mean Texture Strength

Correlation Low Gray Level Run Emphasis Median

Difference Entropy Run Length Nonuniformity Minimum

Dissimilarity Run Percentage Skewness*

Energy Short Run Emphasis Standard Deviation

Entropy Short Run High Gray Level Emphasis Uniformity

Homogeneity Short Run Low Gray Level Emphasis Variance

Homogeneity 2

Information Measure Correlation 1

Information Measure Correlation 2

Inverse Difference Moment Norm

Inverse Difference Norm

Inverse Variance

Max Probability

Sum Average

Sum Entropy

Sum Variance

Variance

Table 1.  Radiomics Features Analyzed. * indicates features that were subsequently not used due to sensitivity of 
region of interest placement within the phantom material.
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results. If the standard deviation due to one component is much smaller than the others, it is set to 0 and com-
bined into the residual. The linear mixed-effects models were computed in R (version 3.4.3) using the lme4 pack-
age (version 1.1–17).

Imaging variability was measured using the uncertainties from the linear mixed-effects models. Currently, 
most studies do not apply corrections for the manufacturer and scanner. The total imaging variability was calcu-
lated to estimate the impact of continuing to not apply corrections. It was calculated as follows:

σ

σ µ
=



IV
f/

/
,

(2)
total

t m m

p p

,

where σp is the standard deviation of the feature value for patients, µp is the mean feature value for patients, and 
σt,m is the total standard deviation from the model, given by

σ σ σ σ= + + .β γ ε (3)t m m m m, ,
2

,
2

,
2

This metric (equation 2) includes a comparison to the patients to gauge the impact of the imaging variability 
in a patient setting.

The residual imaging variability was calculated to estimate the imaging variability that would exist in cohorts 
that include CT images from different scanners even if corrections could be applied based on the manufacturer 
and individual scanner, as follows:

σ

σ µ
= .ε



IV
f/

/ (4)
residual

m m

p p

,

We repeated this modeling process for the three scan types (control, local chest, and local head and neck 
protocols) and compared the results. To determine if the controlled scan significantly reduced the variability, we 
performed one-sided pairwise t-tests comparing σβ, σγ, and σε between the controlled protocol and both local 
protocols.

Quality Assurance Using a Radiomics Phantom.  The feasibility of creating a credentialing phantom for radiomics 
studies, similar to the credentialing of institutions for National Institutes of Health radiation therapy studies, was 
investigated. Ideally, the credentialing phantom would be small for ease of transport and use. Therefore, the ability 
of each cartridge was tested for its use in QA checks to determine which CT scanners do not fall within the cre-
dentialed standard population of scanners. The spread of feature values from different scanners should be small 
relative to the inter-patient spread, therefore, the patient standard deviations were used to determine if scanners 
fell close enough to the population scanner value or not. The controlled scans were used for this analysis. For each 
feature, the patient standard deviation was scaled to account for differences in means between the patient and 
phantom populations.

σ
σ

µ
= × f̂

(5)
scaled

p

p

For each scanner, the number of features that fell outside 1/3 of the scaled patient standard deviation from 
the mean feature value was tallied. The idea of the bounds was to determine if criteria could be established such 
that a certain number of features would fall within the bounds in order for the given scanner to pass the QA test. 
Therefore, the bounds were set as follows:

σ= −ˆLower bound f 1
3 (6)scaled

σ= +ˆUpper bound f 1
3 (7)scaled

Results
Scanners.  The phantom was scanned on 100 scanners: 51 GE scanners (GE Healthcare), 20 Philips scan-
ners (Philips Healthcare, Eindhoven, the Netherlands), 17 Siemens scanners (Siemens Healthineers, Erlangen, 
Germany), 11 Toshiba scanners (Canon Medical Systems USA, Tustin, CA, USA), and one Philips and Neusoft 
Medical System scanner (Shenyang, China). Ninety-four scanners had a controlled protocol scan that could be 
used: 48 GE, 18 Philips, 17 Siemens, and 11 Toshiba scanners. However, the kernel used for the Toshiba scans 
switched from FC18 (six scanners) to FC08 (five scanners) halfway through owing to a study that found the FC08 
kernel to match the GE standard kernel best25. To determine whether both Toshiba kernels could be used in the 
analysis, k-means clustering was performed. The scanners did not cluster by kernel type. While the best match 
should always be used to minimize discrepancies, in this study the kernel differences among the Toshiba scanners 
was not a driving force in the variability and therefore, kernel did not matter for Toshiba and all Toshiba scans 
were included in the analysis. Ninety-three scanners had a local chest protocol scan that could be used: 47 GE, 19 
Philips, 17 Siemens, and 10 Toshiba scanners. Eighty-eight scanners had a local head protocol scan that could be 
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used: 46 GE, 18 Philips, 14 Siemens, and 10 Toshiba scanners. The various reasons that scans could not be used 
were as follows: the field of view did not encompass all the cartridges, the scan extent did not cover the length 
of the phantom, and the scan was acquired with variable image thickness. Head and neck protocols could be 
acquired only on CT scanners used for radiation therapy purposes; on diagnostic scanners, a head scan, typically 
brain, was acquired (both head and neck and head protocols are referred to as “head protocols” hereafter).

We were able to ascertain that at least 96% of scanners followed AAPM or ACR recommendations for QA. 
Additionally, at least 49% of scanners were ACR accredited, 20% of scanners were in the radiation therapy depart-
ment of scanners at ACR accredited facilities, and 6% of scanners were currently undergoing ACR accreditation.

The local chest protocol scans had image thicknesses ranging from 1 to 5 mm. The local head protocol scans 
had image thicknesses ranging from 0.5 to 5 mm. Histograms of the distributions are shown in Fig. 2.

Feature Stability.  Three features had a coefficient of variation greater than 10% in more than 50% of 
instances (with 24 total instances for each feature): the features of cluster prominence, cluster shade, and skew-
ness. These features were not included in subsequent analysis. The coefficient of variation exceeded 10% for auto 
correlation and sum variance in 42% of instances and for long run low gray level emphasis, low gray level run 
emphasis, short run low gray level emphasis, and the minimum in 46% of instances. All other features had a 
coefficient of variation greater than 10% in less than 25% of instances; the majority of features had a coefficient of 
variation greater than 10% in 0% of instances.

Resampling the z Dimension.  Figure 3 shows the absolute value of the Pearson correlation coefficient of 
each ROI for the correlation of each feature with the image thickness. The mean absolute value of the Pearson 
correlation coefficient was 0.42. The correlation values had similar ranges for all the feature categories except for 
the gray level run length matrix category, which had lower correlation values. The mean absolute value of the 
Pearson correlation coefficient increased to 0.46 when gray level run length matrix features were not included. A 
second version of Fig. 3 without the ABS cartridges is repoduced in the Supplemental Material. For this analysis 
the mean absolute value of the Pearson correlation coefficient was 0.39. Without the gray level run length matrix 
features, the mean absolute value of the Pearson correlation coefficient was 0.41.

To determine the level of reliability based on the ICC values, the guidelines from Koo and Li were followed36. 
ICC values less than 0.5 signify poor reliability, those between 0.5 and 0.75 signify moderate reliability, those 
between 0.75 and 0.9 signify good reliability, and those greater than 0.9 signify excellent reliability. When com-
paring feature values across different resampling techniques using ICC (2, 1) (two-way random effects, absolute 
agreement, single rater/measurement), we found that 35 features had excellent reliability, seven features had good 
reliability (entropy, max probability, low gray level run emphasis, short run low gray level run emphasis, busyness, 
complexity, and contrast), and four features had moderate reliability (information measure correlation 1, infor-
mation measure correlation 2, long run low gray level emphasis, and texture strength). When ICC (3, 1) (two-way 

Figure 2.  Histograms of image thicknesses across the scans taken using (a) the local chest protocol and (b) the 
local head protocol.
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random effects, consistency, single rater/measurement) was used, we found that 39 features had excellent relia-
bility, five features had good reliability (information measure correlation 2, max probability, low gray level run 
emphasis, short run low gray level run emphasis, and texture strength), one feature had moderate reliability 
(long run low gray level emphasis). Thus, feature values did not change with resampling; therefore, for the linear 
mixed-effects analysis, no resampling in the z dimension was done for the local chest and local head protocols. 
Additionally, these results paired with the Pearson correlation results implied that there was a relationship with 
image thickness that needed to be included in the modeling.

Imaging Variability.  The variability due to the material was 0 in every model. The relative proportions of 
σβ (scanner-wise variability), σγ (manufacturer-wise variability), and σε (residual variability) were calculated for 
each feature. Plots of the proportion of each of these variabilities using thresholding and bit depth rescaling are 
shown in Fig. 4 for the controlled protocol and local head protocol. All other plots (other preprocessing and 
chest protocol) are in Supplemental Figs 2–11. Figure 4 shows that the contribution from σγ is reduced when the 
controlled protocol is used. The mean total variability for the controlled protocol was 0.43 compared with that of 
the local chest protocol and was 0.48 compared with that of the local head protocol. The average proportion of 
total variability was 0.29, 0.27, and 0.43 for the manufacturer, scanner, and residual respectively based on the head 
protocol scans. The average proportion of total variability was 0.30, 0.27, and 0.44 for the manufacturer, scanner, 
and residual respectively based on the chest protocol scans. The average proportion of total variability was 0.20, 
0.25, and 0.55 for the manufacturer, scanner, and residual respectively based on the controlled protocol scans. The 
details of this are shown in Fig. 4.

The residual contribution was not always small; it was often the largest component. This is particularly evi-
dent for the controlled protocol where the residual should have a large relative contribution since factors that 
were contributing to the variability have been accounted for in the design of the protocol. The manufacturer 

Figure 3.  Absolute value of the Pearson correlation rho for the correlation between feature value and image 
thickness for each region of interest (ROI). Each ROI is a different shape. Each category of feature is a different 
color. The correlation varies between and within features depending on the ROI. COM: gray level co-occurrence 
matrix, GLCM: gray level co-occurrence (used when there are features with the same name in different 
categories to differentiate them), GLRLM: gray level run length matrix, NGTDM: neighborhood gray tone 
difference matrix, beads: acrylic beads, worms: polyvinyl chloride pieces.
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contribution was not always larger than the scanner contribution to the total variability, as can be seen in Fig. 4, 
thus demonstrating that the variability among scanners of the same manufacturer can vary more than different 
manufacturers.

If it was possible to correct for the manufacturer and individual scanner, then, when using a controlled proto-
col, only the residual variability would remain. In that situation, the mean controlled residual variability would be 
0.36 compared with the chest protocol total variability and 0.40 compared with the head protocol total variability. 
This is the theoretical best possible improvement that can be achieved until we have an in-depth understanding 
of the components hidden in the residual. In comparison to the controlled protocol, this is an additional 7–8% 
reduction in variability ( × − .( )( ) ( )mean mean100 total variability controlled protocol

total variability local protocol
residual variability controlled protocol

total variability local protocol
The linear mixed-effects models produced a spectrum of variabilities, from high to low. For ease of summary, 

a cutoff has been established. Spreadsheets with the data are in the Supplemental Material to allow for different 
cutoffs to be used in future studies. For IVtotal and IVresidual (equations 2 and 4), a cutoff of 1/3 was used to create a 
binary of significance (i.e. significant or not). This was done for each feature to indicate that the imaging variation 
was negligible relative to inter-patient variability or imaging variability was significant relative to inter-patient 
variability. The total numbers of features in each category that had IVtotal or IVresidual values greater than 1/3 are 
displayed in Table 2.

Two gray level run length matrix features and one intensity feature were always above the cutoff: long run low 
gray level emphasis, low gray level run emphasis, and the minimum. Short run low gray level emphasis was also 
often above the cutoff. While only features that passed the feature stability test were included in the analysis, we 
were interested in examining if these features’ poor performance in the IVtotal and IVresidual tests could be attributed 
to other causes. Therefore, we re-examined the feature stability and found that these features were not as stable as 
many of the other features that also passed the test. There was no clear way to determine the cutoff for the feature 
stability test, but this indicates that the poor performance in the IVtotal and IVresidual tests could be due to sensitivity 
of these features to the ROI placement.

Overall, there was very little to no improvement in the number of features above the cutoff when IVresidual was 
computed compared with IVtotal. There were fewer features above the cutoff for the controlled protocol compared 
with the local protocols except when thresholding, smoothing, and bit depth rescaling were used.

Twenty of the 24 pairwise t-tests of σβ, σγ, and σε between the controlled protocol and local chest protocol and 
between the controlled protocol and local head protocol were significant (p < 0.05). All comparisons between 
the controlled and local head protocol were not significant when thresholding and smoothing were applied as 
the preprocessing. Additionally, σε was not significantly different between the controlled and local head pro-
tocol when thresholding, smoothing, and bit depth rescaling were applied as the preprocessing. Table 1 in the 
Supplemental Material shows the p-values for all comparisons.

Since there was a disproportionately high number of GE scanners, the linear mixed-effects models were also 
run with only the GE scanners. A pairwise t-test was run on σβ and σε between the models with all of the scan-
ners and the models with only the GE scanners. There was a significant difference (p < 0.05) for 11 of the 24 

Figure 4.  Bar plots of the relative contributions of the scanner-wise variability (green), manufacturer-wise 
variability (blue), and residual variability (red) for each feature using thresholding and bit depth rescaling 
calculated on (a) the local head protocol and (b) the controlled protocol. The contribution of the manufacturer 
was much larger for many features in the local head protocol than in the controlled protocol. The total 
variability for the controlled protocol compared with that of the head protocol was 0.48.
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comparisons between variabilities calculated from linear mixed-effects models with all scanners and models with 
GE scanners only. Table 2 in the Supplemental Material shows the p-values for all comparisons.

Quality Assurance Using a Radiomics Phantom.  The three cartridges with ABS had noticeable changes 
over the course of the study. The mean values of the cartridges over time are shown in Supplemental Figure 12. 
The three cartridges with ABS displayed a downward trend in mean value over time, while the other cartridges 
did not show any trend with time. Therefore, the three ABS cartridges were excluded from the QA analysis with 
a radiomics phantom.

The gray level run length matrix features had a disproportionately high number of scanners outside the estab-
lished bounds; therefore, these features were not included in the QA analysis. Thus, 35 features with four preproc-
essing types were included in the QA test. Histograms of the number of scanners with the percentage of features 
outside the bounds set using the scaled patient standard deviation showed that many scanners had more than 
20% of features outside the bounds, as shown in Supplemental Figure 13 for each of the rubber, dense cork, and 
hemp seed cartridges using the HNSCC and NSCLC patient cohorts.

Not all features may be useful, as not all features have been correlated with patient outcomes. Therefore, a 
subset of features with associated preprocessing type were selected on the basis of studies by Fave et al. and Fried 
et al.2,3. The features and the preprocessing types that were correlated with patient survival on univariate analysis 
were included, which resulted in 26 features. Like the gray level run length matrix features, the features of auto 
correlation, correlation, sum average, sum variance, and the median had a disproportionately high number of 
scanners outside the bounds. Excluding the features that were shown to not be robust and excluding the gray level 
run length matrix features reduced the feature set to 16 features with their associated preprocessing types. These 
16 features are listed in the Supplemental Table 3. Figure 5 shows histograms for percentages of features outside 
the bounds (similar to Supplemental Figure 13, but with the reduced set of features). More scanners had low 
percentage of features outside 1/3 of the scaled patient standard deviation in the NSCLC patient cohort than in 
the HNSCC patient cohort; this is discussed further in the Discussion section. One scanner consistently had the 
highest percentage of features outside the bounds. However, aside from this scanner, the scanners with the highest 
percentages of features outside the bounds were not consistent across the different materials.

Protocol
Feature  
Group

Thresholding Thresholding and Smoothing Thresholding and Bit Depth Rescaling
Thresholding, Smoothing, and Bit Depth 
Rescaling

Total Variability Residual Variability Total Variability Residual Variability Total Variability Residual Variability Total Variability Residual Variability

NSCLC 
Patients

HNSCC 
Patients

NSCLC 
Patients

HNSCC 
Patients

NSCLC 
Patients

HNSCC 
Patients

NSCLC 
Patients

HNSCC 
Patients

NSCLC 
Patients

HNSCC 
Patients

NSCLC 
Patients

HNSCC 
Patients

NSCLC 
Patients

HNSCC 
Patients

NSCLC 
Patients

HNSCC 
Patients

Controlled  
Protocol

GLCM  
(N = 20) 1 1 1 1 0 2 0 2 0 0 0 0 1 3 1 3

GLRLM  
(N = 11) 3 3 3 3 2 2 2 2 3 3 3 3 3 3 3 3

Intensity  
(N = 10) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NGTDM  
(N = 5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Local Chest  
Protocol

GLCM  
(N = 20) 3 4 2 3 3 3 2 3 2 4 2 2 2 2 2 2

GLRLM  
(N = 11) 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2

Intensity  
(N = 10) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NGTDM  
(N = 5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Local Head  
Protocol

GLCM  
(N = 20) 2 4 1 3 2 3 2 3 1 4 0 2 1 2 1 2

GLRLM  
(N = 11) 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1

Intensity  
(N = 10) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NGTDM  
(N = 5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.  Number of features for each protocol and preprocessing type that have imaging variability compared 
to inter-patient variability from linear mixed-effects models above the cutoff. GLCM: gray level co-occurrence 
matrix, GLRLM: gray level run length matrix, NGTDM: neighborhood gray tone difference matrix, NSCLC: 
non–small cell lung cancer, HNSCC: head and neck squamous cell carcinoma. Total variability: =

σ

σ µ



IVtotal
f/

/
t m m

p p

, , 

residual variability: =
σ

σ µ
ε



IVresidual
f/

/
m m

p p

, , with a cutoff of 1/3.
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Discussion
This study showed that imaging variability exists but is not large compared with inter-patient variability for most 
features. A controlled scan can be helpful for reducing these uncertainties in prospective studies, as there was 
statistically significantly less variability in the controlled protocol scans than in the local protocol scans. The con-
trolled protocol reduced the total variability by over 50% compared with both local chest and local head protocol 
scans. It is theoretically possible to correct for the manufacturer and the individual scanner. One possible way to 
do this is to use a phantom on each scanner to correct for all the factors that could impact the output of a scanner. 
If this were done perfectly, the imaging variability could be reduced by an additional 7–8% compared with the 
reduction due to implementing a controlled protocol.

The controlled protocol implemented in this study specified kernels for each manufacturer. Solomon et al. 
and Winslow et al. compared kernels on Siemens and GE37,38. Both found that the GE standard kernel was the 
closest match to the B31f or B31s kernel on Siemens, which agrees with our controlled protocol. Additionally, 
Shafiq-ul-Hassan et al. recently demonstrated the feasibility of correcting for the different kernels, achieving 
improvements in feature robustness by 30–78%39. Our goal in this study was to harmonize the kernels across 
manufacturers such that the kernel did not affect the imaging variability. However, including this new correction 
technique may reduce imaging variability further.

Gray level run length matrix features had high feature variability when ROIs were moved. Additionally, these 
features had the highest imaging variability. We believe that these results are due to the current construction of 
these features. Examining low gray level run emphasis demonstrates this issue. Low gray level run emphasis is 
defined as

∑= =LGRE
n

p i

i
1 ( )

(8)r
i
M g

1 2

where nr is the total number of runs, M is the total number of gray levels, i is the gray level, and

Figure 5.  The percentages of features outside 1/3 of the scaled patient standard deviation for rubber, dense 
cork, and hemp seeds in the head and neck squamous cell carcinoma (HNSCC) patient cohort and the non-
small cell lung cancer (NSCLC) patient cohort using the features correlated with patient survival in previous 
studies without non-robust features. More scanners had fewer features outside 1/3 of the patient standard 
deviation in the NSCLC patient cohort than the HNSCC patient cohort.
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∑= =p i p i j( ) ( , ) (9)g j
N

1

is the sum distribution of the number of runs with gray level i, run length j, maximum run length N, and 
run-length matrix p(i, j). A slight shift in the distribution of gray levels within the ROI can significantly impact 
the feature value as the range of the summations remain the same but p(i, j) changes, thus impacting the feature 
value. Thus we recommend that these features not be used until these issues can be resolved. This problem may be 
why gray level run length matrix features have not come out in the final models in many studies.

Many of the features showed a correlation between feature value and image thickness that must be considered. 
Also, the slope of the fixed-effects term for the image thickness was generally the same for a given feature across 
all models, even in the controlled protocol scans where there were only two image thickness values, indicating 
the strength of this relationship. This agrees with several studies that have demonstrated the relationship between 
radiomics features and image thickness16–18,40. However, the high ICC values indicate that the feature value cor-
relation with image thickness cannot be fixed by resampling the image and thus cannot be fixed for retrospective 
scans for this particular phantom study. When the range of resampled image thickness values was decreased (i.e. 
not including thicknesses above 5 mm), the ICC values remained high. Noise characteristics were not included in 
this part of the study which can affect feature values as thicker slices can introduce less noise than thinner slices. 
Even given the limitations of this study, these results indicate that this effect cannot be compensated for after 
reconstruction with resampling for this phantom study. This is in contrast to the studies by Shafiq-ul-Hassan et al. 
and Larue et al. who found that resampling to an arbitrarily chosen standard voxel size improved feature repro-
ducibility16,20. Therefore, in this study there is a need to control the image thickness as resampling to a variety of 
image thickness values did not change the feature value, and thus, we recommend controlling image thickness in 
prospective studies to eliminate this feature value dependence. If the image thickness cannot be completely con-
trolled, the range of image thicknesses used within a study cohort should be limited to reduce this effect.

The importance of a controlled protocol for prospective studies was also demonstrated through the linear 
mixed-effects models. There was significantly less variability in the controlled protocol scans compared with 
the local protocol scans. Furthermore, the total variability (Table 2) does not include the contribution from the 
fixed-effect term for image thickness, which would increase imaging variability. Reducing the uncertainty is a 
crucial step in moving forward with radiomics studies, as reduced uncertainty allows more levels of stratification 
in prognostic models and enables the movement towards individual prognostic models instead of sorting patients 
into groups. The manufacturer-wise variation was reduced when a controlled scan was implemented because 
imaging parameters were harmonized. Many local protocols use the standard kernel, but this kernel is not the best 
match across different manufacturers. The controlled scan also demonstrated more benefit than post-processing 
correction for the manufacturer and individual scanner. Radiomics has traditionally been conducted on standard 
of care imaging, but the large improvements of a controlled protocol demonstrated in this study show the poten-
tial importance of such a controlled scan. Thus, efforts should be made to implement a controlled protocol for 
prospective radiomics studies, and only patients whose imaging parameters match the controlled protocol should 
be selected in retrospective studies. Studies by Mackin et al.24 and Fave et al.33 have shown that tube current and 
tube voltage do not significantly impact the majority of radiomics features. Therefore, the reconstruction settings 
dominate the imaging variability and most of the benefit of the controlled scan can be achieved using an addi-
tional radiomics reconstruction resulting in no extra dose to the patient.

This study uses the second version of the radiomics phantom. The lessons learned from the first phantom, 
used in several studies16,22, led to this new, improved phantom. The buildup was one considerable difference 
between the phantoms. Buildup was added to make the phantom more realistic. Also, only the rubber and cork 
cartridges were kept from the first phantom, as features measured from these cartridges more closely matched 
NSCLC patient features than did features from other cartridges in the first phantom. In this phantom, we added 
hemp seed and ABS cartridges, and we have learned that for future phantoms, ABS cartridges should not be used, 
as they change over time. The cartridges that were added matched features calculated from patients better and 
produced a more realistic range of textures. While three of the cartridges changed over time and thus are not opti-
mal options for future work, removing these from the linear mixed-effects models did not change conclusions.

Almost all of the scanners in this study followed established QA protocols. However, in spite of this there were 
still large imaging variabilities. Therefore, there may be a need for radiomics QA and we demonstrated the poten-
tial for a radiomics QA process. The different materials identified different scanners with large percentage of fea-
tures outside the established bounds, which indicates that a radiomics QA phantom may not be feasible with only 
one material. The choice of 1/3 in establishing the bounds was arbitrary. The cutoff for the percentage of features 
failed that would be acceptable to pass the QA process depends on the bounds chosen. When the features found 
to be correlated with patient survival by Fave et al. and Fried et al.2,3 were used, the histograms of the number of 
scanners with features outside the bounds decreased, likely because those features are more robust. While studies 
have found that a radiomics signature developed from NSCLC patients can be used to predict survival in head 
and neck cancer patients11,41, there are distinct feature clusters for the lung and the head and neck cancer patient 
cohorts5. Our patient sets also showed different feature distributions for lung and head and neck patient cohorts, 
which contributed to the difference in QA results. Therefore, for QA purposes, a distinct radiomics signature 
should be selected for each cancer site to be credentialed.

There are several limitations to this study. First, the phantom was not imaged by a single user; therefore, there 
may be some added variability due to different users. Secondly, the phantom materials are not the same as human 
tissue. Dense cork and rubber have been previously shown to have radiomics feature spectrums similar to those of 
NSCLC patients22, and these cartridges have effective atomic numbers close to those of human tissues42–44. Using 
patients for these studies is not feasible; therefore, these materials are a close match to human tissues, and results 
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derived from them can be applied to patient CT scans. Additionally, the same phantom was used for chest and 
head scans. The dimensions of the phantom were designed for chest imaging. Visual inspection of the images did 
not yield any artifacts specific to the head protocols. While not optimized for head imaging, this phantom still 
provides valuable information on the radiomics feature variability of these protocols.

Also, there was not an even distribution of scanners by manufacturer. There was a disproportionately high 
number of GE CT scanners, and it is unknown whether our sample of scanners accurately represents the distri-
bution of scanners in clinical use, as these data are not available. When GE scanners alone were run through the 
linear mixed-effects model, some variabilities were statistically significantly different between the GE scanners 
alone and between all scanners. This difference may point to there being scanner-wise variability differences 
between manufacturers which was not accounted. This was due to the limited number of scanners outside GE 
which is a limitation of this study. The sample of scanners selected were acquired in Dallas, San Antonio, Houston, 
Galveston, Baton Rouge, and New Orleans thru proximity and personal contacts. As this sample only consti-
tutes scanners from Texas and Louisiana, the manufacturer distribution may look different in other parts of the 
USA or in other countries. Additionally, the patient scans used were from selected scanners using well-specified 
imaging parameters. This may not represent the true inter-patient variation that may exist in a large radiomics 
study. However, as these patient scans were well controlled, this provides a conservative estimate of the imaging 
variability effect within patient cohorts. The results from IVtotal and IVresidual are promising given that this may be 
a conservative estimate and within a larger patient cohort even fewer features may be adversely affected due to 
larger inter-patient variation.

Conclusion
A controlled protocol substantially reduces imaging variability compared with local protocols, as the controlled 
protocol can reduce the total variability by more than 50%. Thus, controlled protocols should be used for radiom-
ics studies. Most of this benefit can be achieved by an extra radiomics reconstruction resulting in no additional 
dose to the patient. Correcting for the manufacturer and individual scanner can also yield an additional benefit.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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