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Semiconductor pn junctions, integrated in optoelectronic devices require high quality crystals, made

by expensive, technically difficult processes. Bulk heterojunction (BHJ) structures offer practical
alternatives to circumvent the cost, flexibility and scale-up challenges of crystalline planar pn junctions.
Fabrication methods for the current organic or inorganic BHJ structures invariably create interface
mismatch and low doping issues. To overcome such issues, we devised an innovative approach, founded
on novel inorganic material system that ensued from single-step electrodeposited copper-indium-
selenide compounds. Surface analytical microscopies and spectroscopies reveal unusual phenomena,
electro-optical properties and quantum effects. They support the formation of highly-ordered, sharp,
abrupt 3-dimensional nanoscale pn BHJs that facilitate efficient charge carrier separation and transport,
and essentially perform the same functions as crystalline planar pn junctions. This approach offers a low-
cost processing platform to create nanocrystalline films, with the attributes necessary for efficient BHJ
operation. It allows roll-to-roll processing of flexible devices in simple thin-film form factor.

Semiconductor pn junctions constitute an integral part of most optoelectronic devices, including photovoltaic
© (PV) solar cells and light emitting diodes (LEDs). Inorganic semiconductors offer superior carrier mobilities,
. light absorption/emission, and photo/thermal stability relative to organics. Conventional planar pn junction
. semiconductor devices require high quality, large mono or polycrystals. Their growth by expensive and techni-
: cally complicated processes is generally incompatible with large-area processing for flexible PV and LED devices.
- Newer device structures, using bulk heterojunctions (BH]J) offer practical alternatives to circumvent the cost,
- flexibility and scale-up challenges of crystalline planar pn junctions. Current fabrication methods for organic,
: inorganic or hybrid BHJ structures use two-step process: (i) separate synthesis two types of materials followed
: by (ii) physical mixing, layering or dispersing nanocrystals in an organic matrix'~'!. Such processing invariably
- leads to incompatible intra-device interfaces, mismatched shapes and orientations; voids and insulation due to
. the ligands™. Organic BH]J solar cells are limited by extremely low free carrier concentrations, low mobilities and
. short lifetime, although ~10% efficiency has been reported*~”. Inorganic BHJs use colloidal nanocrystals that are

difficult to dope and thus, also constrained by extremely low free carrier concentrations®!2. This work introduces

unique nanocrystalline material systems, and discloses a generally accessible, very low-cost method to create high
quality, truly nanoscale pn junctions with all the necessary properties for efficient BH]J operation.

The new device and process concepts draw upon the recent R&D advancements on wide bandgap (E,)
copper-indium-selenide (CISe) films of ordered defect chalcopyrite (ODC) compounds'*~'°. Very low AH creates
self-stabilized CISe-ODC materials'®. We exploited this thermodynamic advantage to devise a single-step electro-

. deposition (SSE) method to synthesize these materials. SSE allows controlling the film composition to produce
: homogeneous CISe ODC stoichiometries and is therefore, amenable for large area production'>!”.

Besides processing advantages, the thermodynamically driven SSE process naturally creates high quality

. nanocrystalline CISe films with surprising nano pn junction attributes. SSE made nano-grained films exhibit

. highly desirable structural properties and mixed conductivity on a flexible metal foil. A brief air-anneal improves

crystallinity, stabilizes the intrinsic defect distribution in the film and thus, enhances its photoresponse. The SSE/

anneal steps can be attuned to produce specific overall film composition, comprising two types of nanocrystalline
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Figure 1. SSE-made CISe films showing (a) SEM, (b) Surface AFM, (c) Peak Force KPFM under 5V AC bias,
lift height: 100 nm, scan size: 1 pm, and (d) XRD after successive rapid thermal annealing.

grains: p-CISe and n-CISe. Both CISe phases can absorb photons and generate free electron-hole pairs with
high carrier density, mobility and long diffusion length. Although not appropriate for planar bilayer pn junction
devices, this mixed-conductivity CISe film offers strong potential to function efficiently in a BHJ device config-
uration of: n-cathode/pn-CISe/p-anode. This paper highlights some salient features of SSE-made CISe films as
revealed by a combination of surface analytical microscopies and spectral characterization tools.

Results and Discussion

The SSE/anneal combination creates smooth, shiny films with excellent topography, adhesion, and uniformity,
Fig. 1: (a) scanning electron micrograph (SEM), (b) atomic force microscopy (AFM) and (c) peak force Kelvin
probe frequency modulation (KPFM) adhesion force measurement. The naturally formed CISe nanocrystalline
grains grow into each other; they are interlinked and space-filling, Fig. 1b. In fact, the excellent adhesion con-
trast at the grain boundaries indicates strong binding force (~8 nN) between the grains, which leads to a tightly
packed, compact CISe film, Fig. 1c. Grain sizes can be easily controlled in the 4-35nm range with rapid thermal
processing (RTP) at relatively low temperatures, Fig. 1d.

The Mott-Schottky plots of bias (V) vs. capacitance (C) and 1/C? were obtained with electrolyte impedance
spectroscopy, Fig. 2a. They indicate high capacitance, flatband potential of —0.2'V (vs. Ag/AgCl) and doping den-
sity (Np) > 10%/cm? in the measured range. Low trapping defect density was inferred from admittance analysis
of the data. It showed minimal frequency dependence of defects even when measured at 300°K. The electronic
properties are similar to those for evaporated Cu(In,Ga)Se (CIGS) with higher carrier densities, lower trapping
defect densities, shallower gap states and better cell performance relative to the selenized CIGS(S)'®. The results
imply that the intrinsic defects in the nano-CISe film are shallow and evenly distributed within the nano-grains
and that most of these grains are uniformly and intrinsically doped (10/cm? = one doping site per nm?); this can
avoid degeneracy as well as contribute free carriers. The free carriers can reduce recombination, increase current
and thus, enhance performance.

AFM topology and tunnelling current mapping of a CISe film provides direct evidence for the formation of
adjacent n-CISe and p-CISe grains. The AFM topology illustrates the height variation of the nanocrystals, Fig. 2b.
The tunnelling current mapping was obtained on the same area under negative DC bias of —1 V with the laser
off (bottom) and laser on (top), Fig. 2c. Much larger current is seen under negative bias for the n-type grains. The
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Figure 2. (a) Mott-Schottky plots of V vs. C and 1/C?, for CISe/SO,*~ junction (b) AFM topology, (c) dark lift
tunneling current conductivity mapping under negative bias with SCM-PIT probe, DC bias: 1V in main scan,
—1 V in dark lift scan; laser on (top) and laser off (bottom section).

Figure 3. EBIC of steel/CISe/ITO device at 10kV, showing (a) secondary electron topography and current
mapping with the amplifier (b) connected to p side and (c) connected to 7 side.

surface electronic microstructure in Fig. 2c distinguishes the two types of grains distributed in the film. The high
current (light area) arises from n-CISe grains, the low current (dark area) arises from p-CISe grains and the bound-
aries between light and dark areas evidently correspond to pn junctions. The CISe film is most likely completely
depleted because the minority carrier diffusion length of CISe would be larger than the grain size, i.e. all the minor-
ity carriers would be swept across the nano pn junctions. As a result, the currents going through the p-grains come
from hole-conduction only; this can be orders of magnitude slower than electron-conduction, because the heavier
holes move slower, Fig. 2c. Comparison of the topology and tunnelling current micrographs further shows that
the really prominent, bright agglomerates of nanograins seen in the topography in Fig. 2b correspond to the dark,
low current spots in Fig. 2c, possibly because these agglomerates comprise depleted pn junctions with neutralized
electrical charges. The opposite but equivalent conditions prevail for p-type grains under positive DC bias of 1V,
where the boundaries between light and dark areas also correspond to nano pn junctions in the film and these nano
junctions are similarly depleted. In both cases, because there are few or no minority carriers to recombine in the
p-grain or n-grain, recombination loss would be minimized for devices, such as solar cells.

Electron beam induced current (EBIC) mapping provides clear evidence for the formation of pn BHJ nanos-
tructure in the CISe film. The secondary electron topography in Fig. 3a shows distinct spatial resolution of grains
similar to the AFM topology in Fig. 2b. The bright EBIC contrast in Fig. 3b indicates the presence of depletion
regions within the nano-scale pn junctions. It clearly demonstrates a 3-dimensional network of nano pn junctions
in the CISe film. The EBIC signal is strongest in the spaces between the large grains, which most likely comprise
agglomerates of smaller grains with the same type of conductivity. The opposite EBIC contrast is observed when
the current is measured from the other side of the junction and the polarity of the EBIC amplifier is switched,
Fig. 3¢, further authenticating the data. It verifies that the EBIC actually images the pn junctions and that the
signal response is not related to topology.

The very sharp contrast in both EBIC and AFM data indicates that the interfaces between the p-CISe and
n-ClISe phases are abrupt and the pn junctions are of very high quality. Such nano pn homojunctions create an
electrical potential gradient, VU, at the interface between the grains. The short distance to the nano pn interface
enables fast separation of electron and hole carriers. The continuous generation of separated electrons and holes
contributes to the high carrier density; it creates and maintains a chemical potential gradient, Vi, which drives
the transport of electrons and holes separately along the p-CISe and n-CISe phases. Note that standard bilayer
planar pn junctions mostly utilize the VU effectively, while exitonic BHJ devices mostly utilize the V', Unlike
either of such device configurations, the CISe BHJ has the potential to effectively utilize both of the fundamental
driving forces, i.e. VU ~ V pu.
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Figure 4. Spectral response for CISe/SO5>~ junction: (a) EQE spectral output and (photocurrent)® vs
wavelength (inset) at +0.5V, showing 3 x-axis intercepts; (b) EER spectrum (open-circles), partial fit lines
(colored dashed lines) for different parts of the spectrum and the resultant fit line (dark blue-solid line) provide
bandgap & I values, shown in Table 1; (c) Band diagram, illustrating corresponding EER transitions: (I) at
1.04eV from [y — T'ycp within p-CISe; (IT) from I'ycp — I'v,,cps (IIT) at 1.26 €V from ',y — I',cp within
n-CISe; (IV) from I, o — I'v,cp in p-CISe/n-CISe BHJ device.

Bandgap (eV) T

Theory EQE | EER meV | CISe compound
i 1.26 1.26 1.26 42 Culn;Ses
ii 1.21% 1.16 1.14 62 CISe complex
iii 1.04 1.06 1.06 59 CulnSe,

Table 1. Bandgap & I values from EQE and EER analysis of CISe film. *Bandgap derived for Culn,Se; 5'°.

Figure 4a shows external quantum efficiency (EQE) spectrum for the CISe sample of Fig. 2a in a photoelectro-
chemical (PEC) cell containing 0.1 M Na,SO; (pH 3) electrolyte. Two sharp onsets clearly indicate the presence of
more than one compound. The onset values of 980 nm and 1160 nm correspond to the bandgaps of CulnSe, and
Culn;Ses, Table 1. Furthermore, these two compounds appear to couple and form an energetically stable complex
as indicated by a third intercept of the x-axis at 1.16 eV, shown in the spectrum analysis (inset) and in Table 1.

Figure 4b shows electrolyte electroreflectance (EER) spectrum for the same CISe sample obtained in a PEC
cell using 200 mV modulation at 13.75 Hz, superimposed on 0V DC bias potential. The EER spectrum was very
reproducible. It required three data sets for the fit?*. The EER spectrum shows band edge of the Culn;Se; com-
pound at 1.26 eV, which is an exciton-related emission. This bandgap was also associated with a very low broad-
ening parameter, I" of 42 meV, suggesting excellent crystal quality. The analysis revealed two more bandgaps of
1.14eV and 1.06 eV, also with relatively low I" values. The sharp EER peaks for electron transitions and the low
I" values indicate high degree of structural and compositional order and well crystallized chalcopyrite structure.
Normally, only single crystal CISe or co-evaporated CIGS films show similar sharp peaks with very low I" (17-
30 meV) values®?2. In contrast, conventional electrodeposited CulnSe, films do not show the three levels; their
EER spectra show high I" values (100-400 meV), indicating structural imperfections or sphalerite structure??.

The bandgaps of 1.26 eV and 1.06 eV closely correspond to theoretically derived values in Table 1. The band-
gap value derived from the red fit curve of 1.14 eV is analogous to that derived from the EQE analysis of 1.16 eV
and both are somewhat lower than the theoretical bandgap for Culn,Se; s.

The two bandgaps derived from the EER spectrum of Fig. 4b are analogous to those given by the EQE plot of
Fig. 4a, verifying the presence of CulnSe, and Culn;Se; compounds, Table 1. But the surprising features of the
EER plot are the dominant middle peaks (red fit curve). The bandgap value of 1.14eV derived from the red fit
curve is close to that derived from the EQE analysis, Fig. 4a, and both values are lower than the bandgap reported
for Culn,Se; 5'°, Table 1. These middle peaks may be attributed to the formation of a CISe complex, comprising
CulnSe, and Culn;Se; compounds. The band diagram in Fig. 4c tentatively assigns the four EER energy peaks
to band-to-band electron transitions from the two CISe phases in the BHJ device. The two middle peaks corre-
sponding to the red fit curve may each combine two transitions: (I+II) and (III 4+ IV). Therefore, the EER spec-
trum in Fig. 4b is dominated by the action of pn junctions that leads to the separation of minority carriers across
pnjunctions (IL, IV).

Because both p-CISe and n-CISe nanocrystals are absorbers, the entire BHJ structure actively contributes
to current generation. A number of photocurrent measurements indicate a propensity for the CISe BHJ film to
generate high photocurrent (unpublished), comparable to that for large-grained CIGS*. Furthermore, high open
circuit potential is also attainable if the BH] device comprises appropriately band-aligned contact electrodes,
Fig. 4c. Contact electrodes with very low and very high work functions can maximize the open circuit potential.
Under illumination, the Fermi level in the CISe layer splits into quasi-Fermi levels for holes (E,) and electrons
(Eg,), creating the device open circuit potential, V. To maximize the Vo, the difference in the work functions
of the contact electrodes should be larger than the difference between the quasi Fermi levels. Heavily doped p™*
or n' contacts can move the conduction band (CB) and valence band (VB) edges to create large band offsets.
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Figure 5. PL spectrum for CISe film, using 532 nm excitation, 830 nm and 540 nm long pass filters at 300 °K
showing quantization.

Alternately, electron blocking (EBL) & hole blocking (HBL) layers may be inserted as shown, to maximize the
fill-factor.

Semiconductor behaviour is related to its fundamental properties. CISe-ODCs are unique because they form
a series of stable compounds with bandgaps ranging from 1.06-1.34 eV that are intrinsically doped by shallow
donor (Ing,, Vg.) and acceptor (V,) defects'®*>?”. In nanocrystalline state, the individual grains can only have
either p- or n- type doping, but both types can co-exist in different grains, as is observed for CISe. Based on this
understanding, we can predict that other II-VI chalcogenides could also form nanocrystalline pn BHJ with high
doping density. This work, thus, presents a general, very low-cost platform technology to create high quality
nanostructured pn BHJ material systems for high performance devices.

Photoluminescence (PL) spectra for the CISe film in Fig. 5 are dominated by near bandgap emissions from
native defects, and/or shallow donor states near the CB of Culn;Se; or CulnsSeg?: with a 830 nm long pass filter,
the PL spectrum clearly shows emissions from states near the bandgap of Culn,Ses, such as: 1.20 eV (shallow
donor state), 1.26eV (CB), and 1.31 eV, 1.37 eV (higher energy levels inside CB, or shallow donor states from
higher order CISe-ODC such as Culn;Seg, bandgap =1.34¢V).

With a 540 nm long pass filter, the PL response extends over a wide range of energies, 0.7-2.2 eV; it also indi-
cates free carrier-to-shallow defect transitions, such as those from known shallow defects within the 1.06eV band-
gap of CulnSe,: 1.00eV (CB —V, or Inc, —VB), 0.93eV (Inc, —V¢,) and 0.88eV (V. —V,). The broadening
parameters (I') for EER spectra in Fig. 4b also suggest similar transitions. In addition, the PL spectrum exhibits
very strong, well above-bandgap emission peak, centred around 1.73 eV. This large unexpected PL peak appears
to be a nanoscale phenomenon that could be attributed to alternate quantum phenomena such as: quantum
confined effects in the nanocrystals that could introduce quantized energy levels into the CB; an up-conversion
mechanism within the CISe pn BHJ nanostructures®; or above bandgap luminesce from accumulated high den-
sities of electrons in quantum confined regions®. The spatially separated electrons and holes should exhibit long
carrier lifetimes after the laser light absorption. Indeed, this specific CISe film was found to exhibit unusually
long charge carrier lifetime. Substantially unequal electron paths in n-CISe within the CISe layer could lead to
accumulation of high densities of electrons in some regions. The laser could pump and up-convert the electrons
to energies well above bandgap, moving them to a different location along the #n-CISe path. The electrons can then
recombine with holes radiatively to luminesce above the bandgap. The quantum mechanical interactions of high
density electrons and laser are expected to be quantized in energy and probably create the multiplet splitting with
the discrete 30 mV spacing, displayed in the PL spectrum. In a solar cell, low energy (below bandgap) photons
can also pump the accumulated electrons into above bandgap energy, which are essentially up-converted. The
resulting broadening of the photon spectral range can significantly improve device efficiency. It is unlikely that the
large PL emission peak would originate from the presence of a highly Cu-deficient phase since there is no other
manifestation of this phase nor does it explain the dramatic high energy PL emission.

Both the EER and PL results could be attributed to energy transitions from crystal-field splitting and the
spin-orbit coupling. Such phenomena are generally observed for large crystals under cryogenic conditions. The
fact that the spectra are well-resolved even at 300°K is remarkable, and attests to the high and unique quality of
our SSE-made nanocrystals. Usually, very pure and high-quality crystals or artificially created quantum well
structures show such band-to-band transitions and non-linear absorption, and that too under cryogenic condi-
tions. Moreover, the electronic nanostructure of pn-CISe BH]J can tolerate very wide composition variation, i.e.
various CISe film compositions essentially give the same PL spectra of Fig. 5. This is in stark contrast to the nor-
mally stringent requirements for composition uniformity and material quality for processing various electronic
devices and their associated high costs.
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Interpretation and Conclusions

The correlation of the surface microscopy and spectral data provide valuable insights into the extraordinary char-
acteristics of SSE-made CISe film. Both EER and EQE spectra affirm the presence of CulnSe, and Culn;Se; com-
pounds and a third phase, e.g. (CulnSe, 4 Culn,Ses). The two types of grains arise from the specific SSE process
parameter. The CISe film grows in steps that are controlled by the kinetics of several chemical and electrochemical
reactions, leading to successive formation of CuSe — CulnSe, — Culn;Se; compounds'”3!32, So, depending
on the overall film composition, the components and defects organize into two or more compounds, each with
distinct ODC stoichiometry. The EER data confirms that the SSE/anneal steps create naturally ordered CISe
nanocrystals. AFM and EBIC offer unmistakable evidence that the film comprises CISe nanostructures of mixed
p-CISe and n-CISe grains. The grain interface forms pn homojunction and possibly a stable CulnSe, + Culn;Ses
molecular complex.

The results thus imply that the CISe film comprises randomly mixed p- or #n-doped nanocrystals; the random
mixing of the p-CISe and n-CISe grains leads to the formation of interpenetrated and interconnected p- and
n-network. The similar morphology and electronic nanostructure of the CISe-ODC compounds ensures that
such a network will form, even when the p:# ratio is off by a wide margin and the individual grains have irregular
shapes. The annealing step ensures that the grains grow into each other until the space between them is filled. So
the grains have highly desirable matching interfaces that enable efficient BH] operation. Significantly, this finding
solves a major hurdle for creating inorganic pn BHJs. It avoids the need to separately synthesize nanocrystals and/
or physically mix two types of materials to create BHJs, as in colloidal nanocrystals.

In general, nanocrystals tend to be perfect and are difficult to dope by extrinsic impurities'?. Nanocrystalline
CISe films are very different from colloidal nanocrystals because they exhibit high doping densities and tend to
form pn junctions. This unique attribute of CISe nanocrystals contributes to its ordered nanoscale morphology.
It avoids phase-separated domains formed in conventional BHJs, which tend to impede the interconnections
needed for efficient transport of free carriers. The data supports the formation of nano-architectured pn BHJs that
are highly ordered, sharp and abrupt. They enable fast, efficient spatial separation and transport of electrons and
holes. Such processes would minimize recombination losses in solar cells, greatly relaxing the stringent require-
ment for large crystals in devices. In other words, the high quality 3-D pn BHJ can perform the same solar cell
functions as 2-D planar pn junction, equally well.

The dramatic shift in PL emission to high energies observed for CISe films may offer an alternative type of
up-conversion mechanism**!. This outcome could have strong implications for accessing a wider spectral range
to maximize device efficiency. Also, since the PL emissions cover most of the visible range, the nanostructured
CISe film can also function as a good LED. Note that the ‘universal’ n-cathode/pn-CISe/p-anode device structure
may be used either in solar cells or LEDs. LED structure is essentially the inverse of a solar cell. The 3D nanos-
tructured pn BH]J layer is isotropic at the um scale and current can flow through it from either direction. Thus,
similar manufacturing processes can fabricate LEDs or solar cells. In theory, solar cell and LED have the same
requirements for material quality and properties.

The above results validate a valuable advance in semiconductor processing. They disclose a generally acces-
sible, very low-cost SSE method to create high quality, nanocrystalline pn BH] material systems. Contrary to
common perception about electrodeposited films, well-crystalized CISe nanocrystals could be used directly in
solar cells or LEDs if the device is appropriately configured to take advantage of their special properties. With the
incorporation of finely band-aligned contact electrode materials, the CISe BHJ film can be transformed into high
performance flexible devices. The method is amenable to atmospheric, solution-based roll-to-roll manufactur-
ing of solar cells or LEDs in a thin-film form factor. The new phenomena revealed in this work offer significant
opportunity for fundamental breakthroughs in basic materials science, as well as novel applications.

Methods

Thin film CISe samples were prepared by SSE in a standard single compartment 3-electrode cell, comprising an
Ag/AgCl (40.222 vs NHE) reference electrode (RE) and Pt or graphite counter electrode (CE). The films were
deposited from a single electrolyte by varying deposition parameters to control the composition of the CISe film
to produce CulnSe, and Culn;Se; compounds in roughly 1:1 ratio. The electrolyte comprised Cu?*, In*" and Se**
ions in 0.1 M KCI. The [Cu]:[In]:[Se] metals concentration was generally maintained at 1:4:2 ratio and the solu-
tion temperature was between 50-60 °C. Most films were deposited at constant potential between —0.51+ 0.01V,
using Pine Instruments potentiostat on ~5cm? exposed area of back-insulated Mo or stainless-steel foil. X-ray
fluorescence analysis (XRF) with Spectro Midex provided the film composition and thickness. The films were
briefly annealed in the 200-350 °C range in ambient atmosphere, using a combination of conventional furnace
and RTP. Furnace annealing was done at 350 °C for up to 20 min and RTP was done with an IR lamp (650 W) at
90% with 2-3 sec pulses, repeated 10-15 times. The thermal processing requirements vary for different substrates,
(glass or metal foil)”. The annealing was minimized in order to retain the structural order and integrity generated
by the SSE process.

Tunnelling AFM measurements used bias polarity effects to identify p-type and n-type grains in the film. The
AFM topological and nanoelectrical micrographs were obtained with Bruker Dimensional Icon and SCM-PIT
probe on a 1 um area of CISe sample. The dark lift mode was used to eliminate the laser effects because the
electron-hole pairs generated in the pn junction device with laser illumination can significantly affect the minor-
ity carrier concentration, and hence the Fermi energy level and the width of the depletion region. KPFM meas-
ured the work function difference of tip/CISe sample. The measurements were done on 1 um area of the CISe
sample, using PENQE-AL probe under AC bias of 5V and lift height of 100 nm.

The EBIC maps were obtained using Ephemeron Labs quantitative EBIC imaging system designed for
nano-electronic materials. The electron beam of an SEM was scanned across the foil/CISe/ITO device surface to
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Figure 6. (a) Cell configuration used in QE and EER measurements; (b) Band diagram representing the
electrolytic contact to CISe; (c) Set up for EER characterization with DC bias superimposed with an AC signal;
Reflectance signal is fed to the PC controlled lock-in amplifier via a photodiode.

generate electron-hole pairs; they separate by drift due to the electric field, causing current flow. A picoammeter
detects electronic activity variations due to the presence of pn junctions.

Electrochemical characterization was performed on masked CISe samples, exposing an area of 0.25 cm? to
the electrolyte held in a 3-electrode cell provided with 2 quartz windows, Fig. 6a. Na,SO; (pH 3) electrolyte, a
good hole-scavenger was used to form an electrolytic junction with the CISe sample, Fig. 6b. Figure 6¢ shows a
schematic of the setup used for EER and EQE analysis of samples. EER spectroscopy uses an AC modulation,
superimposed on a DC bias potential. This gives rise to small changes in the transmission at photon energies
close to critical points in the band structure. The changes are a consequence of perturbation of the dielectric
function, hence the absorption coeflicient and the refractive index by the modulation. EQE spectra were meas-
ured using two different calibrated photodiodes by applying a +-0.2V bias. A Si photodiode was used between
the wavelengths 400-1100 nm, and a Ge photodiode was used between 600-1200 nm, so that EQE values overlap
in the intermediate wavelength range. The EER spectrum required three data sets for the fit. Still, the spectrum
was very reproducible. The bandgap and I values in Table 1 were estimated from the EER spectral fit to the
third derivate Lorentzian line function for low field modulation spectroscopies®. The EER responses were phase
sensitively detected at room temperature temperature (non-cryogenic) and the spectrum was analysed by fitting
of the experimentally obtained spectrum to the third derivative functional form. The transition energy and the
broadening parameters were obtained from equation 1 as,

AR _ i0. SN
R RelGetE = By + i)™l )
where AR/R is the relative reflectivity change, E is photon energy of the probe beam, j is the number of spectral
function to be fitted, Egj is the critical point energy, Fj, Cj, and 0j are the broadening parameter (= measure of
disorder), amplitude, and phase angle, respectively; m; corresponds to a band-to-band transition and is assumed
tobe 2.5.

The PL spectra were obtained using Horiba’s Micros setup with a 532 nm laser excitation at room temperature.
Long pass filters were used to block the short-wave light below 540 nm or 830 nm for the spectra at respective
wavelengths.
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