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Voxel size and gray level 
normalization of CT radiomic 
features in lung cancer
Muhammad Shafiq-ul-Hassan1,2, Kujtim Latifi1,2, Geoffrey Zhang   1,2, Ghanim Ullah   1, 
Robert Gillies   3 & Eduardo Moros   1,2

Radiomic features are potential imaging biomarkers for therapy response assessment in oncology. 
However, the robustness of features with respect to imaging parameters is not well established. 
Previously identified potential imaging biomarkers were found to be intrinsically dependent on voxel 
size and number of gray levels (GLs) in a recent texture phantom investigation. Here, we validate the 
voxel size and GL in-phantom normalizations in lung tumors. Eighteen patients with non-small cell lung 
cancer of varying tumor volumes were analyzed. To compare with patient data, phantom scans were 
acquired on eight different scanners. Twenty four previously identified features were extracted from 
lung tumors. The Spearman rank (rs) and interclass correlation coefficient (ICC) were used as metrics. 
Eight out of 10 features showed high (rs > 0.9) and low (rs < 0.5) correlations with number of voxels 
before and after normalizations, respectively. Likewise, texture features were unstable (ICC < 0.6) and 
highly stable (ICC > 0.8) before and after GL normalizations, respectively. We conclude that voxel size 
and GL normalizations derived from a texture phantom study also apply to lung tumors. This study 
highlights the importance and utility of investigating the robustness of radiomic features with respect 
to CT imaging parameters in radiomic phantoms.

The extraction of quantitative information from medical images (Radiomics) holds great potential for cancer 
prediction and monitoring of therapy response1–3. These radiomics tools are promising for adding a quantitative 
component to existing qualitative measures and advancing personalized medicine in oncology4. However, there 
are a number of challenges that need to be addressed before implementation of any radiomic metric into the 
oncology workflow. These challenges include the standardization of imaging parameters and protocols, develop-
ment of reliable and consistent segmentation tools, harmonization of feature extraction methods and consensus 
on subsequent prediction models5,6. Particularly, feature robustness to imaging parameters and feature extraction 
methods are of paramount importance to ensure successful application of CT radiomics in the field of oncology.

As recently highlighted by a number of studies7–10, the variability in pixel size and slice thickness in acquired 
CT data sets is expected if they are acquired on different scanners or using different CT protocols on the same 
scanner. The pixel size or reconstruction Field Of View (FOV) is an important reconstruction parameter in CT, 
which is not usually reported in most published radiomics papers10. In a lung cancer study by Basu et al.11, the 
variation in reconstructed slice thickness ranged from 3 to 6 mm and there was a large variability in pixel size. In 
another study, the pixel size ranged from 0.59 to 0.88 mm for 39 patients with metastatic renal cell cancer12. In a 
separate study, the pixel size variation was 0.39 to 0.82 mm for 33 patients, but the author resampled the volumes 
to isotropic voxels of length 0.59 mm using cubic spline interpolation13. Since both reconstructed slice thickness 
and pixel size determine image voxel size or number of voxels within the tumor volume (VOI), it is important to 
investigate feature robustness as a function of number of voxels and voxel size within VOI. The number of voxels 
within VOI are determined by tumor volume (VOI) and the spatial resolution of the reconstruction.

Tumor volume is a shape feature that is typically calculated in most radiomic software by multiplying voxel 
size by the number of voxels in the VOI. The number of voxels within the VOI, which might play a significant 
role in feature robustness, can be varied in two possible ways; (1) by changing the VOI while keeping the voxel 
size constant or (2) by changing the voxel size while keeping the VOI constant. Voxel size resampling to a selected 
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size would be an appropriate approach to reduce or eliminate voxel size variation for most radiomic features. 
However, resampling is not sufficient for some intensity histogram and texture features as reported previously8. 
The important point here is that the numerical values of these features were highly correlated with number of 
voxels or tumor volume and this dependence can only be eliminated by including number of voxels in feature 
definitions (i.e., feature normalization).

The standardization of feature extraction methodology is also important for second and higher order texture 
features in radiomics14. Typically, to make feature extraction process computationally less expensive, the voxel 
intensities (gray levels) within the VOI are resampled to 2N number of bins, where N ranges from 3 to 8 in the 
literature15. More importantly, discretization of imaging data is also used to reduce noise and increase stability 
of features14,16. Different radiomic studies have used different gray level (GL) resampling to extract features from 
VOI17–19. There could be large variability in numerical values of texture features for different discretization levels. 
One way to address the issue of variability due to different feature extraction techniques is to develop feature 
normalization methods. As recently shown, the robustness of texture features with different number of GLs sig-
nificantly improves as a result of GL normalization8.

In this study, we validate voxel size normalizations of 10 radiomic features, derived from a texture-phantom 
study using 8 different CT scanners, on images of lung tumors8. The Spearman rank correlation coefficient (rs) 
was used to evaluate the correlation between numerical values of these radiomic features with the number of vox-
els before and after normalization. Moreover, 17 different texture features were extracted using different intensity 
discretization levels to evaluate GL normalization. The interclass correlation coefficient (ICC) was used as an 
assessment metric for features robustness for varying number of gray levels.

Methods
Patient and phantom images.  This retrospective study was approved by University of South Florida 
(USF) institutional review board (IRB). A total of 18 patients with non-small cell lung cancer (NSCLC), with 
varying volumes from 4 to 123 cm3, were included for this study. The patients were treated with Stereotactic 
Body Radiation Therapy (SBRT) between 2009 and 2013. All patients’ simulation CT scans were acquired with a 
Brilliance Big Bore scanner (Philips Medical systems, Cleveland, OH, USA). The pixel size of the reconstructed 
images was 0.98 mm for two patients and 1.17 mm for rest of the patients. The reconstructed slice thickness for all 
patients was 3 mm. Images from four patients were reconstructed with ‘standard’ reconstruction kernel while all 
others were reconstructed with a ‘sharp’ kernel. One of the scans was acquired with 140 kVp and all others with 
120 kVp. The range of tube current used was 65 to 483 mA.

The Credence Cartridge Radiomic (CCR) phantom7 scans were acquired on 8 different scanners from three 
major manufacturers, namely, Philips, General Electric (GE), and Siemens Healthcare systems. The scanner mod-
els were Philips Brilliance Big Bore, Philips Brilliance 64, GE Discovery STE, GE Lightspeed 32 pro, Siemens 
Definition AS, Siemens Sensation 64, Siemens Sensation 40, and Siemens Sensation 168. The reconstructed pixel 
size and slice thickness were 0.98 mm and 3 mm for all phantom scans. Images were acquired using 120 kVp and 
250 mA. The “standard” kernel was used for reconstruction for Philips and GE scanners while the B31f kernel was 
used for the 4 Siemens scanners.

Data resampling & feature extraction.  In this work, the parameter ‘number of voxels’ within a VOI was 
varied in two ways; (1) by changing the VOI while keeping the voxel size constant or (2) by changing the voxel 
size while keeping the VOI constant. In the first case, ‘number of voxels’ variation was obtained from original 
patient group having volumes from 4 cc to 123 cc (n = 18) with fixed voxel size. In the second case, VOI for each 
patient, contoured by an expert radiation oncologist, was down- and up-sampled to various voxel sizes using lin-
ear interpolation8. An original VOI was resampled to 4 different pixel sizes from 0.58 to 1.38 mm and 6 different 
slice thicknesses from 1 to 4 mm. There was therefore a total of 198 non-normalized data sets [18 patients x 11 
(original + 10 resampled)]. For phantom scans, a VOI of 14.2 cc was contoured within the rubber cartridge of 
the CCR phantom, using an automatic contouring tool (Mirada RTx 1.6, Mirada Medical, Oxford, UK) for all 
scanners8. This VOI was again further resampled to different voxel sizes identically to the patient scans. In the 
case of the phantom, there was a total of 88 non-normalized data sets [8 scanners x 11 (original + 10 resampled)]. 
Twenty four radiomic features were extracted as follows: 4 from intensity histogram, 11 from GLCM, 4 from 
GLRLM, 1 from GLSZM and 4 from NGTDM. These terms and features are listed in Table 1. The first order fea-
tures were calculated from the intensity based volume histograms. Second order features based on GLCM were 
initially developed by Haralick et al.20,21. GLCM features provide spatial dependence of gray levels of neighboring 
voxels as described by Oliver et al.22. The GLRLM features were implemented according to definitions provided 
by Galloway, Chu et al., and Dasarathy and Holder23–25. NGTDM and GLSZM based features were calculated as 
described by Amadasun et al. and Thibault et al. respectively26,27. In case of voxel size normalization, 64 equi-
spaced gray levels were used for calculating the GLRLM, GLSZM, and NGTDM for binning the intensities of 
image voxels.

Voxel size normalization.  To test the usefulness of voxel size normalization in lung cancer CT images, fea-
ture algorithms were modified by including the number of voxels, and for each feature only one of the following 
equations [1–3] was used.

f P T f P T N P T( , ) ( , ) ( , ) (1)n = ×

=f P T f P T
N P T
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( , ) (2)n
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where fn (P, T) is the normalized feature definition, f (P, T) is the non-normalized feature definition as given in 
the pertinent cited paper, and N (P, T) is the number of voxels inside a VOI given pixel size ‘P’ and slice thickness 
‘T’. N (P, T) depends both on VOI and voxel size Vs (P, T). Vs (P, T) is determined both by in-plane pixel size (P) 
and slice thickness (T) along the longitudinal axis of the scanner. The detailed mathematical formulation used 
for each feature for both non-normalized and voxel size normalized cases are listed in Supplementary Table S1. 
In this paper, voxel size was replaced by the number of voxels inside the VOI. We note that for a given VOI, both 
voxel size and number of voxels within VOI provide the same information per equation 4.

Gray level normalization.  The number of GLs affects the histogram statistics and image texture. To val-
idate the GL normalization from our phantom study8 in lung cancer CT images, 17 texture features including 
GLCM (9), GLRLM (3), GLSZM (1) and NGTDM (4) were extracted from the radiation oncologist segmented 
VOIs. Scan data sets were created by resampling original scans into 8, 16, 32, 64, 128 and 256 GLs for all patients/
tumors. Thus, there was a total of 108 data sets (18 patients x 6 GLs) for both non-normalized and GL normalized 
cases. The detailed mathematical formulation for each feature for both non-normalized and GL normalized cases 
are listed in Supplementary Tables S2 and S3.

Statistical analysis.  The Spearman rank correlation coefficient was used as an assessment metric to evaluate 
the correlation between features’ numerical values and number of voxels for both non-normalized and normal-
ized cases. The coefficient value of 1 or −1 indicates two variables are highly correlated and a value of zero indi-
cates that there is no correlation. The absolute value of the rs was calculated for 10 features to determine which 
features were correlated with number of voxels in the VOI before and after normalization by number of voxels. 
The features having values rs < 0.5, 0.5 < rs < 0.9, and rs > 0.9 were categorized as having no, moderate, and high 
correlations with number of voxels respectively.

The interclass-correlation coefficient28 was used to evaluate the GL normalization of 17 texture features. ICC 
is given by equation 5,

=
−

+ − ×
ICC BMS RMS

BMS d RMS( 1) (5)

where RMS and BMS represent the between-residual and between subjects’s mean squares, and d is the total num-
ber of discretization levels (GL). The features having ICC < 0.5, 0.5 < ICC < 0.8, and ICC > 0.8 were categorized 
as not stable, intermediately stable and highly stable with respect to the varying number of GLs respectively. All 
statistical analysis was performed in IBM SPSS statistics version 24.0.

Data availability.  The datasets generated and analyzed during this study are available from the correspond-
ing author on reasonable request.

Intensity Histogram 
features GLCM features

GLRLM, GLSZM & NGTDM 
features

1-Intensity-TGV 5-GLCM-Entropy 16-GLRLM-GLNU

2-Intensity-Energy 6-GLCM-Sum Entropy 17-GLRLM-RLNU

3-Intensity-Entropy 7-GLCM-Difference Entropy 18-GLRLM-HGRE

4-Intensity-Contrast 8-GLCM-Sum Average 19-GLRLM-SRHGE

9-GLCM-Difference Average 20-GLSZM-HIE

10-GLCM-Dissimilarity 21- NGTDM-Contrast

11-GLCM-Sum Variance 22-NGTDM-Complexity

12-GLCM-Difference Variance 23- NGTDM-Coarseness

13-GLCM-Mean 24-NGTDM-Texture Strength

14-GLCM-Contrast

15-GLCM-Inverse Variance

Table 1.  Radiomic features analyzed in this study. Note that GLCM, GLRLM, GLSZM and NGTDM were 
abbreviations for gray level co-occurrence matrices, gray level run length matrices, gray level size zone matrices 
and neighborhood gray tone difference matrices, respectively.



www.nature.com/scientificreports/

4Scientific REPOrTS |  (2018) 8:10545  | DOI:10.1038/s41598-018-28895-9

Results
Voxel size normalization.  Figure 1 shows the numerical values of 4 features, extracted using non-nor-
malized and normalized feature definitions, as a function of logarithm of the number of voxels within the VOI. 
VOIs were arranged according to increasing number of voxels. The non-normalized values of all four features 
were correlated with the number of voxels inside VOIs. However, after normalization by number of voxels, the 
dependence of feature values on the number of the voxels was reduced or eliminated. The intensity-entropy and 
GLRLM-RLNU were independent of number of voxels after normalization, mostly reflecting information about 
the number of voxels inside the tumor volume before normalization. In contrast, the variability of intensity-en-
ergy and NGTDM-coarseness were reduced to a lesser extent by normalization.

The absolute value of the Spearman rank correlation coefficient for non-normalized and normalized features 
for the patient cohort is shown in the Fig. 2. Figure 2a shows the coefficient value for ten features for the original 
18 scan data sets. Figure 2b shows the coefficient value for the 198 non-normalized data sets which include the 
original and the resampled scan data sets as described in the Methods. In both cases, the value of the coefficient 
was between 0.9 and 1.0 for eight out of 10 original feature definitions indicating that feature values are highly 

Figure 1.  The non-normalized and normalized feature values as a function of logarithm of number of voxels 
for non-normalized data sets (n = 198). (a) Intensity-energy and (c) GLRLM-RLNU indicate a flat behavior, 
while (b) Intensity-energy and (d) NGTDM-Coarseness show small variations after normalization by number 
of voxels. Note that VOIs on x-axis are arranged in increasing number of voxels.
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correlated with the number of voxels inside the VOI. After normalization by number of voxels, most features 
became robust with respect to number of voxels as indicated by the low value of coefficient (rs < 0.5). For most 
features, both the original data sets (n = 18) and non-normalized data sets (n = 198) showed similar level of cor-
relations. Even after normalization, 4 features, namely, GLCM-inverse variance, Intensity-contrast, GLCM-mean, 
and NGTDM-coarseness showed moderate correlations with number of voxels (0.5 < rs < 0.9) for the original 
scans. GLCM-inverse variance and NGTDM-coarseness were two features that showed moderate correlations 
with number of voxels for non-resampled data sets.

The absolute value of Spearman correlation coefficient for non-normalized data sets (n = 88) for the rubber 
cartridge of the CCR phantom is shown in Fig. 3. Most features were robust with respect to number of voxels after 
normalization by number of voxels. The only exception was contrast based on Intensity histogram that shows no 
correlation with number of voxels before and after normalization (rs < 0.5 for both cases).

Gray level normalization.  The ICC values for non-normalized and normalized features with varying num-
ber of GLs (n = 108) are shown in Fig. 4. Without GL normalization, most features had ICC < 0.5 indicating that 
features were not stable with respect to varying discretization levels. However, after GL normalization, the ICC 
values were between 0.8 and 1, suggesting that features became highly robust (ICC > 0.8) with respect to the 
number of GLs. Difference entropy derived from GLCM showed ICC value in the intermediate stability range 
before GL normalization. However, this feature became highly stable after GL normalization. The only exception 
was GLNU from GLRLM which indicated ICC close to 0.9 in both non-normalized and normalized cases. This 
higher value of ICC showed that this feature was independent of GL resampling. Another feature, High Intensity 
Emphasis (HIE) from GLSZM (not shown in Fig. 4), showed ICC value of − 0.04 and − 0.17 in non-normalized 
and GL normalized cases respectively. The reason for these negative values of ICC for HIE is not clear. One possi-
bility is that the variance within the group could be greater than the variance between the groups.

Figure 2.  The absolute value of the Spearman correlation coefficient (rs) for non-normalized and normalized 
features for the patient cohort. (a) Original patient data sets (n = 18), number of voxels were varied by changing 
the VOI volume while keeping the voxel size constant. (b) Non-normalized data sets (n = 198), number of 
voxels were varied by down- and up- sampling the VOI of each patient to various voxel sizes. Black and gray 
bars represent the non-normalized and normalized features, respectively. The 95% confidence intervals for rs 
for original (n = 18) and non-normalized data sets (n = 198) for both non-normalized and normalized feature 
definitions are listed in Supplementary Tables S4 and S5, respectively.
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Discussion
Advanced radiomics analysis can provide useful quantitative information to supplement other clinical and –
omics information thereby contributing to further development of personalized medicine in cancer treatment4. 
However, radiomics analysis for any imaging modality is affected by data acquisition and image reconstruction 
parameters. Therefore, one important property of a potential imaging biomarker is its robustness with respect to 
these parameters10. Most radiomic studies are currently focused on prognostic and predictive modeling while 
only a few reported robustness of these features with respect to imaging parameters10. In this study, our aim was 
to investigate the robustness of some CT radiomic features commonly used in lung cancer patients29–31 by validat-
ing our previously reported intrinsic dependencies of features using a texture phantom. We indeed showed that 
the voxel size and gray level normalization of CT radiomic features for lung cancer were in agreement with our 
previously reported findings using the CCR phantom8.

The importance of identifying intrinsic dependencies of radiomic features on number of voxels is exempli-
fied by the fact that some of these features have been suggested as potential imaging biomarkers in recent stud-
ies29,30,32–35. For example, NGTDM-coarseness, which resembles human perception of image granularity, was 
found to be a useful biomarker in predicting the response to chemotherapy in NSCLC and esophageal cancer29,32. 
Coarseness was also found to be clinically useful for differentiating between normal and abnormal tissues in 

Figure 3.  The absolute value of the Spearman correlation coefficient (rs) for non-normalized (black bars) and 
voxel size normalized (gray bars) features, extracted from the rubber cartridge of the CCR phantom (n = 88) 
from 8 different CT scanners. The 95% confidence intervals for rs for non-normalized phantom data sets 
(n = 88) for both non-normalized and normalized feature definitions are listed in Supplementary Table S6.

Figure 4.  The interclass correlation coefficient (ICC) values for non-normalized (black bars) and gray level 
normalized (gray bars) features for lung cancer data sets (n = 108). Most features became highly stable after 
GL normalization (ICC > 0.8). Gray level non uniformity (GLNU) was the exception exhibiting high stability 
with or without GL normalization. The feature GLSZM-HIE was not plotted for clarity purposes. The 95% 
confidence intervals for ICCs for non-normalized data sets (n = 108) for both non-normalized and gray level 
normalized feature definitions are listed in Supplementary Table S7.
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head-and-neck cancer patients33. Likewise, Intensity histogram-based energy and GLRLM-based feature grey 
level non-uniformity (GLNU) were suggested top performing features for predicting survival in both lung and 
head-and-neck cancer patients34. Yet in another study, GLRLM-GLNU was again suggested to have prognostic 
significance in adenocarcinoma30. Similarly, histogram-based energy was recently reported to be associated with 
overall survival or recurrence related survival35. With this in mind, it is concerning that these features were found 
to be intrinsically dependent on voxel size (or tumor volume or number of voxels, per equation 4) in a recent 
texture phantom study8. Therefore, this voxel size dependence raises questions regarding the reliability of these 
features as potential imaging biomarkers once their intrinsic dependencies are accounted for.

Resampling all CT scans to nominal voxel size is not sufficient to remove the intrinsic dependency on voxel 
size/VOI size/number of voxels (see equation 4) for these features. Voxel size resampling would render equal 
voxel size for all VOIs, but the number of voxels in each VOI will depend on tumor size per equation 4. This 
dependence on number of voxels is graphically explained in Supplementary Fig. S1. If CT scans were acquired 
with the same voxel size, normalization by number of voxels would still be required to remove the intrinsic 
dependence on the number of voxels, which equates to a dependence on VOI size per equation 4.

One potential way to eliminate this dependence on voxel size and VOI size is to include the number of voxels, 
N (P, T), in mathematical definitions of these features. Note that the parameter, N (P, T), depends both on VOI 
and individual voxel size within a VOI (equation 4). The numerical values of features were highly correlated with 
the number of voxels for non-normalized definitions. After normalization by number of voxels, these features 
became robust to both voxel size and VOI size variations (Fig. 1). This was also demonstrated by the high value 
of the spearman rank correlation coefficient for 8 out of 10 features for the patient cohort in Fig. 2. The coeffi-
cient value was less than 0.5 after normalization, indicating that features were not correlated with the number of 
voxels within the VOI (Fig. 2). Similar trend was observed for non-normalized and normalized features (Fig. 2) 
for varying tumor volume (n = 18) as shown in Fig. 2a and for varying voxel size (n = 198) as shown in Fig. 2b. 
After normalization by the number of voxels, both plots in Fig. 2a,b show similar values for the Spearman corre-
lation coefficient in both cases. The Spearman rank correlation coefficient for original and normalized features 
for patients were similar to those obtained from the phantom data except for the intensity-based contrast feature 
shown in Fig. 3. The phantom intensity-based contrast was similar for both non-normalized and normalized fea-
tures, which was contrary to our previous findings8. The coefficient values for Intensity-TGV, Intensity-Entropy, 
GLRLM-GLNU, and NGTDM-texture strength were much lower for the normalized phantom data than the 
patient data. This might be due to the fact that the rubber cartridge within CCR phantom contains less texture as 
compared to those of real lung tumors.

The dependence of some radiomics features on tumor volume has been the subject in recent studies. 
Fave et al.36 proposed corrected algorithms for NGTDM-Coarseness, GLRLM-GLNU, GLRLM-RLNU and 
Intensity-energy to remove their volume dependence which were in agreement with our results. Using the same 
CCR phantom7,8, Laure et al.16 showed that statistics energy and GLRLM-RLNU were ranked first and second in 
terms of their dependence on slice thickness, also in agreement with our results. However, some other features 
such as Intensity-entropy, GLCM-mean, GLCM-inverse variance and NGTDM-texture strength were depend-
ent on number of voxels using both phantom scans8 as well as lung cancer patients scans as shown in this work. 
Normalization by number of voxels significantly improved these features’ robustness and therefore this normal-
ization might be prerequisite for these features. Nonetheless, even after normalization by number of voxels, the 
usefulness of these features as potential biomarkers depends on many other factors8.

The volume dependence of identified radiomic features has implications on VOI segmentation. The robustness 
of radiomic features with respect to segmentation has been the topic of several recent studies37–40. For instance, 
one study reported that radiomic features were more reproducible with automatic segmentation as compared to 
manual segmentation40. It is clear that different segmentation methods may render different VOI sizes, therefore, 
the numerical values of identified features would also be different because of the segmentation dependent var-
iations in VOI size. This dependence would be particularly important when comparing results across studies/
institutions that used different segmentation methods.

The variability in numerical values of features due to variable gray level resampling is a challenging problem 
in radiomics analysis. We proposed normalization by the number of gray levels for 17 features based on our CCR 
phantom study8, and in this work we have successfully tested these definitions on lung cancer patients. Most 
texture features became robust to varying gray levels after gray level normalization as reflected by the higher 
values of the ICC (Fig. 4). Again these results are in agreement with coefficient of variation values reported in our 
previous paper8. The only exception was GLNU that showed robustness in both cases, before and after gray level 
normalization, contrary to coefficient of variation values in our previous report8. Lu et al.41 reported that three 
features based on GLCM including Entropy, Sum entropy and Difference entropy were robust (i.e., ICC close to 1) 
with varying discretization levels, contrary to our results. In our case, ICC values for these three features were less 
than 0.6 before normalization and close to 1 after normalization. It is possible that feature definitions employed 
in41 differ from our definitions42. This points to the importance of testing algorithms using virtual phantoms4.

Conclusions
Previously identified clinically useful CT features such as NGTDM-Coarseness, NGTDM-Texture Strength, 
GLRLM-GLNU, GLRLM-RLNU, Intensity-Energy, and Intensity-Entropy depend on VOI size and voxel size. 
This dependence was clearly shown in this work for lung cancer patients for two different cases of varying the 
VOI size and the voxel size. Therefore, the previously determined voxel size normalization factors using a phan-
tom also apply to lung cancer. Moreover, the presented gray level normalization results for texture features in 
this work were in agreement with the previous in-phantom results [8], except for GLRLM-GLNU that showed 
robustness before and after GL normalization. Therefore, we conclude that radiomics researchers should evaluate 
the dependence of potential imaging biomarkers to imaging acquisition parameters and gray level resampling.
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