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Validation of miRNA prognostic 
power in hepatocellular carcinoma 
using expression data of 
independent datasets
Ádám Nagy1,2, András Lánczky1, Otília Menyhárt1,2 & Balázs Győrffy   1,2

Multiple studies suggested using different miRNAs as biomarkers for prognosis of hepatocellular 
carcinoma (HCC). We aimed to assemble a miRNA expression database from independent datasets 
to enable an independent validation of previously published prognostic biomarkers of HCC. A miRNA 
expression database was established by searching the TCGA (RNA-seq) and GEO (microarray) 
repositories to identify miRNA datasets with available expression and clinical data. A PubMed search 
was performed to identify prognostic miRNAs for HCC. We performed a uni- and multivariate Cox 
regression analysis to validate the prognostic significance of these miRNAs. The Limma R package 
was applied to compare the expression of miRNAs between tumor and normal tissues. We uncovered 
214 publications containing 223 miRNAs identified as potential prognostic biomarkers for HCC. In the 
survival analysis, the expression levels of 55 and 84 miRNAs were significantly correlated with overall 
survival in RNA-seq and gene chip datasets, respectively. The most significant miRNAs were hsa-
miR-149, hsa-miR-139, and hsa-miR-3677 in the RNA-seq and hsa-miR-146b-3p, hsa-miR-584, and hsa-
miR-31 in the microarray dataset. Of the 223 miRNAs studied, the expression was significantly altered 
in 102 miRNAs in tumors compared to normal liver tissues. In summary, we set up an integrated miRNA 
expression database and validated prognostic miRNAs in HCC.

The incidence and mortality rates for liver cancer are increasing rapidly by approximately 3% per year1. 
Established risk factors include chronic infection with hepatitis B and/or hepatitis C viruses, obesity, diabetes, 
and alcohol consumption all of which contribute to the growing trend. Liver cancer incidence is high in East and 
South-East Asia and in Middle and Western Africa, while rates are low in South-Central and Western Asia and 
Northern and Eastern Europe2. Hepatocellular carcinoma (HCC) is the major histological type of liver cancer and 
accounts for approximately 80% of the total liver cancer burden worldwide3.

Hepatocellular carcinomas display notable clinical and biological heterogeneity4. HCC usually occurs with 
liver cirrhosis, characterized by accumulating genetically abnormal hepatocytes, which leads to cancer progres-
sion via unchecked cell proliferation and higher invasion and metastatic potential5. Using transcriptomic studies, 
further subgroups of HCC with distinct clinico-pathological features were also described6,7. Driver mutations 
involved in HCC progression were identified in the promoter of the telomerase reverse transcriptase (TERT) gene 
(in 60% of cases), in CTNNB1 (11–37%), which is part of the WNT pathway, in TP53 (10–30%), and in CDKN2A 
(2–12%), which has a role in the regulation of the cell cycle in G1 and G2 phases8.

MicroRNAs (miRNAs) are highly conserved small non-coding RNA molecules regulating the expression of 
approximately 30% of all human genes at the transcriptional and post-transcriptional levels9. Certain miRNAs 
have important roles in tumor development, progression, and in therapeutic response10. miRNAs serve as onco-
genes or tumor suppressors in multiple cancers. In non-small cell lung cancer, low expression of hsa-miR-374a 
was correlated with poor survival outcome11. In colorectal cancer, the high expression of hsa-miR-185 and low 
expression of hsa-miR-133b were associated with metastasis and unfavorable clinical outcome12. hsa-miR-34a 
was linked to breast cancer13 and hsa-miR-10b to pancreatic cancer14. Derangement of the entire miRNA-ome 
was described in gastric cancer15.
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Deregulation of miRNAs in HCC was demonstrated by a number of studies. The expression profile of miRNAs 
can serve as potential biomarkers for diagnosis, metastasis and invasion16, for prediction of therapeutic response, 
recurrence10, and of overall survival17 of HCC. Circulating miRNAs, including hsa-miR-939, hsa-miR-595, 
hsa-miR-519d, and hsa-miR-494, are capable of recognizing HCC in cirrhotic patients18.

In the future, miRNAs could be therapeutically utilized in anticancer therapy. The multi-kinase inhibitor 
sorafenib blocks the activity of VEGFR, PDGFR, and RAF and is included in standard care for advanced HCC. A 
phase 3 clinical study showed longer median survival and time to radiological progression for sorafenib treated 
patients than for untreated patients19. Conversely, sorafenib treatment can be influenced by the modulation 
of miRNAs - increasing expression of hsa-miR-122 resulted in sorafenib sensitivity20 and down-regulation of 
hsa-miR-34a resulted in sorafenib resistance in HCC cell lines21.

miRNA antagonists (antagomirs) could be used to inhibit the activity of cancer associated miRNAs 
(oncomirs). Antagomirs are chemically modified locked RNA-like nucleic acids that harbor various modi-
fications for RNase protection22. HCC cell lines exhibit better response to chemotherapy when transfected 
with antisense-miR-21 during an IFN-α/5-fluorouracil (5-FU) combination therapy23. The suppression of 
hsa-miR-221 significantly decreased size and tumor number and increased the overall survival in a transgenic 
mouse model of liver cancer24. miRNA expression has also been found to have an important role in the treatment 
of HCC by interferons (IFNs). Higher expression of hsa-miR-146 resulted in IFN resistance25 and low expression 
of hsa-miR-26 resulted in IFN sensitivity in HCC cells26.

Although numerous miRNAs were suggested to have a prognostic power in HCC, in the literature, there is a 
scarcity of independent validation for these miRNAs. In this study, we first aimed to establish a list of previously 
published miRNAs with prognostic power, and then we intended to cross-validate these in an independent cohort 
of patients. For this, we assembled an HCC miRNA expression database using multiple, non-overlapping datasets, 
and then performed survival analysis to assess the prognostic potential for each gene. We also compared expres-
sion in liver cancer and normal samples to evaluate the change of the gene expression related to tumorigenesis.

Results
HCC miRNA gene expression database.  Four HCC datasets met our criteria – GSE3138417, GSE1069427, 
GSE685728, and TCGA. Among the GEO datasets, GSE6857 included 241 tumor samples, of which 240 sam-
ples also had non-cancerous pairs, GSE10694 had 78 cancer and corresponding non-cancerous samples, while 
GSE31384 contained cancer samples only. The TCGA database contained 372 primary tumor samples, of which 
49 had a corresponding non-tumor pairs. There were no metastatic samples in the TCGA dataset. A summary of 
the datasets is given in Table 1.

Two different survival data were published – length of overall survival and disease free survival. Overall 
survival (OS) data were available for 372 patients in TCGA, 166 patients in GSE31384, and 77 patients in the 
GSE10694 dataset. The median follow up time of the entire database was 20.2 months (19.6, 34.0, and 15.8 months 
for TCGA, GSE31384, and GSE10694 datasets, respectively). Disease free survival (DFS) time was also available 
for 166 patients in the GSE31384 dataset with a median follow up of 17.5 months. However, only 54 patients had 
an event in GSE10694, and because of this small sample size we excluded GSE10694 from the survival analysis.

Stage was available for TCGA and GSE10694, metastasis status for GSE6857 and GSE10694, and gender for 
TCGA, GSE6857, and GSE10694. An overview of the clinical parameters is presented in Fig. 1B–D. When we 
performed a survival analysis to inspect the correlation between the clinico-pathological parameters and survival, 
there was a significant correlation between OS and stage (p = 3.01E-06) in TCGA.

The GSE31384 dataset was different when compared to the other datasets. The labeled miRNAs from paired 
hepatocellular carcinoma and noncancerous liver were mixed and hybridized to the same array. Therefore, for 
these samples, the normalized log2 ratio (pCp-DY647/pCp-DY547) of the miRNA expression values represents 
the ratio of hepatocellular carcinoma/matched noncancerous liver tissue17.

Surprisingly, only a small proportion of miRNAs were measured in each platform (Fig. 2A). The entire data-
base includes 845 unique miRNAs, of which 585 miRNAs were measured on one platform only, and 45 miRNAs 
were measured on each platform (Fig. 2B). The gene expression database combined with sample annotation and 
survival data is available in Supplemental Table 1.

Literature-based list of prognostic miRNAs.  The PubMed search resulted in 2,050 records for ‘hepato-
cellular’ + ‘carcinoma’ + ‘miRNA’ search terms, of which 214 studies described miRNAs with prognostic power 
(Supplemental Table 2). These articles contained 374 miRNA biomarker candidates, of which 151 miRNAs 

Study Platform Technology Country Data normalization
miRNA in 
platform Sample # Cancer # Normal #

GSE10694 GPL6542 Microarray China Quantile normalization 119 156 78 78

GSE31384 GPL14140 Microarray China Quantile normalization 525 166 166 0

TCGA Illumina miRNA-Seq USA Reads per million miRNA mapped 
data 412 421 372 49

GSE6857 GPL4700 Microarray USA Median normalization 209 481 241 240

∑ 845 unique 
miRNAs 1,224 857 367

Table 1.  Summary of the datasets used for cross-validation in our study.
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represented redundant publications (e.g., multiple studies describing the same miRNA). Of the 223 unique miR-
NAs, 173 have been measured in at least one dataset of our database (Fig. 1A).

miRNAs with significant prognostic power.  Of the 173 biomarker candidates, the expression of 55 
miRNAs showed significant correlation with OS in the TCGA dataset (Supplemental Table 3A). The top five 
miRNAs included hsa-miR-149, hsa-miR-139, hsa-miR-3677, hsa-miR-550a, and hsa-miR-212 and are shown in 
Fig. 3A–E. For the top two miRNAs, hsa-miR-149 and hsa-miR-139, the p values achieved in the Cox regression 
across all possible cutoff values between the lower and upper quartiles of expression are also shown in Fig. 3A,B – 
it is important to note that the p values are highly significant irrespective of the used cutoff (also see Supplemental 
Fig. 1A–C for cutoff vs. p value plots for the other genes). Beeswarm plots showed the expression distribution for 
these miRNAs (Fig. 3A,B and Supplemental Fig. 1D–F). In the multivariate analysis of OS, including the expres-
sion of all 55 significant miRNAs, stage and gender, 39 miRNAs remained significant (Supplemental Table 3A).

Expression ratio of tumor vs. normal miRNAs as prognostic predictor.  We also examined the 
prognostic value of the 173 miRNAs in the GSE31384 dataset, where the expression values of miRNAs repre-
sented ratios of the hepatocellular carcinoma vs. matched noncancerous liver tissue expression. As both OS and 
DFS data were available for this dataset, each miRNA was analyzed in the same survival setting as originally 
described. Uni- and multivariate survival analysis results for miRNAs with significant association to survival 
are listed in Supplemental Table 3B,C. The best performing five miRNAs included hsa-miR-584, hsa-miR-31, 
hsa-miR-146b-3p, hsa-miR-105, and hsa-miR-29c (Fig. 4A–E and Supplemental Fig. 2A–C). In addition, 25 miR-
NAs showed significant correlation with DFS, of which hsa-miR-126 (HR = 2.69, p = 4.90E-05), hsa-miR-122 

Figure 1.  Overview of the statistical pipeline and sample numbers in the included datasets (A). Pathological 
characteristics of datasets including stage (B), metastasis (C), and gender (D).

Figure 2.  Slightly over 5% of all miRNAs were measured in each study. Overlap of detected miRNAs in each 
dataset (A) and aggregate summary (B).
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(HR = 2.3, p = 5.21E-05), hsa-miR-106b (HR = 2.23, p = 5.56E-05), hsa-miR195 (HR = 1.93, p = 8.06E-04), and 
hsa-miR30a (HR = 1.92, p = 9.19E-04) had the highest prognostic power (Supplemental Table 3C). An ordered 
list of all miRNAs by HR-values using OS and DFS data is presented in Fig. 4F,G. Interestingly, less genes were 
significant in the DFS analysis than for OS. In the plot, an HR value below 1 corresponded to high expression 
associated with poor outcome, and values over 1 corresponded to high expression associated with good outcome 
in GSE31384. Of note, when comparing the TCGA and GSE31384, only two miRNAs were significant in both 
datasets after multivariate analysis, hsa-miR-10b and hsa-miR-195.

miRNAs differentially expressed in HCC.  Of the 173 survival associated miRNAs, 113 had altered 
expression compared to normal tissues (Supplemental Table 4). Figure 5A shows the fold change values of miR-
NAs significantly changed in more than one dataset. Of the five miRNAs down-regulated in all three datasets, 
hsa-miR-199a showed the most significant expression change, also presented in Fig. 5B. Consistently up-regulated 
miRNAs included hsa-miR-34a, hsa-miR-106b, hsa-miR-222, and hsa-miR-221 (Fig. 5C–F).

Correlation among different miRNAs.  In order to assess the correlation among the miRNAs, we com-
puted Spearman rank correlation for all miRNAs significant in the survival analysis. The miRNAs with the highest 
correlation in the TCGA dataset were hsa-miR-182/hsa-miR-183 (correlation coefficient = 0.98), hsa-miR-221/
hsa-miR-222 (r = 0.91), and hsa-miR-200c/hsa-miR-141 (r = 0.9). Of these, for hsa-miR-221/hsa-miR-222, only 
hsa-miR-221 remained significant when running a multivariate analysis simultaneously including both miR-
NAs (p = 0.0386 and p = 0.357, respectively). For hsa-miR-182/hsa-miR-183 and hsa-miR-200c/hsa-miR-141, 
the correlation to survival was not significant in case we run them simultaneously in a multivariate analysis. In 
the GSE31384 dataset, the best-correlated miRNAs were hsa-miR-769-5p and hsa-miR-876-5p (r = 0.73). For 
these, the association between expression and OS was p = 0.000754/0.0023 in univariate and p = 0.0695/0.843 
in multivariate analysis for hsa-miR-769-5p/hsa-miR-876-5p, respectively. These results suggest that many of the 

Figure 3.  Top five best performing miRNAs based on expression in the tumor tissue using data of the TCGA 
dataset. Kaplan-Meier survival plots, p value vs. cutoff plots and beeswarm plots for hsa-miR-149 (A) and hsa-
miR-139 (B) and Kaplan-Meier plots for hsa-miR-3677 (C), hsa-miR-550a (D), and hsa-miR-212 (E).



www.nature.com/scientificreports/

5SCientifiC Reports | (2018) 8:9227 | DOI:10.1038/s41598-018-27521-y

significant correlations can be explained by a correlation in gene expression. As our goal was to investigate each 
miRNA separately, we have not removed these from the analysis. We show a heatmap of correlation coefficients 
among all significant miRNAs in the TCGA and GSE31384 datasets in Fig. 6.

Discussion
We assessed miRNAs for their prognostic power and started the analysis by performing a literature search to 
select miRNAs previously published as survival related in hepatocellular carcinoma. Simultaneously, we estab-
lished a database integrating miRNA expression and clinical data derived from four independent hepatocellular 
carcinoma studies encompassing microarray and RNA-seq expression datasets. In this database, we validated the 
prognostic power of the miRNA biomarker candidates in a uni- and a multivariate analysis.

There were 55 miRNAs with expression that showed significant association with OS in HCC in the RNA-seq 
dataset. Among others, we found the strongest association with OS for hsa-miR-149, hsa-miR-139, hsa-miR-3677, 
hsa-miR-550a, and hsa-miR-212. Kaplan-Meier analysis showed that, with the exception of hsa-miR-139, 
increased expression of these miRNAs is associated with shorter overall survival.

A previous study revealed that hsa-miR-139 is a potential anti-oncogene in HCC29. Decreased expression of 
hsa-miR-139 was correlated with unfavorable survival outcome, invasion, microsatellite formation, and reduced 
differentiation. In vitro experiments overexpressing hsa-miR-139 in HCC cells reveled reduced migration and 
invasion capability of the cells and lower incidence of lung metastasis29. Hsa-miR-139 can interact with the 
ROCK2 kinase and reduce its expression in HCC cells, which is an important modulator of focal adhesion for-
mation, cell motility and tumor cell invasion29. In another study, hsa-miR-139 inhibited T-cell factor-4 (TCF-4) 
protein expression via directly binding to the 3′UTR region of TCF-4 mRNA30. TCF-4 promotes initiation and 
progression of HCC by binding to β-catenin and transactivates Wnt target genes31. The decreased expression of 
hsa-miR-139 can induce tumor progression via the β-catenin/TCF-4 signaling pathway30. In this study, we con-
firmed these previous studies by linking low expression of hsa-miR-139 to poor clinical outcome.

Hsa-miR-550a is up-regulated in multiple cancers including HCC32. This miRNA regulates the invasion and 
migration of HCC cells via cytoplasmic polyadenylation element binding protein 4 (CPEB4). A previous study 
showed that hsa-miR-550a and CPEB4 expression were inversely associated in HCC samples and associated with 
unfavorable survival outcome33. This suggested, that the decreased expression of CPEB4 in HCC may be at least 
partially due to the upregulation of hsa-miR-550a. Our findings are consistent with these results, as we not only 
observed an increased expression of hsa-miR-550a in tumor tissue, but also a correlation to poor overall survival.

Figure 4.  Best performing miRNAs when utilizing expression ratios of tumor and matched normal samples 
using data of the GSE31384 dataset. Kaplan-Meier survival plots and p value vs. cutoff plots for hsa-miR-584 
(A) and hsa-miR-31 (B) and Kaplan-Meier plots for hsa-miR-105 (C), hsa-miR-29c (D), and hsa-miR-146b-3p 
(E). Ranked HR values for all investigated miRNAs for overall survival (F) and disease-free survival (G).
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We also analyzed the prognostic efficiency of the previously reported miRNAs using a gene chip dataset 
(GSE31384). The expression values in this set represent the expression ratio of cancerous vs. noncancerous tis-
sues. Among the 84 miRNAs, whose expression showed significant association with OS, the best performing 
miRNAs were hsa-miR-584, hsa-miR-31, hsa-miR-105, hsa-miR-29c, and hsa-miR-146b-3p. High levels of these 
miRNAs were associated with poor survival, except for hsa-miR-584. These observations coincide with a previous 
analysis that showed a significant correlation between the expression and overall survival of these best performing 
miRNAs34.

Figure 5.  miRNAs significant in at least two studies (A) and miRNAs consistently down/up regulated in three 
datasets (B–F) – tumor vs. normal expression in TCGA, GSE10694 and GSE6857 datasets.

Figure 6.  Heatmap showing correlation coefficients across all miRNAs significant in the survival analysis in the 
TCGA (A) and GSE31384 (B) datasets.
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When comparing expression of HCC to normal liver tissue across three independent datasets, the top miRNAs 
that showed significant expression changes included hsa-miR-199a, hsa-miR-34a, hsa-miR-106b, hsa-miR-222, 
and hsa-miR-221. Hsa-miR-199a was down regulated in HCC tissues compared to adjacent non-tumor tissues by 
qRT-PCR analysis and in vitro experiments also showed that hsa-miR-199a was down regulated in HCC cell lines 
compared to a normal hepatocyte cell line35. Similar to these observations, we detected significantly decreased 
expression of hsa-miR-199a in HCC tissues. Hsa-miR-34a, a transcriptional target of TP53 in HCC36, was among 
the up-regulated miRNAs. In vitro studies showed that overexpression of hsa-miR-34a induced cell-cycle arrest 
and apoptosis by regulating cyclins, cyclin dependent kinases and apoptotic proteins37. Similarly, regarding our 
results, increased expression of hsa-miR-34a was measured in multiple studies of hepatocellular carcinoma38,39.

A few previous studies already analyzed miRNAs in the TCGA data for HCC and other tumor types. 
Andrés-Leon et al.40 identified several miRNAs as differentially expressed in multiple tumor types. They identi-
fied several up-regulated miRNAs in HCC including hsa-miR-421, hsa-miR-183, hsa-miR-182, hsa-miR-96 and 
hsa-miR-301, which were also overexpressed in our analysis. In addition, among the down-regulated miRNAs, 
hsa-miR-195, hsa-miR-139, hsa-miR-326 and hsa-miR-145 were also deregulated in our study. Jacobsen et al.41 
described an analysis tool capable to examine recurrent miRNA-mRNA associations across several cancer types 
including glioblastoma multiforme, ovarian, colon and rectal adenocarcinoma, kidney renal clear cell carcinoma, 
breast, endometrioid, bladder, head and neck and lung adenocarcinoma. Unfortunately, liver hepatocellular car-
cinoma samples were not analyzed in their study. A survival analysis revealed 414 recurrent prognostic associa-
tions, where both gene and miRNA involved in each interaction delivered significant prognostic power in one or 
more cancer types42.

There are several limitations of our analysis. First, robust survival data were available for two datasets only, and 
only one of them (TCGA) had absolute expression values. The other dataset had only tumor/normal ratios, which 
combined two levels of data to evaluate the effect of expression changes on survival. A second major limitation is 
that approximately 5% of all miRNAs were measured in each of the four datasets and only 31% of miRNAs were 
available on more than two platforms – the non-overlapping investigation of miRNA-omes seems to be an issue 
also present for other tumor types43. This means that larger future studies are still needed to perform a compre-
hensive cross-validation of all potential miRNAs.

In summary, we constructed a miRNA gene expression database containing tumor and normal samples using 
four distinct hepatocellular carcinoma datasets. We used this integrated database to validate previously published 
biomarker candidates of HCC. The complete expression file combined with sample annotation and survival times 
is available as supplemental material. This database provides the option for future studies investigating miRNAs in 
HCC not only to perform an immediate independent validation of the results but also to rank investigated genes 
by comparing them to other candidate miRNAs.

Methods
Identifying gene chip based miRNA datasets.  Microarray based gene expression series were down-
loaded from the NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) repository. We 
used the search terms ‘hepatocellular’, ‘carcinoma’, ‘miRNA’ and ‘survival’ to identify miRNA expression datasets. 
We selected only those datasets that had available expression data and clinical survival information, and included 
at least 60 HCC patients. We acquired the expression of both the primary tumor samples and the corresponding 
normal samples in cases in which those were available. Due to different sensitivity, specificity and dynamic range 
of the utilized microarray platforms, each dataset was processed separately. We filtered to include only human 
miRNA genes and removed duplicated miRNAs. To be included, a miRNA had to be detectable in at least 75% 
of samples. We derived the mean expression of identical mature miRNAs (for example: hsa-miR-101-1 and hsa-
miR-101-2 were combined). We transformed the logarithmic to a standard linear scale in case of the GSE10694 
and GSE31384 datasets.

Identifying RNA-seq based miRNA datasets.  We uncovered one RNA-seq based HCC miRNA expres-
sion dataset generated by The Cancer Genome Atlas (TCGA) research network (http://cancergenome.nih.gov). 
In this, the pooled miRNA sequencing library was sequenced using Illumina technology. We acquired the pre-
processed data normalized to reads per million mapped reads (RPM). Unmatched normal samples (n = 1) and 
recurrent samples (n = 3) were excluded from the analysis. The data filtering steps were identical to those used 
for the microarrays datasets.

Literature survey of miRNAs prognostic in hepatocellular carcinoma.  A literature search was per-
formed using the keywords: ‘hepatocellular’, ‘carcinoma’, ‘miRNA’, and ‘survival’ in the NCBI PubMed database 
(https://www.ncbi.nlm.nih.gov/pubmed/) to identify miRNAs described in the literature as potential prognostic 
biomarkers for HCC. The literature search was performed on the 25th of April 2017. Exclusion criteria included 
(a) studies not focused on miRNAs, (b) survival analysis not performed in studies, (c) data from animal or cell 
line studies, and (d) studies published in any language other than English44. Certain miRNAs were published in 
multiple studies – these were included only once in our analysis. Finally, we filtered the list of prognostic candi-
dates to those that are in fact present in our combined HCC miRNA expression database.

Survival analysis.  The entire analysis for both microarray and RNA-seq datasets was performed in the R 
2.15.0 statistical environment. Samples with missing survival data were excluded from the analysis. Hazard ratio 
(HR), 95% confidence intervals (CI) and log-rank p values were calculated. We applied the “survival” R package 
v2.38 (http://CRAN.R-project.org/package=survival/) for Cox regression analysis and the “survplot” R pack-
age v0.0.7 (http://www.cbs.dtu.dk/~eklund/survplot/) for generating Kaplan-Meier plots. We determined each 
percentile of miRNA expression between the lower and upper quartiles of expression as a cutoff point to divide 

http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/pubmed/
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patients into high and low expression groups as described previously45. Because of the low sample number, a 
cutoff outside the lower or upper quartile of expression could result in unreliable results. After this, the Cox 
regression analysis was performed separately for each cutoff. We used the cutoff with the lowest p value as the 
final cutoff in the Kaplan-Meier analysis. The cutoff values vs. p-values plot was generated to display the overall 
performance of the selected miRNAs.

In addition, a multivariate survival analysis was performed for the TCGA dataset including – in addition to 
the miRNAs – clinical data of stage and gender. To plot the distribution of miRNA expression in the high and low 
expression groups, we applied a one-dimensional scatter plot using the “beeswarm” R package (http://www.cbs.
dtu.dk/~eklund/beeswarm/). Correlation between different miRNAs was assessed by computing Spearman rank 
correlations.

Comparing miRNA expression between tumors and normal tissues.  We applied the Limma R 
package to identify differentially expressed miRNAs between the HCC tumors and matched noncancerous tis-
sues using the “model.matrix”, “lmFit”, “eBays” and “topTable” functions46. We also calculated the log2 fold change 
values (FC) for each miRNA by dividing the expression in the tumor samples with the measured expression in 
normal counterparts. The statistical significance threshold was set at p < 0.05. The setup of the database and the 
statistical computations are summarized in Fig. 1A.

Data availability.  The datasets analyzed during the current study are available in the Gene Expression 
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas (http://cancergenome.nih.gov) 
repositories.
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