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Nutrient flow to the embryo and placenta is crucial for proper development and growth during
pregnancy. In this study, a metabonomic analysis was undertaken to better understand global changes
in pregnant dairy cows on D 17 and D 45 after timed artificial insemination (Al). Metabolic changes
in the blood plasma of pregnant dairy cows were investigated using HPLC-MS and a multivariate
. statistical analysis. Changes in metabolic networks were established using the MetPA method.
© Alterations in six metabolic pathways were found on D 17 and D 45, including variations in the level
. of alpha-linolenic acid metabolism, glycerophospholipid metabolism, pentose and glucuronate
: interconversions, glycerolipid metabolism, folate biosynthesis, and tyrosine metabolism. In addition
. to these pathways, 9 metabolic pathways were markedly altered on D 45. These pathways included
. changes in the one-carbon pool caused by folate; phenylalanine, tyrosine and tryptophan biosynthesis;
. thiamine metabolism; pantothenate and CoA biosynthesis; purine metabolism; inositol phosphate
. metabolism; amino sugar and nucleotide sugar metabolism; pentose phosphate; and the TCA pathway.
: The combination of metabonomics and network methods used in this study generated rich biochemical
. insight into possible biological modules related to early pregnancy in dairy cows.

Once fertilization has occurred, the fate of a successful pregnancy is determined by the survival of the embryo
and foetus. Nutrients are essential for embryo and foetus development, although progesterone plays a vital role in
regulating uterine function and embryo development' as well as increasing pregnancy rates based on the increase
: of its concentrations®*. For example, amino acids (AA) are important components of maternally derived secre-
© tions that are crucial for embryonic survival before implantation®. Certain maternal metabolism pathways change
. due to the nutrient transport during early pregnancy. However, the related information on maternal compre-
. hensive metabolic response to early pregnancy remains limited. Hence, global changes in metabolites require
. characterization.
Metabonomics is a valuable emerging tool to measure the dynamic metabolic response of living systems to
. stimuli or modification>® and has been increasingly used to evaluate metabolic changes in dairy cows’=. There
. have been no previous reports of the use of metabonomics in the study of dairy cows during early pregnancy.
: Accordingly, this study was designed to provide an evaluation and temporal comparison of the plasmatic metab-
olome of pregnant dairy cows on D 0, D 17 and D 45 after artificial insemination (AI). HPLC-QTOF/MS was
used in combination with pattern recognition methods and pathway analysis methods to look for variation in the
metabolic phenotype and to generate a better understanding of the metabolic mechanisms occurring in pregnant
dairy cows.

Results

Metabolic profiles of Groups A, B, and C.  Representative HPLC-QTOF/MS ES* and ES™ chromatograms
are shown in Supplemental Fig. 1A,B. The final data table contained 848 variables (chromatographic peaks). The
similarities and differences among Groups A (green circles), B (blue squares), and C (red triangles) are displayed
in the score plots of the principal component analysis (PCA) (Fig. 1). The OPLS-DA models indicated clear
separations between Group A (green circles) and Group B (blue squares) (RZX = 0.57, R?Y =0.996, Q*=0.752;
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Figure 2. OPLS-DA score plot. (A) Group A (green circles) vs. Group B (blue squares); (B) Group A (green
circles) vs. Group C (red triangles).

Fig. 2A) as well as between Group A (green circles) and Group C (red triangles) (R2X =0.571, R?Y =0.995,
> =0.889; Fig. 2B). However, Groups B and C were not separated by the OPLS-DA model.

Discovery and identification of the metabolic markers. The identification of potential metabolic
markers was based on their contribution to the variations and correlation within the dataset. According to the
OPLS-DA model, Groups A and B had 57 and Groups A and C had 273 (including the 57 for Groups A and B)
significantly altered plasma features, with a variable importance in the projection (VIP) threshold (VIP > 1).
The false-discovery rate (FDR) values based on the two-sided P-values calculated from the nonparametric
Mann-Whitney U test (FDR < 0.05) were selected, and their variations are summarized in Supplemental Tables 1
and 2. Then, according to the mean rank of the Mann-Whitney U test, when compared with Group A, all of the
metabolites were found to be significantly decreased in Groups B and C.

Characterization and functional analysis of the key metabolic pathways. The 57 altered metabo-
lites in Groups A and B and the 272 altered metabolites in Groups A and C were selected to carry out metabolo-
mics pathway analysis (MetPA). The detailed results of the pathway analysis for Groups A and B and for Groups
A and C are listed in Supplemental Tables 3 and 4, respectively. The relevant pathways for Groups A and B and for
Groups A and C were visualized via an interactive visualization framework (Fig. 3A,B).

The metabolic pathways with impact value > 0.1 or- log (p) > 10 are considered the most relevant pathways
involved in the conditions under study!?. Hence, six metabolic pathways were selected as potential metabolic
pathways for Groups A and B according to their impact value (Table 1). The detected metabolites involved in
these potential metabolic pathways are summarized in Table 1. Among these pathways, three biological mod-
ules were involved in lipid metabolism, including glycerolipid metabolism, glycerophospholipid metabolism, and
alpha-linolenic acid metabolism. The other three biological modules included folate biosynthesis, pentose and
glucuronate interconversions, and tyrosine metabolism.

Fifteen metabolic pathways were selected as potential metabolic pathways for Groups A and C according to
their impact value (Table 2). Interestingly, the fifteen metabolic pathways included the six pathways for Groups
A and B. The detected metabolites involved in these potential metabolic pathways are summarized in Table 2.
Among these pathways, three biological modules were involved in lipid metabolism, including glycerolipid
metabolism, glycerophospholipid metabolism, and alpha-linolenic acid metabolism. Four biological modules
were involved in the metabolism of the cofactors and vitamins, including folate biosynthesis, the one-carbon pool
affected by folate (one-carbon cyclic metabolism by folate), thiamine metabolism, and pantothenate and CoA
biosynthesis. Five biological modules were found to be involved in carbohydrate metabolism, including amino
sugar and nucleotide sugar metabolism, inositol phosphate metabolism, the pentose phosphate pathway, the tri-
carboxylic acid cycle (TCA), and pentose and glucuronate interconversions, including the pentose phosphate
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Figure 3. The metabolome view map of relevant metabolic pathways for change in plasma metabolic profiles.
(A) Group A vs. Group B; (B) Group A vs. Group C. Light blue means the metabolite are is not in our data
but used as background for enrichment analysis; grey means the metabolite is not in our data and also
excluded from enrichment analysis; other colors (varying from yellow to red), means the metabolites are in
our data with different levels of significance for enrichment analysis; the original p value calculated from the
enrichment analysis; impact value is the pathway impact value calculated from pathway topology analysis.

(a) alpha-linolenic acid; (b) glycerophospholipid metabolism; (c) pentose and glucuronate interconversions;
(d) glycerolipid metabolism; (e) folate biosynthesis; (f) tyrosine metabolism; (g) one-carbon pool by folate;
(h) phenylalanine, tyrosine and tryptophan biosynthesis; (i) thiamine metabolism; (j) pantothenate and CoA
biosynthesis; (k) purine metabolism; (1) inositol phosphate metabolism; (m) amino sugar and nucleotide sugar
metabolism; (n) pentose phosphate pathway; (o) citrate cycle (TCA cycle).

TGs

Glycerolipid metabolism 8.81 0.23 DGs
Glycerol 3-phosphate Phosphatidic acid
TGs

Glycerophospholipid metabolism 6.88 0.34 DGs

Glycerol 3-phosphate Phosphatidic acid

2,5-diaminopyrimidine nucleoside

Folate biosynthesis 3.60 0.19 Triphosphatetetrahydrobiopterin
Alpha-linolenic acid metabolism 1.97 1 Alpha-linolenic acid

Pentose and glucuronate interconversions 1.50 0.25 Deoxycholic acid 3-glucuronide
Tyrosine metabolism 0.68 0.13 L-dopa

Table 1. The detailed results of potential metabolic pathways for Groups A vs. B. Note:-log (p) is from the
original P-value calculated from the enrichment analysis; Impact is the pathway impact value calculated

from pathway topology analysis; TGs include TG(14:0/17:1(9Z)/19:1(9Z))[is06] and TG(58:2); DGs

include DG(14:1/22:6), DG(14:1/22:6), DG(15:0/0:0/18:0), DG(15:0/20:5), DG(16:0/14:1), DG(16:0/16:0),
DG(18:1/15:0), DG(18:3/20:5), DG(20:1/14:0), DG(20:2/15:0), DG(20:2(11Z,14Z)/18:3(9Z,12Z,15Z)/0:0),
DG(20:3/0:0/18:2), DG(20:3/18:1), DG(20:4/22:0), DG(20:4(5Z,8Z,117,147)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0),
DG(22:4/14:0), DG(22:6/14:0), DG(22:6/20:4) and DG(22:5(7Z,10Z,13Z,16Z,19Z)/15:0/0:0).

pathway and the glucuronate interconversions pathway. Three biological modules were involved in AA metab-
olism, including phenylalanine, tyrosine, and tryptophan biosynthesis; tyrosine metabolism; and cysteine and
methionine metabolism. In addition, purine metabolism (impact =0.16) was determined to be involved in the
nucleotide metabolism.

Discussion

In the cow, the embryonic period of gestation extends from conception to the end of the differentiation stage
(approximately 42 days) and the foetal period extends from D 42 to parturition'!. Although most pregnancy
losses occur during the early embryonic period, the incidence of early foetal loss is increasing under intensive
management systems for dairy cattle!?. Hence, three time points (D 0, D 17 and D 45 after AI) were selected in
this study to characterize the maternal metabolic response to successful pregnancy at early embryonic and foetal
stages. An LC-MS metabonomics technique was devised to reveal metabolic changes of cows on D 0, D 17 and D
45. The results showed that the metabolic profiles of cows on D 17 and D 45 were significantly different from those

SCIENTIFICREPORTS | (2018) 8:5973 | DOI:10.1038/s41598-018-23983-2 3



www.nature.com/scientificreports/

Tetrahydrofolic acid

Dihydrobiopterin

2,5-Diaminopyrimidine nucleoside triphosphate
Folate biosynthesis 9.63 0.46 Guanosine triphosphate

Folic acid

Dihydroneopterin triphosphate
Tetrahydrobiopterin

5-Methyltetrahydrofolic acid
5,10-Methenyltetrahydrofolic acid
Tetrahydrofolic acid

Folic acid

One-carbon pool by folate 6.45 0.72

Phosphatidylethanolamine
Phosphatidylcholine

LysoPC(18:1(9Z))

Glycerol
3-phosphateGlycerylphosphorylethanolamine
Glycerophosphocholine

Glycerophospholipid metabolism | 5.52 0.38

Phosphatidylcholine
Alpha-linolenic acid metabolism | 3.74 1 Alpha-linolenic acid
Stearidonic acid

TGs
DGs
MGs
Glycerol 3-phosphate

Glycerolipid metabolism 3.25 0.33

Thiamine

Thiamine metabolism 2.42 0.4 Thiamine triphosphate

Pantetheine 4’-phosphate
237 0.39 D-4/-Phosphopantothenate
Pantothenic acid;

ADP

Deoxyadenosine

Guanosine monophosphate
Deoxyguanosine

Guanosine triphosphate
Adenosine diphosphate ribose
2’-Deoxyinosine triphosphate
5-Aminoimidazole ribonucleotide

Pantothenate and CoA
biosynthesis

Purine metabolism 2.09 0.16

N-Acetyl-D-glucosamine

Guanosine diphosphate mannose

Amino sugar and nucleotide L-Fucose

sugar metabolism . . Cytidine monophosphate N-acetylneuraminic
acid

GDP-4-Dehydro-6-deoxy-D-mannose;
1D-Myo-inositol 1,4,5,6-tetrakisphosphate
Inositol phosphate metabolism 1.91 0.14 Inositol 1,3,4-trisphosphate

1D-Myo-inositol 1,3,4,6-tetrakisphosphate;

Deoxyribose 5-phosphate

Pentose phosphate pathway 1.83 0.11 6-Phosphogluconic acid
Gluconolactone

Phenylalanine, tyrosine and 133 05 L-dopa and
tryptophan biosynthesis : . L-tyrosine
Citrate cycle (TCA cycle) 1.09 0.11 Isocitric acid

. . L-Dopa
Tyrosine metabolism 0.49 0.27 L-Tyrosine
Pentose and glucuronate 0.36 0.25 3-Methoxy-4-hydroxyphenylglycol glucuronide

interconversions

Table 2. The detailed results of potential metabolic pathways for Groups A vs. C. Note:-log (p) is from the
original P-value calculated from the enrichment analysis; Impact is the pathway impact value calculated from
pathway topology analysis; TGs include TG(14:0/18:0/20:3), TG(15:0/14:1/15:0), TG(15:0/18:1/16:1), TG(15:
0/18:3(6Z,9Z,127)/14:1(9Z)), TG(15:0/22:0/22:0), TG(16:0/16:1(9Z)/18:0)[is06], TG(16:1(9Z)/14:0/16:1(9Z))
[is03], TG(18:0/18:0/22:6) and TG(22:1/18:3/18:2); DGs include DG(14:0/0:0/22:0), DG(14:0/16:1),
DG(14:1/22:2), DG(14:1/22:6), DG(15:0/18:3), DG(15:0/20:5), DG(15:0/22:6), DG(16:0/14:1), DG(16:0/16:0),
DG(16:0/24:1), DG(16:1/0:0/22:6), DG(16:1/14:1), DG(16:1/20:3), DG(18:0/14:1), DG(18:0/15:0),
DG(18:0/18:0/18:3), DG(18:1/14:1), DG(18:1/15:0), DG(18:3/20:5), DG(18:4/20:4), DG(20:0/0:0/20:0),
DG(20:0/22:1), DG(20:1/18:4), DG(20:2/15:0), DG(20:3/18:1), DG(20:2(117,14Z)/18:3(9Z,12Z,15Z)/0:0),
DG(20:3/18:3), DG(20:3/20:4), DG(20:4/18:3), DG(20:4/18:4), DG(20:4/22:0), DG(20:4(5Z,8Z,11Z,14Z)/22:
5(7Z,10Z,13Z,16Z,19Z)/0:0), DG(20:5/14:1), DG(20:5/15:0), DG(20:5/16:1), DG(20:5/18:4), DG(22:0/20:1),
DG(22:0/22:5), DG(22:4/14:0), DG(22:5(7Z,10Z,13Z,16Z,19Z)/15:0/0:0), DG(22:5/18:2), DG(22:5/20:1),
DG(22:5/20:4), DG(22:5/22:5), DG(22:6/14:0), DG(22:6/15:0), DG(22:6/18:4), DG(22:6/20:4), DG(22:6/22:5),
DG(24:0/18:0), DG(24:1/0:0/18:2) and DG(24:1/22:2); MGs include MG(20:2/0:0), MG(18:1(9Z)/0:0/0:0),
MG(20:3(112,142,17Z)/0:0/0:0) and MG(20:5/0:0).
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of cows on D 0. Six metabolic pathways had changed on D 17 and D 45, and another 9 metabolic pathways had
also changed on D 45. However, no significant differences existed between cows on D 17 and D 45.

Plasma triacylglycerols (TGs), diacylglycerols (DGs) and their metabolites involved glycerolipid metabolism
and glycerophospholipid metabolism decreased on D 17 and D 45 of pregnancy, which may be related to changes
in the use of fatty acids for energy production via fatty acid beta-oxidation. The ewe endometrial lipid abundance
increased as the oestrous cycle progressed from D 3 to D 12 and then to D 15, whereas during early pregnancy,
endometrial lipid concentrations decreased on D 15 of pregnancy compared with that on D 3 and D 12"°. These
findings indicate that lipids are accumulated in the uterus before insemination and then gradually consumed
as a source of energy for embryo via fatty acid beta-oxidation as pregnancy progresses. Therefore, the decreases
in TGs, DGs and their metabolites in the maternal plasma may reflect an increased requirement for fatty acid
beta-oxidation by the uterus to provide energy for the embryo and foetus on D 17 and D 45 of pregnancy in dairy
cows.

An “essential fatty acid”, alpha-linolenic acid (ALA), was decreased on D 17 and D 45 of pregnancy in this
study, consistent with a woman’s essential fatty acid status during pregnancy’*. From the physiological point of
view, the most important role in maternal-foetal metabolism is performed by long chain poly-unsaturated fatty
acids (LC-PUFAs), the most important of which include ALA-17. ALA is also a precursor for other biologically
important LC-PUFAs. Derivatives of ALA are represented by docosahexaenoic acid (DHA), which is necessary
for brain development', and eicosapentaenoic acid (EPA), a precursor of numerous prostanoids and leukotrienes
that are essential in foetal development. Due to the lack of certain elongases and desaturases in the placenta, the
biosynthesis of the most important LC-PUFAs, such as DHA or EPA, occurs in the mother and partly in the liver
of the foetus'®. Therefore, we hypothesized that ALA, from the beginning of pregnancy, may be used to synthesize
most important LC-PUFAs by the mother for embryo and foetal development, causing its blood concentration to
decrease on D 17 and D 45 of pregnancy.

The change in tyrosine metabolism was reflected by decreased plasma L-dopa on D 17 of pregnancy, and the
change in phenylalanine, tyrosine, and tryptophan biosynthesis was reflected by decreased plasma L-dopa and
L-tyrosine on D 45 of pregnancy. A decrease in maternal blood L-tyrosine has a positive effect on a successful
pregnancy because a high dose of tyrosine can significantly decrease the concentration of serum progesterone to
terminate early pregnancy in mice'. L-tyrosine is converted into L-dopa and subsequently into catecholamine in
vivo. Catecholamine is sharply decreased in a pregnant uterus compared with a non-pregnant uterus in animals
of various species, the physiological relevance of this change in the uterus is likely that the ability of the adrenergic
innervation to elicit a contractile response is considerably limited®. Therefore, a decrease in maternal plasma
L-dopa or L-tyrosine is probably responsible for a reduced catecholamine in the uterus in this study.

In this study, only plasma triphosphatetetrahydrobiopterin and 2,5-diaminopyrimidine nucleoside involved
in the folate biosynthesis pathway decreased on D 17, then folic acid and more other metabolites involved in
this pathway decreased on D 45. In 2010, Kwong et al. provided insight into the importance of maternal dietary
folate/B-vitamin status during the peri-conceptional period in bovines'®, although the supply of folic acid by the
diet and the synthesis by ruminal microflora is sufficient to prevent folic acid deficiency in dairy cows and to
maintain normal gestation?'. Pregnant women are more prone to folic acid deficiency due to the sharp increase in
maternal consumption caused by the maternal folic acid being transported to a foetus via the placenta® together
with the increase folic acid output due to changes in the maternal renal function. Therefore, a decrease in plasma
metabolites in the folate biosynthesis pathway on D 17 and D 45 of pregnancy is probably due to maternal folic
acid being transported to the uterus for embryo and foetal development.

Plasma metabolites involved thiamine metabolism and TCA cycles decreased on D 45 of pregnancy. Folic acid
can promote thiamine absorption from the intestinal tract. Accompanied by a decrease in folate, serum retinol,
pyridoxal 5’-phosphate and thiamine decrease in humans during pregnancy?. Thiamine is the precursor of thi-
amine pyrophosphate, which is an important coenzyme involved in the oxidative decarboxylation of pyruvate
and alpha ketoglutaric acid in TCA cycles. Accordingly, a decrease in plasma metabolites involving thiamine
metabolism and TCA cycles may be due to reduced folic acid.

A central function of folate-mediated one-carbon metabolism is to generate and transfer One-carbon units for
the de novo synthesis of purines, thymidylate andremethylation of methionine'®. Hence, a decrease in metabolites
involving one-carbon metabolism, cysteine and methionine metabolism and purine metabolism on D 45 may be
the consequence of reduced folic acid.

The pantothenate and CoA biosynthesis pathway may be involved in foetal development in dairy cows. We
observed that pantothenic acid and their metabolites decreased on D 45 of pregnancy. PA is a part of the CoA and
acyl carrier protein of fatty acid synthase in many metabolic pathways. Maternal PA deficiency during embryo-
genesis in rats has been reported to produce congenital malformation and to retard foetal growth?*. The blood
pantothenic acid concentrations of pregnant women shows exhibit lower levels than those in non-pregnant
women in the same age classes®. In this the present study, the decreased maternal plasma pantothenic acid level
on D 45 of pregnancy was probably due to the transfer of PA to the foetus via the uterus.

The plasma metabolites involving the inositol phosphate metabolism pathway, such as inositol 1,
3,4-trisphosphate (IP;), on D 45 were lower than on D 0. Such changes may result from the change in proges-
terone concentration during the period of maternal recognition of pregnancy. Oxytocin-stimulated secretion
of PGF,, probably occurs via activation of the inositol phosphate (IP)/diacylglycerol second-messenger system
within the endometrium?. The induction of oxytocin-stimulated endometrial turnover of IP between D 12 and
16 of the cycle may be involved in the luteolytic mechanism, and a conceptus-dependent endometrial block to
oxytocin-stimulated turnover of IP occurs during the period of maternal recognition of pregnancy in ewes?.
Progesterone involves the inhibition of oxytocin-stimulated turnover of 1P,

Maternal plasma metabolites involving pentose and glucuronate interconversion pathways decreased on D
17 of pregnancy. Subsequently, metabolites involving pentose and glucuronate interconversions, the pentose
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phosphate pathway, amino sugar and nucleotide metabolism and purine metabolism decreased on D 45 of preg-
nancy. These metabolic pathways are associated with nucleic acid biosynthesis. Accordingly, maternal plasma
nucleic acids might be diminished because they may be needed in the uterus as a mechanism to generate energy
for embryo development without using glucogenic precursors.

In conclusion, this study presents the first integrated analyses of metabonomics and pathway analysis in dairy
cows during early pregnancy. Our data show that the obvious changes in plasma metabolic profiles occur in dairy
cows at early embryonic and foetal stages, which is reflected by variations in the levels of six metabolic pathways
that are obvious at early embryonic stages and fifteen metabolic pathways at early foetal stages. Clearly, the com-
bination of metabonomics and pathway analysis generates rich biochemical insight into the possible biological
modules related to embryo and foetal development. However, a further targeted study in uterus tissue and mater-
nal blood is required to test the metabolic changes.

Materials and Methods

Study subjects and plasma collection. Holstein multiparous cows from a dairy farm (Yinchuan City,
China) were used for plasma sampling. The study was performed according to the international, national and
institutional rules considering animal experiments, clinical studies and biodiversity rights and approved by the
Animal Ethics Committee of Ningxia University (permit number: 0281/2016).

Twelve plasma samples from dairy cows on D 0 at the time of AI were referred to as Group A. Twelve plasma
samples were collected and retained from dairy cows 17 days after Al eleven of which were selected as Group
B because the corresponding dairy cows were later confirmed by transrectal ultrasonography to have been suc-
cessfully impregnated on D 45 of pregnancy. Fourteen plasma samples (referred to as Group C) were collected 45
days after timed AI from dairy cows that were confirmed by transrectal ultrasonography to have been successfully
impregnated. All dairy cows were in their second lactation and selected for this study according to their body
weight, body condition score, and milk yield to attenuate possible effects of different conditions and merit. All
cows were oestrus synchronized by two injections of prostaglandin F2« 14 days apart. Each group of cows was
inseminated on the same day.

Morning fasting blood samples were collected from the tail vein using a heparin (10 IU/mL) anticoagulant
blood tube. The plasma samples were immediately prepared by centrifugation at 3,000 rpm for 10 minutes and
then stored at —80 °C until used for the metabonomics analysis.

Sample preparation and pretreatment. Prior to the LC/MS analysis, the plasma samples were thawed at
room temperature for 15 minutes and vortexed vigorously for five seconds. Next, 300 pL of HPLC-grade methanol
(Merck, Germany) was added to 100 uL of the plasma samples, and they were then vigorously vortexed again for
another 30 seconds. The mixtures were centrifuged at 12,000 rpm for 15 minutes at 4 °C. Supernatant (200 uL)
was transferred to a high-performance liquid chromatography (HPLC) auto-sampler injection vial for the LC/
MS analysis. To ensure the stability and repeatability of the HPLC-QTOF systems, pooled quality control (QC)
samples were prepared from 20 pL of each sample, and these were then staggered through the other samples (after
every five).

HPLC-QTOF/MS analysis. HPLC-QTOF/MS analysis was performed on a 4 pL aliquot of the pretreated
plasma samples using a C18 (Agilent, 2.1 mm x 100 mm x 1.8 pm) column held at 40 °C using the Agilent 1290
Infinity LC System (Agilent Technologies). The mobile phase was made up of A (water with 0.1% formic acid) and
B (acetonitrile with 0.1% formic acid). The metabolites were eluted with a gradient of 5% B for 0 to one minute;
5% to 20% B for one to six minutes; 20% to 50% B for six to nine minutes; 50% to 95% B for nine to 13 minutes;
and then maintained at 95% B for 13 to 15 minutes. The flow rate was 0.4 mL/min, and the samples were main-
tained at 4 °C during the analysis.

In this study, the mass spectrometry was performed using an Agilent 6530 UHD and an Accurate-Mass QTOF
(Agilent Technologies) equipped with an electrospray ionization source operating in either positive or negative
ion mode. The source temperature was set at 100 °C with a cone gas flow rate of 50 L/h. The dissolving gas temper-
ature was 350 °C with a flow rate of 600 L/h in positive ion mode (ES*), and at 300 °C, the flow rate was 700 L/h
in negative ion mode (ES™). The capillary voltages were set at 4kV ES* and 3.5kV in ES~. The sampling cone
voltage was set at 35kV in ES* and 50kV in ES™. The extraction cone voltage was set at 4V in ES* and ES. The
centroid data were collected from 50 m/z to 1,000 m/z with a scan time of 0.03 seconds and an inter-scan delay of
0.02 seconds. All of the analyses were acquired using a lock spray feature to ensure accuracy and reproducibility,
and leucine-enkephalin was used as the lock mass (m/z 556.2771 in ES*, and 554.2615 in ES™)%.

Data preprocessing and annotation. The raw HPLC-QTOF/MS ESI data were converted to mz format
data using a Mass Profiler (Agilent). The files were then imported to a XCMS package (R program) for preproc-
essing, which included nonlinear retention time (RT) alignment and matched filtration, as well as peak detection
and matching®.

Finally, the output data were manually searched and edited using EXCEL 2007 software, which included the
elimination of impurity peaks and duplicate identifications. The final results were changed into a 2D data matrix,
including the variance (Rt/mz), observed quantity (code of each plasma sample), and peak intensities.

Statistical analysis. The two data sets that resulted from the HPLC-Q/TOF/MS ES* and ES~ were mean
centred, unit variance scaled, and combined prior to a multivariate statistical analysis using SIMCA-p 13.0 soft-
ware. The unsupervised method (PCA) and the supervised method (OPLS-DA) were both employed to reveal the
metabolic changes between groups. The validity of the model was certified via a 7-fold cross-validation method*!
along with a permutation test method*2. The goodness-of-fit parameters for the OPLS model (R?X, R?Y, and
Q%Y) were then calculated and were determined to vary from 0 to 1. R?X and R?Y represented the fraction of the
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variance of the x and y variables explained by the model, respectively. Q*Y described the predictive performance
of the model. The corresponding VIP values were also calculated in the OPLS-DA model. On the basis of a VIP
threshold of 1, from the 7-fold cross-validated OPLS-DA model, a number of metabolites identified as being dif-
ferent among the A, B, and C groups, were described. The metabolites that significantly differed between groups
were determined using a nonparametric Mann-Whitney U test (SPSS version 13.0), with the critical P-value set at
0.05. The raw P-values were adjusted using a Benjamini and Hochberg procedure (BH method)*. A FDR control
was executed to correct for multiple comparisons. The adjusted P-values that were less than the desired FDR (5%)
were considered to be significant.

Identification of the plasma biomarkers. For the identification of potential biomarkers, biochemical
databases, including HMDB (http://www.hmdb.ca/), KEGG (http://www.genome.jp/kegg/), METLIN (http://
metlin.scripps.edu/), Bovine Metabolome Database (http://www.cowmetdb.ca/), SMPD (http://www.smpdb.
ca/), and MASSBANK (http://www.massbank.jp/), were used for comparison based on mass within 30 Da, with
the fragment information obtained from the HPLC-QTOF/MS. The list of potential metabolites following the
database matching is shown in Tables S1 and S2.

Related pathway characterization. MetPA was used to expand the characterization of the metabolomic
analyses and to clearly understand the system-level effects of the variation in metabolites'®. The metabolites were
imported into a Metaboanalyst 3.0 (http://www.metaboanalyst.ca/) to generate the metabolome view, which inte-
grated the pathway enrichment analysis and the pathway topology analysis. Bos taurus (cow) was selected as the
model organism. An over-representation analysis (ORA)* was applied for the functional enrichment analysis.
The ORA was implemented using hypergeometric testing in order to evaluate whether a particular metabolite
set was represented more than expected by chance within the metabolite sets®. The pathway topological analysis
was based on the relative betweenness and out-of-degree centrality measures of a metabolite in a given metabolic
network and for the purpose of calculating the metabolite’s importance®. Potential targets were selected either
according to the P-values from the pathway enrichment analysis or based on the impact values from the pathway
topology analysis*’. The impact value threshold was set as 0.10, and the negative-log P-value threshold was set as
10. Each different metabolite was cross-listed with the pathways. The top-level altered pathways were then iden-
tified and constructed in accordance with the potential functional analysis.
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