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Nitrogen Fertilization Elevated 
Spatial Heterogeneity of Soil 
Microbial Biomass Carbon and 
Nitrogen in Switchgrass and 
Gamagrass Croplands
Jianwei Li1, Chunlan Guo1,2, Siyang Jian1, Qi Deng   3, Chih-Li Yu3, Kudjo E. Dzantor1 &  
Dafeng Hui   3

The effects of intensive nitrogen (N) fertilizations on spatial distributions of soil microbes in bioenergy 
croplands remain unknown. To quantify N fertilization effect on spatial heterogeneity of soil microbial 
biomass carbon (MBC) and N (MBN), we sampled top mineral horizon soils (0-15 cm) using a spatially 
explicit design within two 15-m2 plots under three fertilization treatments in two bioenergy croplands in 
a three-year long fertilization experiment in Middle Tennessee, USA. The three fertilization treatments 
were no N input (NN), low N input (LN: 84 kg N ha−1 in urea) and high N input (HN: 168 kg N ha−1 
in urea). The two crops were switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum 
dactyloides L.). Results showed that N fertilizations little altered central tendencies of microbial 
variables but relative to LN, HN significantly increased MBC and MBC:MBN (GG only). HN possessed the 
greatest within-plot variances except for MBN (GG only). Spatial patterns were generally evident under 
HN and LN plots and much less so under NN plots. Substantially contrasting spatial variations were 
also identified between croplands (GG > SG) and among variables (MBN, MBC:MBN > MBC). This study 
demonstrated that spatial heterogeneity is elevated in microbial biomass of fertilized soils likely by 
uneven fertilizer application in bioenergy crops.

Bioenergy crops are important alternative technology for sustainable replacement of fossil fuels1,2. A significant 
portion (over 30%) of biofuel plant biomass will come from dedicated energy crops such as the perennial switch-
grass (Panicum virgatum) and gamagrass (Tripsacum dactyloides L)3,4. Nitrogen (N) fertilizers are widely used to 
increase yield of various bioenergy crops5–9. In bioenergy crop research field, soil microbial biomass is receiving 
increasing attentions due to its role in soil fertility and crop yield. Across various soil and plant types, intensive 
N fertilizations significantly alter soil microbial biomass and activities10,11. However, effects of fertilizations on 
spatial distributions of soil microbial biomass in bioenergy croplands remain unknown. Understanding effects 
of fertilization on soil microbial functionality, including spatial structures in various bioenergy croplands may 
enhance our ability to manipulate nutrient cycling in situ to maintain and improve soil quality, production sus-
tainability and to adapt to climate change.

Intensive inorganic fertilizer inputs substantially restructure spatial heterogeneity of soil biogeochemical and 
microbial features at a variety of spatial scales12–15. Long-term cultivation with chemical N fertilizer amendments 
resulted in weak to moderate spatial heterogeneity of soil total nitrogen and phosphorus in 0–20 cm in the field 
plot to watershed scales16,17. Effects of mineral fertilizer inputs and the consequent spatial heterogeneity in soil 
pH exerted key controls on microbial biomass carbon and nitrogen contents as well as their spatial distributions 
in a long-term field trial of organic agriculture15. Despite lacking such information, indirect evidence supported 
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strong correlation between spatial patterns of soil denitrifiers community with nitrate and other nutrients at 
scales relevant to land management18. Nevertheless, the altered spatial variation of soil microbial properties and 
structures is likely to affect the local distribution and abundance of plant species and the performance of indi-
vidual plants and microorganisms19 and, therefore, to have consequences for both community structure and 
ecosystem-level processes20–23.

Although agricultural soils are generally more homogeneous than forests14, they show a substantial level of 
spatial variability with respect to soil biochemistry. Soil microbial biomass carbon (MBC) and nitrogen (MBN) 
exhibited moderate spatial dependence24–26. Röver and Kaiser25 reported that coefficients of variation of MBC 
and MBN can reach up to 44%. The spatial distribution of soil MBN demonstrated more hotspots than MBC, 
implying that MBN might be more sensitive to environmental disturbances24. Spatial structures and variations 
of bacterial community were found at surface and subsoil horizons at the microscale, and at the centimeter to 
meter scale27. At the ecosystem scale (>10 m), bacterial community composition and structure were subtly, but 
significantly, altered by fertilization, with higher alpha diversity in fertilized plots28.

Natural heterogeneity of microbial biomass and activity could be altered likely through soil chemical changes 
(e.g. pH) caused by fertilizer input15. Spatial patterns and the scale of soil variability differ markedly among 
edaphically similar sites and these differences are also conditioned likely by intensity and duration of fertili-
zations13,14,29. On the other hand, bioenergy crop species not only influence biomass yield30,31 but also spatial 
variations25. Plant trees play a major influence on spatial structures of soil microbial communities32–34. Among 
switchgrass and gamagrass, the latter possessed more significant root biomass and volume35 thus likely favoring 
nutrients scavenging and microbial activities and contributing to long-term spatial heterogeneity of soil microbial 
biomass36–39.

Taken together, previous results suggest that soil microbial features such as MBC and MBN can greatly 
respond to fertilization in their spatial variability compared with soils without fertilizer input for years in bioen-
ergy croplands. The objective of this study is to investigate effects of N fertilization on spatial distribution of soil 
MBC, MBN and MBC:MBN in two bioenergy croplands (SG and GG) in a three-year long field experiment at 
Tennessee State University’s campus farm in Nashville TN, representing a typical bioenergy crop site in Middle 
Tennessee. Under no tillage or plowing and minor mechanical disturbance, N fertilizer input marked a major 
management practice in these research plots. We hypothesize that relative to soils that have never been fertilized 
for years, long-continued N fertilization re-structures spatial patterns of soil MBC, MBN and MBC:MBN at both 
croplands. The extent of altered spatial heterogeneity varies between variables (MBN > MBC) and crop types 
(GG > SG). We also explored whether there is significant correlation between soil pH and microbial variables. 
This study is expected to clarify the fertilization effect on redevelopment of spatial heterogeneity of key soil micro-
bial features in typical bioenergy croplands.

Material and Methods
Site Description and Characteristics.  This study was conducted at the Tennessee State University 
(TSU) Main Campus Agriculture Research and Extension Center (AREC) in Nashville, TN, USA (Lat. 36.12° N, 
Long. 36.98° W, elevation 127.6 m). Soil at this location is Armour silt loam soil (fine-silty, mixed, thermic Ultic 
Hapludalfs) with soil pH of 5.97 and organic matter content of 2.4% on average40. A field experiment was estab-
lished with two crop types and three nitrogen (N) fertilization treatments in 2011 in a randomized block design41. 
The two crop types include no till cultivation of ‘Highlander’ variety of eastern ‘Alamo’ switchgrass (Panicum virg-
atum L.) and gamagrass (Tripsacum dactyloides L.). The switchgrass and gammagrass were abbreviated as SG and 
GG hereafter. The three N fertilization treatments include no N fertilizer input (NN), low N fertilizer input (LN: 
84 kg N ha−1 in urea) high N fertilizer input (HN: 168 kg N ha−1 in urea). Each plot has a dimension of 3-m × 6-m 
and each treatment has four replicate plots.

Soil collections and laboratory analysis.  On June 6th 2015, soil cores were collected from 0 to 15 cm 
depth using soil auger (Thermo Fisher Scientific, Waltham, Massachusetts, USA) from 12 plots (2 crop × 3 N × 2 
replicates). That is, two of the four replicated plots were selected in the current study. Within each plot, we identi-
fied a sampling area of 2.75-m × 5.5-m rectangle and the southwestern corner point was identified as the origin. 
Each plot was divided into two-square subplots and within each subplot, four centroids were identified and three 
cores were collected randomly given random direction and distance relative to each centroid (Fig. 1). When a soil 
core was collected, we recorded its location in reference to the origin taken as the southwestern corner, i.e. each 
sampling point had a unique x, y coordinates. Twenty-four cores were collected from each plot yielding 288 soil 
cores in 12 plots. All soil samples were transported to TSU lab in cooler filled with ice packs and subsequently 
stored at 4 °C until microbial analysis.

The visible roots and rocks were removed from soil cores by passing through a 2-mm soil sieve prior to micro-
bial and chemical analysis. For each individual sample, soil gravimetric moisture content was determined by oven 
drying subsamples for 24 hours at 105 °C. Water extractable soil pH was measured given soil: water = 1:542. The 
results were summarized in Table S1. Microbial biomass carbon and nitrogen were quantified as described in the 
following session. Besides, a composited subsample was produced by combining six soil samples of equivalent 
dry weight for each treatment. The air-dried subsamples were ground to a fine powder and sent to University of 
North Carolina at Wilmington Center for Marine Science for analysis of soil organic carbon content (SOC) and 
nitrogen content (TN).

Fresh soil samples (1.0 g) were used to estimate microbial biomass carbon (MBC) and microbial biomass 
nitrogen (MBN) in each core by chloroform fumigation-K2SO4 extraction and potassium persulfate diges-
tion methods43,44. Briefly, 0.5 M K2SO4 was used to extract soil dissolved organic carbon and nitrogen from 
fumigated and unfumigated soil samples. Soil extracts were digested with 0.5 M K2S2O4 in oven at 85 °C for 
20 hours. The K2SO4-extractable C and N in fumigated and unfumigated samples were determined by Shimadzu 
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TOC-L & TNM-L (Shimadzu Corporation, Kyoto, Japan). MBC or MBN was calculated as the difference in 
K2SO4-extractable C or N concentration between fumigated and unfumigated soils, divided by 0.45 for C and 0.54 
for N, respectively42,45. To minimize the variation likely induced due to unevenly soil mixing, laboratory tests were 
conducted and specific protocols were created to secure sufficient soil mixing. The variation of each measurement 
(i.e. coefficient variation) in multiple tests ranged from 2~8% based on our protocol.

Statistical and geospatial analysis.  Means, standard errors, and variances were estimated for MBC, 
MBN and their ratios in each plot. Frequency distributions were produced for each soil variable in each vegeta-
tion type after pooling all values of two replicated plots in the three nitrogen treatments. The two-way ANOVA 
was used to test whether means and coefficient of variance (CV) in MBC, MBN and their ratios differed sig-
nificantly between fertilization treatments and crop species. To precede the ANOVA, the original data was log 
transformed if it violated equal variance assumption. The significance level is set at P < 0.05 and the analysis was 
conducted using R project46.

The Pearson moment correlation coefficients were derived between soil pH, MBC, MBN, and MBC:MBN. 
Cochran’s C test is used to test the assumption of variance homogeneity. The test statistic is a ratio that relates the 
largest empirical variance of a particular treatment to the sum of the variances of the remaining treatments. The 
theoretical distribution with the corresponding critical values can be specified47–49. Soil properties that exhibited 
non-normal distributions were log-transformed to better conform to the normality assumption of the Cochran’s 
C test14.

The study also derived the sample size requirement (N) in each plot given specified relative errors (γ, 0~100%) 
in order to evaluate how within-plot variances (i.e. sample size requirements) are altered by N fertilization or crop 
types at certain relative error.

= ± ×.X t s
n

CI
(1)0 975

Figure 1.  Illustration of a clustered random sampling design within a plot in the three-year long fertilization 
experimental site at the Tennessee State University (TSU) Agricultural Research Center in Nashville, TN, USA. 
Filled circles represent centroids (n = 8) and each plot consists of eight centroids with one in each sampling 
region (1.375 × 1.375 m). Xs represent sample locations determined from random directions and distances 
from a centroid. The extent of an interpolation map was thus determined by the minimum and maximum 
values at horizontal and vertical axes, and each map can attain its extent less than or equivalent to the study area 
(2.75 × 5.5 m rectangle).
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where CI, X , s, n, N, CV and γ denote confidence interval, plot mean, plot standard deviation, sample number 
(n=24), coefficient of variation, sample size requirement and relative error, respectively. t0.975 = 1.96. The log 
transformed sample size requirement (N) has a negative linear relationship (i.e. slope = 2) with the log trans-
formed relative error (γ).

In addition to the within-plot variance and derived statistics such as coefficient of variation and sample size 
requirement, the following geostatistical tools were used to quantify the spatial structure of soil microbial prop-
erties within and among plots. The methods were briefly described below and more details can be found in Li et 
al. (2010).

First, the trend surface analysis (TSA) is the most common regionalized model in which all sample points fit 
a model that accounts for the linear and non-linear variation of an attribute. The relationships between the soil 

Crop Fertilization

MBC CV(%) MBN CV(%) MBC:MBN CV(%)

μgC/gsoil % μgN/gsoil % %

SG

NN 137.4 ± 3.6bc 18.12 14.8 ± 0.7a 33.82 10.3 ± 0.6a 37.78

LN 133.9 ± 5.3c 27.38 17.1 ± 1.0a 40.65 8.8 ± 0.5ab 39.33

HN 160.8 ± 7.1ab 30.53 18.4 ± 1.3a 49.48 10.1 ± 0.6a 42.20

GG

NN 146.9 ± 6.7abc 31.58 18.6 ± 1.1a 41.38 8.8 ± 0.5ab 40.07

LN 128.6 ± 5.0c 26.91 18.3 ± 1.0a 37.23 7.7 ± 0.4b 38.80

HN 164.6 ± 7.1a 29.76 18.1 ± 0.9a 35.40 10.2 ± 0.7a 44.90

Table 1.  Mean (±SE) microbial biomass carbon (MBC, µgC/gsoil), microbial biomass nitrogen (MBN, µgN/
gsoil) concentrations, MBC:MBN, and their respective coefficients of variance (CV, %) under three fertilization 
treatments (i.e. NN, LN and HN) in SG and GG cropland soils in a three-year long fertilization experimental 
site at the Tennessee State University (TSU) Agricultural Research Center in Nashville, TN, USA. SG: 
switchgrass; GG: gammagrass; NN: No nitrogen; LN: Low nitrogen (84 kg N/ha/yr); HN: High nitrogen 
(168 kg N ha/yr). Different lowercase letters within each column represent significant difference between 
nitrogen fertilization treatments at P < 0.05 (N = 48). The units for MBC and MBN are mgC/gsoil and mgN/gsoil 
in other Tables and all Figures, respectively (1 mg = 1000 µg).

Figure 2.  Frequency histograms of soil MBC, MBN concentrations and MBC:MBN under three fertilization 
treatments (i.e. NN, LN and HN) in SG (panels a~c) and GG (panels d~f) croplands in a three-year long 
fertilization experimental site at the Tennessee State University (TSU) Agricultural Research Center in 
Nashville, TN, USA. The number on the x-axis (i.e. 0.03, 0.08 in panel a) represents a range of (0, 0.03) and 
(0.03, 0.08), respectively. The abbreviations are referred to Table 1.
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properties and the x and y coordinates of their measurement location within the sampling plots are estimated 
with the trend surface model:

β β β β β β= + + + + +Soil property value x y xy x y (4)0 1 2 3 4
2

5
2

The presence of a trend in the data was determined by the significance of any of the parameters β1 to β5, while 
the β0 term modeled the intercept50,51. Linear gradients in the x or y directions were indicated by significance of 
the β1 or β2 parameters. A significant β3 term indicated a significant diagonal trend across a plot. Significant β4 
and β5 parameters indicated more complex, nonlinear spatial structure such as substantial humps or depressions. 
Trend surface regressions were estimated using R program46. Model parameters were determined to be significant 
at a level of P < 0.05.

Second, residuals from the trend surface regressions were saved for subsequent spatial analysis using a Moran’s 
I index51. The Moran’s I analysis52–54 was used to quantify the degree of spatial autocorrelation that existed among 
all soil cores taken from each plot. The resulting local Moran’s I statistics are in the range from −1 to 1. Positive 
Moran’s I values indicate similar values (either high or low) are spatially clustered. Negative Moran’s I values 
indicate neighboring values are dissimilar. Moran’s I values of 0 indicate no spatial autocorrelation, or spatial 

Figure 3.  Within-plot CVs of MBC (mgC/gsoil), MBN (mgN/gsoil) concentrations, and MBC:MBN under 
three N fertilization (i.e. NN, LN and HN) in (a) SG and (b) GG cropland soils in a three-year long fertilization 
experimental site at the Tennessee State University (TSU) Agricultural Research Center in Nashville, TN, USA. 
The dashed lines represent a CV of 30% and 40%. The abbreviations are referred to Table 1. Different lowercase 
letters denote significant difference in CV between fertilization treatments for each variable at P < 0.05.

Crop Fertilization Plot MBC MBN MBC:MBN

SG

NN
P1 816.06 24.91 15.45

P2 448.07 23.87 14.06

LN
P1 1736.60 41.59 13.54

P2 948.26 53.11 8.69

HN
P1 2073.30 19.30 14.62

P2 1129.91 111.19 22.32

Cochran’s test
C value 0.29 0.41 0.25

p-value 0.04 0.00 0.23

GG

NN
P1 1089.91 65.59 6.35

P2 618.26 54.00 13.28

LN
P1 1007.95 43.80 8.07

P2 809.07 47.35 9.83

HN
P1 1248.54 51.56 14.75

P2 769.38 26.78 3.00

Cochran,s test
C value 0.23 0.23 0.27

p-value 0.61 0.58 0.12

Total Cochran,s test
C value 0.16 0.20 0.16

p-value 0.03 0.00 0.06

Table 2.  Comparison of the variances and Cochran’s C test results for soil MBC and MBN concentrations 
and MBC:MBN under three N fertilization treatments (i.e. NN, LN and HN) in SG and GG cropland soils in 
a three-year long fertilization experimental site at the Tennessee State University (TSU) Agricultural Research 
Center in Nashville, TN, USA. Bold numbers in each column denote the first three largest variances than eleven, 
ten or nine plots, respectively at p-value < 0.05 (N = 24). The abbreviations are referred to Table 1.
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randomness. A significant autocorrelation is determined if the observed Moran’s I value is beyond the projected 
95% confidence interval at certain distance. Correlograms for local Moran indices were estimated for each soil 
variable in each plot in a range of 0–5.5 meter with 0.25 meter incremental interval.

Third, due to relatively small sample sizes (n = 24) per plot55, we used inverse distance weighting (IDW) inter-
polation rather than ordinary kriging56. The maps produced by IDW offered direct and visual assessments from 
which to compare the spatial distributions of the soil properties among the plots. The IDW method derived maps 
was able to distinguish effects of different land uses on spatial distributions of soil biogeochemical features in 
South Carolina, USA14. The weights for each observation are inversely proportional to a power of its distance 
from the location being estimated. Exponents between 1 and 3 are typically used for IDW, with 2 being the most 
common57. Tests with different IDW exponents indicated that 2 was optimal with these data, as estimated values 
generated with an exponent of 2.0 showed the best fit with actual data in cross validation tests. ArcGIS 9.0 (ESRI, 
USA) was used to generate the IDW maps and perform cross validations.

Results
Central tendencies of soil biomass and pH under different treatments.  Mean MBC, MBN and 
MBC:MBN in NN treatment were not significantly different from that in either LN or HN for both SG and GG 
(Table 1). Mean MBC and MBC:MBN in HN treatment were significantly larger than that in LN treatment, but 
MBN was not significantly different between LN and HN treatments. These patterns were also reflected by the 
high frequency of larger MBC values and similar frequency of MBN among different N treatments (Fig. 2). The 
distribution of MBC:MBN showed higher frequency in lower values in general, but the frequency of higher values 
were particularly large for HN than LN for GG (Fig. 2). The average water extractable soil pH in different plots 
ranged between 5.91 and 6.12 (see Supplemental dataset), and showed neither significant differences between 
treatments nor significant correlations with any of microbial variables (Table S2).

Within-plot variance, within-plot CV and sample size requirement.  The largest within-plot vari-
ances appeared consistently in one of the HN plots for all three variables in two croplands except for MBN in NN 
plot in GG (Table 2). Within-plot variances of soil MBC and MBN varied largely among different plots in SG but 
showed consistently high in GG. Cochran’s C test showed significantly different within-plot variances of MBC 
and MBN in SG but not in GG (Table 2).

The within-plot CVs ranged from 15~48% for all variables and both croplands (Fig. 3). There is no significant 
difference of CV between two croplands (P > 0.05). The CVs under NN was significantly lower than that under 
LN or HN or both for three variables only in SG (P < 0.05). The CVs also differed significantly between LN and 
HN in GG (Fig. 3). The ranges of CVs for MBC were narrower than that for MBN and MBC:MBN. The largest 
CVs appeared to be in one of plots in HN treatment in SG, but none in GG (Fig. 3). As for the number of plots in 

Figure 4.  The relationship between log transformed sample size requirements and desired relative errors. 
Panels a~f denote the linear regression lines for soil MBC, MBN concentrations and MBC:MBN under three 
N fertilization treatments (i.e. NN, LN and HN) in SG and GG cropland soils in a three-year long fertilization 
experimental site at the Tennessee State University (TSU) Agricultural Research Center in Nashville, TN, USA. 
The log scale was applied on both axes. The abbreviations are referred to Table 1.
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twelve that produced CVs of more than 30% for MBN, MBC:MBN and MBC, respectively, they were six, six and 
one in SG, and five, four and none in GG. When the threshold of CV set at 40%, the numbers are two, one and 
none in SG, and three, one and none in GG.

Figure 5.  Moran’s I correlograms for soil MBC concentration under three N fertilization treatments (i.e. NN, 
LN and HN) in SG and GG cropland soils in a three-year long fertilization experimental site at the Tennessee 
State University (TSU) Agricultural Research Center in Nashville, TN, USA. Filled circles denote Moran’s I 
values that exhibited significant positive or negative autocorrelation. Obs: observations; LCL: low confident 
limit; and UCL: Upper confidence limit. Other abbreviations are referred to Table 1.
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The plotted lines of sample size requirements were more widely separated for MBC than for MBN and 
MBC:MBN in both croplands (Fig. 4). Given the same relative desired error, much less sample size were required 
for MBC than for MBN and MBC:MBN in both SG and GG. The largest sample size requirements for all variables 
appeared to be at a HN plot in SG (Fig. 4a~c), but it is not true in GG (Fig. 4d~f). With such variability for soil 

Figure 6.  Moran’s I correlograms for soil MBN concentration under three N fertilization treatments (i.e. NN, 
LN and HN) in SG and GG cropland soils in a three-year long fertilization experimental site at the Tennessee 
State University (TSU) Agricultural Research Center in Nashville, TN, USA. Filled circles denote Moran’s I 
values that exhibited significant positive or negative autocorrelation. Obs: observations; LCL: low confident 
limit; and UCL: Upper conficence limit. Other abbreviations are referred to Table 1.
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MBN, even five samples per plot still will produce a relative error of the mean greater than ±30% (Fig. 4b,e), a 
sobering result given the level of interest in precise estimates of microbial dynamics. We think it not well appre-
ciated that in either unfertilized or fertilized soils of gamagrass, the relative error of the estimate for MBN to be 
expected is >±50% if three samples are taken to estimate the mean (Fig. 4).

Spatial heterogeneity under nitrogen fertilization and different crop species.  Results of the 
trend surface analyses (Table 3) indicated that significant linear trends (i.e. diagonal direction) were identified in 
HN plots only (i.e. MBC at both SG and GG). More linear and nonlinear trends were identified in both LN and 
HN plots than that in NN plots, for MBC:MBN (SG and GG) and for MBN (GG only). The linear and nonlinear 
trends were identified for MBN in NN plot in SG only.

Correlograms showed more significant autocorrelations of three variables in LN and HN than NN in either 
plot or treatment level, only except the equal number of significant autocorrelations of MBC in plots of NN and 
LN in SG (Fig. 5). For MBC, significant autocorrelations were present in each plot of LN treatment in GG (Fig. 5) 
and the lagging distances were either positive or negative ranging from 0.5 m to 2.0 m (Table 4). For MBN, only 
one significant autocorrelation was identified in one plot of NN in SG and none were present in NN plots in GG, 
whereas, such significant autocorrelations were present much more frequently in one plot of LN in GG (Table 4; 
Fig. 6). The lagging distances were either positive or negative for these significant autocorrelations and ranged 

Crop Variable Fertilization Plot β0 β1x β2y β3xy β4x² β5y² r²

SG

MBC

NN
P1 0.161*** — — — — — 0.407

P2 0.131*** — — — — — 0.130

LN
P1 0.229** — — — — — 0.296

P2 0.136** — — — — — 0.253

HN
P1 0.188** — — — — — 0.290

P2 0.200*** — — 0.022* — — 0.289

MBN

NN
P1 0.028*** −0.018* — — 0.006* — 0.408

P2 — — — — — — 0.134

LN
P1 0.0280* — — — — — 0.152

P2 0.0143* — — — — — 0.545

HN
P1 — — — — — — 0.140

P2 — — — — — — 0.287

MBC:MBN

NN
P1 — — — — — — 0.092

P2 11.443* — — — — — 0.078

LN
P1 — — — — — — 0.105

P2 11.157*** — — — 2.519* 0.544* 0.538

HN
P1 16.528** — — — — — 0.416

P2 — — — — — - 0.303

GG

MBC

NN
P1 — — — — — — 0.184

P2 0.226*** — — — — — 0.150

LN
P1 0.162** — — — — — 0.074

P2 0.157** — — — — — 0.097

HN
P1 0.227*** — — — — — 0.153

P2 0.138*** — — −0.010* — — 0.379

MBN

NN
P1 — — — — — — 0.176

P2 — — — — — −0.00278 0.346

LN
P1 0.028** — — — — — 0.210

P2 0.041*** — −0.0152*** — — 0.0019** 0.582

HN
P1 — — — — −0.0030* 0.346

P2 0.015* — — — — — 0.142

MBC:MBN

NN
P1 10.379* — — — — — 0.090

P2 20.195*** −14.846* — 1.591** — — 0.430

LN
P1 — — — — — — 0.304

P2 — — 1.537* — — 0.332

HN
P1 13.969** — — 1.541* — — 0.414

P2 8.503*** — — −0.720* 1.752* — 0.485

Table 3.  Significant regression coefficients of trend-surface analysis and coefficients of determination (r2) for 
soil MBC, MBN concentrations and MBC:MBN under three N fertilization treatments (i.e. NN, LN and HN) in 
SG and GG cropland soils in a three-year long fertilization experimental site at the Tennessee State University 
(TSU) Agricultural Research Center in Nashville, TN, USA. *** and ***represent significance at P < 0.05, 0.01 
and 0.001, respectively. The abbreviations are referred to Table 1.
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from 0.75 m to 3.75 m (Table 4). For MBC:MBN, no significant autocorrelations were identified in one plot of 
NN in both croplands (Fig. 7) and one to three significant autocorrelations were present for other plots (Table 4).

The IDW maps of within-plot patterns of MBC in LN or HN treatments, exhibited rather higher heterogene-
ity than those in NN treatments in switchgrass or gamagrass soils (Figs 8 and 9). There appeared to have greater 

Figure 7.  Moran’s I correlograms for soil MBC:MBN under three N fertilization treatments (i.e. NN, LN and 
HN) in SG and GG cropland soils in a three-year long fertilization experimental site at the Tennessee State 
University (TSU) Agricultural Research Center in Nashville, TN, USA. Filled circles denote Moran’s I values 
that exhibited significant positive or negative autocorrelation. Obs: observations; LCL: low confident limit; and 
UCL: Upper confidence limit. Other abbreviations are referred to Table 1.
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within-plot heterogeneity of MBN in LN or HN treatments in SG cropland (Fig. 8), but less so in GG cropland 
(Fig. 9). It turned out to possess more hotspots of MBC:MBN than that of MBC and MBN across N treatments 
and croplands (Figs 8 and 9). Last, within-plot heterogeneity of all variables tended to be greater in GG cropland 
than that in SG cropland.

Discussion
N fertilization elevated spatial heterogeneity of soil microbial biomass.  Similar to other impor-
tant agricultural practices (i.e. plowing, mechanical disturbance), N fertilization is generally regarded to potentially 
homogenize the spatial distribution of soil chemical features in long-term cultivated lands particularly when com-
pared with forests14. Despite very few studies examining effects of N fertilization on soil microbial features27,32,58, it 
is presumable that the high responsiveness of soil microbial features with disturbance59,60 could potentially override 
the general prediction of homogenization under N fertilizations. Based on a three-year fertilization experiment in 
two bioenergy croplands, this study revealed moderate spatial heterogeneity of soil microbial biomass C and N, and 
indeed, their spatial variations were generally elevated with low or high amount of N fertilizer input. In spite of great 
plot-plot variations within each fertilization treatment, different geostatistical approaches generally supported more 
linear and nonlinear surface trends and fine-scale spatial heterogeneity in the fertilized soils.

Possible explanations for the elevated spatial heterogeneity with N fertilizations may lie in the less complexity 
of management practice in the bioenergy croplands and the essentially high responsiveness of microbial prop-
erties in soils. First, the bioenergy croplands were subjected to continuous fertilization management over years 
but no plowing and less so in mechanical disturbance61,62. This unique management practice in the bioenergy 
croplands is distinct from the common practices implemented in conventional croplands such as wheat, corn 
and rice in many regions of world. Under common practices, the year- to decade-long plowing plus mechanical 
movement acted as the most significant driver that can physically and thoroughly mix and blend soil resources 
leading to homogenization63. Due to the cumulative effects induced by common practices other than N fertili-
zation, spatial heterogeneity at various scales may be largely masked and turn to be subtle over long-term time 
period. Second, soil microbial communities and activities are highly responsive to soil nutrient availability such 
as nitrate and ammonium10,64, while N fertilizer inputs supply readily available nutrients and exert immediate 
influence on microbes over months to years65,66. This instant effect was also found evident at soil macroaggregate 
scale67. Therefore, the manual spread of N fertilizers in the field will likely lead to irregularity of nutrient deposit 
and clusters, and consequently favor the formation of hotspots in soil microbial communities68.

However, a more evident linear surface trend (i.e. diagonal direction) of MBN was identified in soils with no 
fertilizer input than fertilized soils, which likely attributed to the low sensitivity of this approach applied in the 
field plots at a scale of meter or broader69,70. Evidence showed the spatial autocorrelation of microbial properties 
in soil was well described at a scale of centimeter69, two magnitude of scale lower than meter. Consistent with 
the scale of centimeter, the study identified a unprecedentedly large number of significant autocorrelations, i.e. 
elevated fine-scale heterogeneity with fertilization in the same scenario. For instance, there are five significant 
Moran’s I values in one GG plot (i.e. P2 in LN) with the lagging distance ranging from 0.75 to 3.75 meter.

Altered spatial heterogeneity with fertilization varied with crop types.  Relative to SG, GG showed 
greater spatial variations in all three microbial variables such as more detectable linear and nonlinear surface trends, 
significant autocorrelations and hotspots. This is particularly true revealed by IDW maps that showed widespread 
appearance of hotspots in both MBC and MBN in GG, which is less evident in SG. The different spatial variations 
between the two crop species may be largely attributed to the root systems of two plants with contrasting character-
istics. Roots are a key plant organs involved in resource competition and stand establishment70. Both GG than SG are 
warm-season grasses with a thicker and deeper rooting system. Their extensive root channels increased macropore 

Crop Fertilization Plot MBC MBN MBC:MBN

SG

NN
P1 0.75, 3.25

P2 −1.75 −2.0, 3.75

LN
P1 1.0, −1.75 −2.00

P2 −1.25, 1.5 −2.25 −4.75

HN
P1 −3.75 3.00

P2 1.50 1.75, 2.50,−3.5

GG

NN
P1

P2 0.75, 3.75

LN
P1 2.00 1.00

P2 −0.5, 1.5 0.75, 1.5, −2.75, 
−3.0, −3.75 1.0, 2.0, −3.0

HN
P1 4.25 −3.5, 4.25, −4.5

P2 −2.75 3.75

Table 4.  Summary of significant distance for spatial dependence based on Moran’s I values for MBC, MBN 
and MBC:MBN in 12 plots in a three-year long fertilization experimental site at the Tennessee State University 
(TSU) Agricultural Research Center in Nashville, TN, USA. The unit of the distance for spatial dependence is 
meter. The abbreviations are referred to Table 1.
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flow in soil and consequently higher water infiltration rates71. They also exhibited enormous tolerance to low soil pH, 
aluminum toxic condition and high soil strength35,72–74. It is well known that plant root and microbes interact closely 
as mutualist71. The features of root morphology and physiology rendered plants capable of extending their access 
to large volume of soils for water, nutrients and resources thus favoring for soil microbial growth71. However, the 
strong effect of rhizosphere on relocating microbial niche may also differ between SG and GG because, though rarely 
compared quantitatively directly between the two plants, evidence pointed to the role of fine roots and its functions 
for switchgrass75 which is distinct from the more frequently reported much larger coarse roots and functions for 
gamagrass71. Though both SG and GG plantations resulted in strong clustering effects on spatial distribution of soil 
microbial communities, the larger size of roots for GG may play a key role in restructuring the larger patches of soil 
microbial biomass in soils, which is evident in GG than in SG.

Altered spatial heterogeneity with fertilization varied among microbial variables.  Across three 
fertilization treatments and two croplands, MBC showed relatively narrower within-plot variance and spatial 
heterogeneity than MBN or MBC:MBN. Also, MBC:MBN mimicked the spatial dependence of MBN, rather 
than MBC. In addition, the extent of elevated spatial heterogeneity due to fertilization was more pronounced for 
MBN or MBC:MBN than for MBC. These results collectively corroborated that MBN was a highly responsive 
variable in spatial dependence as compared with MBC revealed in several previous studies24–26. Due to nutrient 
poor conditions in these bioenergy croplands, the competitions for nutrients (e.g. N) between plant roots and 
microbes may be more intense given the widespread N limitations in terrestrial ecosystems76,77. On the other 
hand, the microbes with varying stoichiometry (i.e. C:N:P), that is, intrinsic N demand for growth and enzy-
matic kinetics78,79, may regulate their movement, colonization and growth given the soil indigenous N availability. 
This spatial assemblage of these microorganisms may be further complicated when N fertilizer granule manually 

Figure 8.  Spatial distribution of soil MBC and MBN concentrations and MBC:MBN under three N fertilization 
treatments (i.e. NN, LN and HN) in SG cropland soil in a three-year long fertilization experimental site at the 
Tennessee State University (TSU) Agricultural Research Center in Nashville, TN, USA. The interpolation maps 
were produced by inverse distance weighting (IDW) method. The abbreviations are referred to Table 1.
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applied in the field altered the distribution, diffusion and accessibility of readily available N forms, leading to 
more scattered hotspots of N island and more varied conditions of N hunger or limitation80. It is also likely that 
a more varied microbial biomass C:N may be driven by both altered physiological and compositional features in 
soil microbial community under N fertilizations81.

Multiple drivers in restructuring spatial heterogeneity of microbial biomass.  Despite the key 
role of soil pH on microbial growth and activity82 and bacterial community structure and diversity across envi-
ronmental gradients83,84, no significant correlation was identified between soil pH and microbial biomass in our 
study (p-value > 0.05). The relatively uniform soil pH (5.7~6.3) across our study plots suggested the structured 
spatial heterogeneity of microbial biomass were likely driven by other edaphic factors (e.g. water availability), and 
management practices (e.g. fertilization means). Given the soil sampling conducted in dry summer season and a 
range of 15~18% gravimetric water content across plots, it is believed that the fertilization itself may overweigh 
the influence of other factors. In fact, in contrast to conventional cropland management with intensive plowing 
and mechanical disturbance, our research plots have not been plowed since it was established. Furthermore, fer-
tilizers have been manually applied to soil by different people in our study plots. In addition, the relatively more 
pronounced spatial heterogeneity in GG than in SG indicates the influence of crop species on the spatial varia-
tions of soil microbial biomass. Our preliminary tests showed strong correlations and consistent spatial patterns 
between soil organic C (SOC), MBC and MBN (p-value < 0.05) in a few of our study plots. It suggests the possibly 
key control of SOC on MBC and MBN and highlights the keen need in the future to examine their relationships 
between two crops and under different N fertilization treatments. Therefore, a suite of interrelated edaphic, bio-
chemical and management factors acted as major drivers during the redevelopment of spatial heterogeneity in 
fertilized soils of bioenergy croplands.

Figure 9.  Spatial distribution of soil MBC, MBN concentrations and MBC:MBN under three N fertilization 
treatments (i.e. NN, LN and HN) in GG cropland soil in a three-year long fertilization experimental site at the 
Tennessee State University (TSU) Agricultural Research Center in Nashville, TN, USA. The interpolation maps 
were produced by inverse distance weighting (IDW) method. The abbreviations are referred to Table 1.
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Conclusions
Our study demonstrates that nitrogen fertilizer and the types of bioenergy crop type not only altered soil micro-
bial properties’ central tendencies but also their spatial heterogeneities. In general, N fertilizations elevated the 
spatial heterogeneity of soil microbial biomass C and N as well as their ratio in both bioenergy croplands. Lacking 
the commonly applied agricultural practices such as plowing and mechanical disturbance, this study supported 
that in combination with edaphic and biochemical factors, intensive and uneven fertilizations tended to restruc-
ture the spatial heterogeneity of microbial properties, rather than to homogenize it. Substantially contrasting 
spatial variations were also identified between two bioenergy croplands (GG > SG) and among variables (MBN, 
MBC:MBN > MBC). Future researchers should better match sample sizes with the heterogeneity of soil microbial 
property (i.e. MBN) particularly in gamagrass cropland.
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