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Radiogenomic analysis of hypoxia 
pathway is predictive of overall 
survival in Glioblastoma
Niha Beig1, Jay Patel1, Prateek Prasanna1, Virginia Hill2, Amit Gupta3, Ramon Correa1, 
Kaustav Bera1, Salendra Singh4, Sasan Partovi3, Vinay Varadan4, Manmeet Ahluwalia5,  
Anant Madabhushi1 & Pallavi Tiwari1

Hypoxia, a characteristic trait of Glioblastoma (GBM), is known to cause resistance to chemo-radiation 
treatment and is linked with poor survival. There is hence an urgent need to non-invasively characterize 
tumor hypoxia to improve GBM management. We hypothesized that (a) radiomic texture descriptors 
can capture tumor heterogeneity manifested as a result of molecular variations in tumor hypoxia, 
on routine treatment naïve MRI, and (b) these imaging based texture surrogate markers of hypoxia 
can discriminate GBM patients as short-term (STS), mid-term (MTS), and long-term survivors (LTS). 
115 studies (33 STS, 41 MTS, 41 LTS) with gadolinium-enhanced T1-weighted MRI (Gd-T1w) and T2-
weighted (T2w) and FLAIR MRI protocols and the corresponding RNA sequences were obtained. After 
expert segmentation of necrotic, enhancing, and edematous/nonenhancing tumor regions for every 
study, 30 radiomic texture descriptors were extracted from every region across every MRI protocol. 
Using the expression profile of 21 hypoxia-associated genes, a hypoxia enrichment score (HES) was 
obtained for the training cohort of 85 cases. Mutual information score was used to identify a subset of 
radiomic features that were most informative of HES within 3-fold cross-validation to categorize studies 
as STS, MTS, and LTS. When validated on an additional cohort of 30 studies (11 STS, 9 MTS, 10 LTS), our 
results revealed that the most discriminative features of HES were also able to distinguish STS from LTS 
(p = 0.003).

Glioblastoma (GBM) is a highly aggressive malignant primary brain tumor with a median survival of 14 months1. 
Despite the well-established Stupp treatment protocol2 including surgical resection, radiotherapy plus concomi-
tant and adjuvant temozolomide, the prognosis of GBM has only slightly improved (from 12 to 14 months) over 
the past two decades. A key pathway that drives tumor physiology towards treatment resistance and ultimately 
poor prognosis is tumor hypoxia, a by-product of abnormal tumor vasculature in aggressive GBM tumors. Tumor 
hypoxia is defined as the reduction in oxygen supply within a rapidly evolving GBM micro-environment. The 
need for more oxygen supply in hypoxic tumors activates hypoxia-inducible factor 1 alpha subunit (HIF1A) to 
produce vascular endothelial growth factor (VEGF) which in turn triggers angiogenesis to increase oxygen supply 
and sustain tumor’s survival and growth3. Unfortunately, hypoxia is known to be resistant to chemo-radiation, 
as it leads to an increase in the expression of (1) certain enzymes that are involved in resistance to temozolomide 
(a GBM chemotherapeutic agent), and (2) cancer stem cells that can withstand the effect of radiation. Recently, 
new anti-angiogenesis treatments such as small molecule inhibitors and VEGF inhibitors are being investigated 
as adjuvant treatment options for GBM tumors4. However, the clinical trials investigating these anti-angiogenic 
treatments have so far produced mixed results5,6. This is largely on account of enrolling “all-comers” to these 
trials, in the absence of tools to identify a subset of patients who will likely benefit from these anti-angiogenic 
treatments. Further, post anti-angiogenic treatments, there could be an amplification in pro-angiogenic factors 
such as Angiopoietin (ANG2) and decreased dependence on VEGF, which eventually may lead to higher extent of 
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hypoxia, treatment resistance, and metastasis of GBM7. The ability to capture tumor hypoxia will have significant 
clinical implications towards personalized treatment options for GBM patients and improve our understanding 
of tumor behavior as well as patient’s outcome and response to specific treatments8.

As a standard-of-care protocol for brain tumor characterization, magnetic resonance imaging (MRI) is 
capable of capturing a diverse spectrum of tumor phenotypes. For instance, enhancement on Gd-T1w MRI is 
known to be correlated with blood brain barrier (BBB) disruption, while T2w/FLAIR abnormalities are known 
to capture proliferative tumor margins and vasogenic edema9. This suggests that the phenotypic differences at 
the cellular level are perhaps also reflected on MRI. Thus even though the visual appearance of different tumor 
phenotypes on MRI are similar, there nonetheless might be subtle sub-visual cues reflective of the differences 
in the micro-architectural appearance embedded in routine MRI that might enable distinction of molecularly 
distict GBM phenotypes. In this work, we hypothesized that phenotypic changes due to hypoxia-specific events 
(as observed on mRNA data), are also manifested on routinely acquired MRI (Gd-T1w, T2w, FLAIR); and can be 
captured using radiomic (high throughput computer extracted) features.

Recently, several studies have begun to explore the role of radiomic features on routine MRI scans (Gd-T1w, 
T2w, FLAIR) in capturing the underlying tumor pathology and molecular heterogeneity10,11. Radiomic features 
allow capture of quantitative imaging measurements by computing local macro- and micro-scale morphological 
changes in texture patterns (e.g. roughness, image homogeneity, regularity and edges) within the lesion. Many of 
these features, such as gray level co-occurrence matrix (GLCM)-based features, quantify enhancement heteroge-
neity, which has been shown to predict aggressive growth, unfavorable prognosis, and poor treatment response12. 
These texture-based radiomic MRI phenotypes have been shown to serve as surrogate markers for characterizing 
different molecular aberrations (including mutational status of IDH, 1p19q, MGMT) towards understanding 
GBM behavior and patient prognosis (also known as radiogenomics)13–15. However, to our knowledge, none of 
the existing studies have explored an explicit radiogenomic link between radiomic features obtained from routine 
MRI scans (i.e. Gd-T1w, T2w, FLAIR) and the hypoxia pathway and their role in predicting patient prognosis 
in GBM tumors. We present a radiogenomic approach to identify radiomic surrogate markers specific to the 
hypoxia pathway obtained from routinely acquired MRI scans (Gd-T1w, T2w, and FLAIR). We specifically focus 
on radiomic interrogation to capture the hypoxic events that lead to intratumoral molecular heterogeneity as 
manifested within the tumoral (necrosis, enhancing tumor) and peritumoral regions (non enhancing tumor and 
edema). Our work is motivated by previous studies that have demonstrated association of VEGF, a key mediator 
of tumor angiogenesis in the hypoxia pathway, with edema and tumor burden16,17.

In this work, we have two objectives. Firstly, we will identify a set of radiomic features obtained from Gd-T1w, 
T2w, FLAIR MRI scans, that were most discriminative of the extent of hypoxia in the tumor microenvironment, 
as measured using a hypoxia enrichment score (HES) using Single-sample Gene Set Enrichment Analysis (ssG-
SEA)18. Secondly, given that tumor hypoxia is known to have implications in GBM survival6, we seek to investigate 
the role of radiomic surrogate markers of hypoxia (as reflected on the HES), in discriminating patients’ over-
all survival (OS). The patients will be categorized based on their OS, as short-term survivors (OS < 7-months), 
mid-term survivors (7 months < OS < 16 months), and long-term survivors (OS > 16-months). Recent stud-
ies, including our own work, have independently investigated the use of radiomic descriptors in distinguish-
ing short-term versus long-term survivors12. However, unlike previous studies, we present the first attempt at 
performing tumor and peritumoral interrogation towards (a) identifying radiomic surrogate markers of tumor 
hypoxia on pre-treatment MRI scans, and (b) evaluating their role in discriminating short-term, mid-term and 
long-term survivors of GBM. Our approach is intended to form a precursor to building novel image-based prog-
nostic as well as predictive surrogate markers for personalizing treatment management in GBM, by reliably strat-
ifying patients based on their hypoxia profile and overall survival.

The rest of the paper is organized as follows. Section 2 discusses the previous work and novel contributions. 
In Section 3, we provide methodological details of this work. Experimental results are presented in Section 4. We 
discuss the results in Section 5 and provide concluding remarks in Section 6.

Previous work and Overview
Recently, there has been some work in identifying radio-genomic associations of hypoxia in GBM as well as other 
tumors. For instance, Yopp et al19. have demonstrated inverse correlation of dynamic contrast-enhanced MR 
features with severity of hypoxia in hepatic cancers. Similarly, in a study by Diehn et al., proliferation and hypoxia 
gene expression patterns were found to be associated with the volume of mass effect and tumor contrast enhance-
ment on different MRI protocols (Gd-T1w, T2w, FLAIR)20. However, to our knowledge, none of the works in 
the existing literature have attempted to establish a relationship between radiomic MR features obtained from 
different tumor sub-compartments and tumor hypoxia and then further employed these radiomic MRI surrogate 
markers of hypoxia as potential surrogate markers of overall survival in GBM.

Figure 1 illustrates an overview of our framework. In Module 1, different MRI protocols are aligned in the 
same frame of reference; T2w, and FLAIR MRI were registered to Gd-T1w MRI in our case. In Module 2, the 
tumor sub-compartments including necrosis, edema, and enhancing tumor, are manually segmented by an expert 
using Gd-T1w, T2w, and FLAIR sequences, for each study. Module 3 involves computing radiomic features such 
as directional gradients (Gabor) and local intensity statistics (Haralick, Laws) from each of the tumor-specific 
sub-compartments (necrotic, enhancing tumor and peritumoral [edema and non enhancing tumor] regions) 
across the 3 MRI sequences. Within Module 3, top compartment-specific radiomic features are selected using 
mutual information21, based on their association with the hypoxia enrichment score, as obtained from the expres-
sion profile of 21 genes implicated in the hypoxia pathway (obtained via corresponding mRNA expression data)20. 
The top radiomic features that have the highest mutual association with hypoxia are then further employed to 
distinguish patients with short-term, mid-term, and long-term survival, using Kaplan-Meier survival analysis.
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Methods
Study Population.  Our cohort consisted of a total of 180 retrospectively analyzed treatment-naÃ¯ve mul-
ti-parametric MRI scans from the Cancer Imaging Archive (TCIA)22. TCIA is an open archive of cancer-specific 
medical images and associated clinical metadata which was curated by the National Cancer Institute (NCI) in 
association with participating institutions from the United States. Our inclusion criteria consisted of the follow-
ing: (1) availability of all 3 routine MRI sequences (Gd-T1w, T2w, FLAIR) as well as RNA sequences for treat-
ment-naïve patients, (2) MRI scans with diagnostic image quality (excluding the studies with image artifacts, as 
assessed by the expert reader), and (3) availability of individual overall survival information. A total of 65 cases 
were excluded either due to the absence of baseline scans, MRI artifacts, or unavailability of corresponding RNA 
sequence data or when one of the 3 MRI protocols (Gd-T1w, T2w, FLAIR) were not available. A total of 115 stud-
ies were used for further analysis. The corresponding RNA Seq for each of the 115 patients were collected from 
Broad Institute23. The 115 GBM subjects (69 males, age: 58.4 ± 12.56 yrs and 46 females, age: 56.47 ± 16.76 yrs), 
were then divided into three groups where the overall survival of the patients was stratified into short-term (≤7 
months), long-term (>16 months)24, and the remaining into medium-term (>7 months to 16 months) survi-
vors. Table 1 shows the patient demographics including mean overall survival, age, Karnofsky Performance Score 
(KPS) and gender of the population used in the study.

Figure 1.  Overview of the methodology and overall work flow.

Cohort

Training Set Independent Validation Set

Short Term Mid Term Long Term Short Term Mid Term Long Term

Population (Patients) 22 32 31 11 9 10

Mean overall survival (in months) 3.9 11.4 29.8 4.2 11.69 27.7

Mean age (years) 64.5 60.3 53.2 57.8 55 49.6

Mean KPS 74 76 83 74 84 78

Gender
Male - 13 Male - 23 Male - 22 Male - 7 Male - 2 Male - 2

Female - 9 Female - 9 Female - 9 Female - 4 Female- 7 Female -8

Table 1.  Patient demographics of the study.
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Preprocessing.  For every study, T2w and FLAIR were co-registered with reference to Gd-T1w MRI using 3D 
affine registration with 12 degrees of freedom encoding rotation, translation, sheer, and scale. The registration was 
performed using the General Registration (BRIANSFIT) module of 3D Slicer 4.525,26. To resolve the issue of reso-
lution variability, every MRI slice within a scan was re-sampled to have a uniform pixel spacing of 0.5 × 0.5 mm2 
and was then interpolated to have 3 mm slice thickness. Skull stripping was done using the skull-stripping module 
in 3D Slicer27. Additional details regarding registration parameters employed in this work are provided in the 
Supplementary document. We then corrected the MRI protocols for known acquisition based intensity artifacts; 
bias field inhomogeneity and intensity non-standardness. Intensity non-standardness refers to the issue of MR 
image “intensity drift” across different imaging acquisitions. Intensity non-standardness results in MR image 
intensities lacking tissue-specific numeric meaning within the same MRI protocol, for the same body region, 
or for images of the same patient obtained on the same scanner. Intensity standardization was implemented in 
MATLAB R2014b (Mathworks, Natick, MA) using the method presented in Madabhushi et al.28, Another MRI 
artifact, bias-field inhomogeneity manifests as a smooth variation of signal intensity across the structural MRI, 
and has been shown to significantly affect computerized image analysis algorithms. Bias field artifacts were cor-
rected for by means of the popular N4 bias-correction method29, which incrementally de-convolves smooth bias 
field estimates from acquired image data, resulting in a bias field corrected image.

Segmentation.  A total of three experts, each with over 6 years of experience in neuro-radiology were asked 
to perform the manual annotations on a total of 115 studies. Expert 1 (S.P, 6 years of experience) helped curate 
and manually annotate the training set. Expert 2 (V.H) with 7 years of experience in neuroradiology, manually 
annotated the validation set and was involved as one of the readers in the inter-observer variability experiments. 
Similarly, Expert 3 (A.G) who has over 8 years of radiology experience, independently annotated the validation 
set, and was involved as the second reader in the inter-observer variability experiments. Every 2-D slice of each 
MRI scan with visible tumor was manually annotated by the expert readers, into 3 regions (1) edema (which 
included the non enhancing tumor as well), (2) tumor necrosis, and (3) enhancing tumor. On Gd-T1w images, 
necrosis is relatively represented as hypointense regions which are commonly located in the central region of the 
tumor. Similarly, hyperintense FLAIR signals correlate with greater interstitial leakage and low cellular density, 
reflecting edema. Therefore, T2w and FLAIR scans were used to identify edema and necrosis and enhancing 
tumour was delineated based on Gd-T1w MRI.

To evaluate the effect of inter-observer variability in contouring the tumor sub-compartments, two experts 
were asked to independently manually segment 20 randomly chosen cases of GBM from our cohort (6 long term 
cases, 7 mid-term cases and 7 short term cases). Both the radiologists were provided separately with treatment 
naïve scans of Gd-T1w, T2w and FLAIR protocols. We obtained an average Dice Similarity Coefficient (DSC) 
scores across the 20 cases from the enhancing and edematous/nonenhancing region to be over 0.80.

Compartment-specific radiomic feature extraction from MRI scans.  A total of 30 2D radiomic fea-
tures were extracted individually from every sub-compartment (edema/nonenhancing tumor, necrosis, enhanc-
ing tumor) for each of the 3 MR protocols (Gd-T1w, T2w, FLAIR). This resulted in a total of 270 features extracted 
for every study. The feature set for every study included 5 Laws energy, 12 Gabor, and 13 Haralick features on 
a per-pixel basis. A median feature value was then calculated from the feature responses of all pixels within the 
region of interest. All feature calculations were performed using in-house software implemented in MATLAB 
R2014b platform. A brief description of the extracted radiomic features is as follows:

	(a)	 Laws energy (5 descriptors): Laws energy features use 5 × 5 window masks that are symmetric or anti-sym-
metric to extract level (L), edge (E), spot (S), wave (W), and ripple (R) patterns. These patterns are used to 
detect various types of textures on an image30.

	(b)	 Gabor energy (12 descriptors): Gabor operators are the steerable class of gradients which attempts to match 
localized frequency characteristics31. A Gabor filter can be defined as the modulation of a complex sinusoid 
by a Gaussian function. Each descriptor quantifies response to a given Gabor filter at a specific frequency 
(f = 0, 4, or 16) and orientation (θ = 45°, 90°, 135°, 180°), and attempts to capture the prominent direction 
in which intensity changes occur31.

	(c)	 Haralick energy (13 descriptors): Haralick texture features are based on quantifying the spatial gray-level 
co-occurrence within local neighborhoods around each pixel in an image32. These features potentially 
capture the structural heterogeneity within the region of interest. A total of 13 Haralick texture descriptors 
were calculated based on statistics derived from the corresponding co-occurrence matrices.

Detailed description of the set of features employed in this work and its possible relationship to the patho-
physiology of GBM is provided in Table 2 below. The complete list of features extracted has been provided in the 
Supplementary spreadsheet (Sheet 1).

Generating Hypoxia Enrichment Score (HES).  From previous literature20, we identified 21 genes that are 
implicated in the hypoxia pathway of GBM. Table 1 (Supplementary) lists these 21 genes, and their role in tumor 
hypoxia. For instance, vascular endothelial growth factor A (VEGFA) gene, an important mediator of angiogen-
esis, is involved in endothelial cell proliferation and migration33. Angiopoietin-like 4 (ANGPTL4) is implicated 
during hypoxia in GBM and is involved in tumor angiogenesis34. Similarly, Galectin-3 (LGALS3) is up-regulated 
in hypoxic conditions of GBM, which resists cell death, favors cell migration, and thus can be implicated with can-
cer recurrence35. The TCGA GBM mRNA data (Level3 - Affymetrix HT HG U133A) was downloaded from Broad 
Institute23. The genomic data was normalized by Z-score transformation and then used in single-sample Gene 
Set Enrichment Analysis (ssGSEA) on R platform18,36. ssGSEA algorithm captures the biologically significant 
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processes (the hypoxia pathway in our case) and calculates an enrichment score for every patient in the cohort 
when paired with the 21 hypoxia associated genes37. Figure 2 shows the unsupervised clustering of the 21 gene set 
using euclidean distance, which identified three clusters low, medium, and high, using the HES values. The range 
of HES for each of the clusters is as follows: HESlow ≤ 3141.99, 3142 ≤ HESMid ≤ 4102.99, and HESHigh ≥ 4103. HES 
for each of the 85 GBM patients has been provided in the Supplementary spreadsheet (Sheet 2).

Experimental Setup.  Experiment 1: Identifying MRI surrogate markers of tumor hypoxia pathway.  A total 
of 115 patients were split into 85 cases for training and 30 were held-out for validation. In the training phase, 
85 patient studies were setup in a 3-fold stratified cross-validation for 50 iterations to create a total of 150 sets 
such that the samples in the training set were class-balanced. Each set consisted of randomized two-thirds data 
sampled into training and one-third data used for testing. For every training set, we obtained a mutual informa-
tion score (captures linear or non-linear mutual dependence between two independent variables) between the 
radiomic features with the hypoxia enrichment score, and ranked the features based on their mutual information 
scores during each cross-validation run21. Subsequently, we obtained the frequency of occurrence of every feature 
across 150 runs of cross-validation (50 runs of 3-fold cross-validation). A subset of eight radiomic features with 
highest frequency of occurrences across the cross-validation runs were retained, for further analysis.

Experiment 2: Employing radiomic surrogate markers of tumor hypoxia in predicting patient survival in GBM.  The 
top 8 features (as identified in Experiment 1) were used in a 3-fold cross-validation setup in Experiment 2 for 
predicting patient survival. Care was taken while setting up the training phase in Experiment 2 to ensure that 

Feature category Descriptor Intuitive description Relevance to GBM pathophysiology

Laws features E5, L5, S5, R5 (combination in 
both X and Y directions) E- Edges, L- Level, S- Spots, R- Ripples Accounting for characteristic qualitative appearance 

of wave, ripple, edge and spots within an ROI

Gabor features frequency (0, 4, or 16) and 
orientation (45°, 90°, 135°, 180°)

This filter bank has characteristics of spatial locality 
and orientation selectivity

Captures the prominent direction in which the 
intensity changes occur

Haralick features

Inverse difference moment (IDM)

IDM is a reflection of the presence or absence of 
uniformity, and hence is a measure of local regions of 
homogeneity High IDM: Higher presence of locally 
uniform windows in GLCM. Low IDM: Higher 
presence of locally heterogeneous windows in GLCM

Captures the underlying lesion heterogeneity

Correlation Quantifies the linear patterns in an image based on the 
distance parameter.

Increased presence of linear patterns yield higher 
correlation values, lack of image linearity yield lower 
correlation values

Sum Entropy Measure of GLCM relationship to distribution of 
intensity with respect to entropy (measure of disorder)

Higher entropy is indicative of more chaotic 
arrangement in areas of high viable cell population

Sum Variance
Measure of GLCM relationship to distribution of 
intensity with respect to variance. High sum variance: 
greater standard deviation of sum average. Low sum 
variance: low standard deviation of sum average

Possibly accounting for greater variation of scattered 
atypia and local accumulation of mitotic processes as 
observed on histopathology.

Table 2.  Pathophysiological significance of radiomic features which possibly reflect biological traits of GBM 
and can be captured on MRI.

Figure 2.  Unsupervised clustering of the RNA seq data from the 21 hypoxia associated genes clustered as 
low hypoxia (HESlow - shown in navy blue), medium hypoxia (HESmid - shown in magenta) and high hypoxia 
(HEShigh - shown in orange). The x-axis in the clustergram represents the 21 genes and y-axis represents the 
patient population of 85 GBM cases.
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the same set of training and test sets as used in Experiment 1 were employed, to avoid classifier bias. We then 
employed a Random Forest (RF) classifier38 for survival stratification of patients, as (a) STS versus LTS, (b) STS 
versus MTS and (c) MTS versus LTS. RF is a commonly used ensemble classifier that combines predictions 
from several weak decision tree classifiers to generate a more accurate and stable classifier. Treebagger imple-
mentation of the RF classifier in MATLAB R2014b was employed, with a total of 50 trees used for training the 
classifier. Gini impurity was used as the criterion to measure the quality of split. The RF classifier has previously 
been successfully employed for various biomedical classification applications12. Advantages of RF include, (1) 
ability to integrate a large number of input variables, (2) robustness to noise in the data, and (3) relatively few 
tuning-parameters. During cross-validation, we further ensured that the data in every fold had equal representa-
tion of survival labels. The difference between the 2 groups for survival analysis was assessed by the prediction of 
random forest classifier, aggregated over the 50 runs within the 3-fold cross-validation.

Evaluation.  Kaplan Meier (KM) survival analysis was used to compare survival times across: (a) STS versus 
LTS, (b) STS versus MTS and (c) MTS versus LTS, both on training as well as validation set. The horizontal axis 
on the survival curve shows the time and the vertical axis shows the probability of survival. Any point on the sur-
vival curve reflects the probability that a patient in each group would remain alive at that time. Optimal classifier 
predictions would show maximum separation between the survival curves12.

Statistical Analysis.  Survival curves were compared statistically by a Cox proportional hazards model. All 
statistical analyses were performed using the survival package in R39,40. Hazard ratios (HR) were used to quan-
tify the effect of individual feature on survival. Features yielding negative regression coefficients (i.e. low feature 
values correlated with long term survival) in our Cox Model produce a HR between 0 and 1; features yielding 
positive regression coefficients (i.e. low feature values correlated with short term survival) produce a HR between 
1 and infinity. We also computed Concordance indices (C indices or C statistic) for each of our univariate and 
multivariate analysis experiments in R. C indices is the fraction of all pairs of subjects whose predicted survival 
times are correctly ordered (i.e. concordant with actual survival times). C indices = 1 indicates that the model 
has perfect predictive accuracy, and C indices = 0.5 indicates that the model is not better than random chance.

Results
Experiment 1: Identifying MRI surrogate markers of tumor hypoxia pathway.  Table 3 lists the top 
8 radiomic features that were identified to be most associated with the hypoxia enrichment score using the mutual 
information feature selection method. The most associated radiomic features included Laws energy (R5R5, E5E5, 
S5S5) from enhancing tumor and edema capturing ripples, edges and spots. The top 8 features also included 
entropy, difference variance, and energy features from the Haralick family, which capture structural heterogeneity 
within the image texture, extracted from edema/nonenhancing and enhancing tumor.

Figure 3 shows a single 2D slice of the original Gd-T1w MRI scan with annotations of the 3 tumor 
sub-compartments (necrosis outlined in green, enhancing tumor in yellow, and edema in brown), and the cor-
responding Haralick feature map for three different patients with high, medium and low hypoxia enrichment 
scores, respectively. While the original Gd-T1w MRI scans may not be able to visually capture the underlying 
tumor heterogeneity of hypoxic tumors, the radiomic features were found to be distinctly different across the 
varying degrees of hypoxia (low, medium, and high) (Fig. 3). High radiomic feature expressions corresponded to 
high hypoxia enrichment score (Fig. 3 (f)), while low feature expressions corresponded to low hypoxia enrich-
ment score (Fig. 3 (d)).

Employing radiomic surrogate markers of tumor hypoxia in predicting patient survival in GBM.  
The top 8 radiomic surrogate markers of hypoxia (as identified in Experiment 1) were also found to be signifi-
cantly associated with survival (Fig. 4). Within the training set, Kaplan-Meier (KM) survival analysis between (a) 
STS versus LTS, and (b) MTS versus LTS showed a statistically significant separation between the survival curves 
as quantified via the log-rank test. Figure 4(a) shows the KM curve for patients with STS and LTS (p = 0.0056) 
while 4(b) shows the KM curve generated using the radiomic features between STS versus MTS (p = 0.8593), 
Fig. 4(c) shows the KM curves for MTS versus LTS (p = 9.2112×10−6). On the validation set, significant differ-
ences in KM curves were observed for the short-, versus long-term survival patients (p = 0.0032) (Fig. 4 (d)), with 

Feature Tumor Region Relevance to lesion architectre

Law R5R5 FLAIR Enhancing Tumor

Captures presence of spots, edges, 
waves and ripples of an image

Law E5E5 Gd-T1w Edema

Law E5E5 FLAIR Edema

Law S5S5 T2w Enhancing Tumor

Information measure of correlation 1 (Haralick) T2w Necrosis

Captures co-occurrences; quantifies 
structural heterogeneity

Difference Variance (Haralick) Gd-T1w Edema

Energy (Haralick) FLAIR Enhancing Tumor

Entropy (Haralick) Gd-T1w Edema

Table 3.  Top 8 radiomic features identified across MRI scans (Gd-T1w, T2w, FLAIR) that were most associated 
with the hypoxia enrichment score.
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a C-index of 0.74. While, the KM curves for mid-term and long-term survival were not found to be statistically 
significantly different (p = 0.2093), the C-index was found to be 0.73. Table 4 lists the hazard ratio and concord-
ance indices for the clinical parameters and combined radiomic features for distinguishing STS versus LTS, and 
MTS versus LTS. Interestingly, we found that combining clinical and radiomic features improved the concordance 
index in predicting overall survival in STS versus LTS (C-index = 0.69 and 0.83 on training and validation set 
respectively) and MTS versus LTS (C-index = 0.7 and 0.81 on training and validation set respectively) as com-
pared to using either clinical features or radiomic features alone (Table 4).

Discussion
Currently, there is a lack of well validated non-invasive biomarkers that can predict the extent of hypoxia and 
potentially stratify patients that may be more suited for adjuvant anti-angiogenic treatments. For example, 
pre-clinical studies have shown that Bevacizumab (a humanized anti-VEGF monoclonal antibody for GBM ther-
apy) attempts to normalize tumor vasculature, reduce hypoxia, and improve drug delivery41. Another challenge 
post-anti VEGF therapy is that patients sometimes fail treatment due to multiple intrinsic properties of the tumor 
(such as up-regulation of multiple pro-angiogenic factors, enhanced invasion and migration), where a GBM with 
high levels of hypoxia would indicate that the tumor has found other pathways to proliferate (for example, using 
ANG2)7. Therefore identifying non-invasive methods to monitor the hypoxic micro-environment has significant 
clinical implications in designing personalized treatment, as well as monitoring response to treatment in GBM 
patients. In this study, we investigated the relationship between MRI based radiomic features obtained from 
tumor sub-compartments and the corresponding gene expression data of the hypoxia pathway, as observed on 
the HES. We found prognostic radiomic features that were capable of distinguishing low, medium, and high levels 
of hypoxic extent (as defined from the HES), which could potentially also serve as imaging surrogates of overall 
survival in GBM.

Radiomic surrogate markers of hypoxia enrichment score.  Our study identified Law energy and 
Haralick features from the edematous/nonenhancing tumor and enhancing tumor region on FLAIR and Gd-T1w 
MR sequences to be highly associated with the hypoxia enrichment score. We believe that in the enhancing 
region of GBM, tortuous vessels of hypoxia induced neo-angiogenesis pile up and bulge to manifest as ripples and 
organization of pseudopalisades in the immediate vicinity of necrosis, evince as hypo-intense rings or spots and 
therefore are captured by law energy features on FLAIR42. This finding is concordant with Diehn et al., who found 
that their genomic expression module of hypoxia correlated with the enhancing region (p = 0.012) on Gd-T1w 
images20. Barajas et al., also found that enhancing regions of GBM with elevated relative cerebral blood volume 

Figure 3.  (a)–(c) show a 2D Gd-T1w MRI slice with expert-annotated necrosis (outlined in green), enhancing 
tumor (yellow) and edematous regions (brown) in 3 different GBM patients that exhibited low, medium, and 
high HES respectively. The corresponding Haralick feature map has been overlaid on the manually annotated 
tumor regions, for HESlow (d), HESmedium (e), and HEShigh (f).
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(rCBV) were significantly correlated with hypoxia (p < 0.02)43. Similarly, we identified Haralick features (Entropy, 
difference variance) from the edematous region to be correlated with hypoxia. These Haralick features might 
potentially be quantifying the structural heterogeneity in highly hypoxic GBM tumors as observed on Gd-T1w 
MR sequences. For example, high values of entropy feature reflects high diversity in grey levels of diverse group 
of pixels (thus quantifying image heterogeneity)12.

Role of hypoxia-radiomic surrogate markers in predicting short-, medium-, long-term survi-
vors of GBM.  Imaging features have previously been shown to be prognostic of GBM survival. For example, 
Zhang et al., has demonstrated that the ratio of tumor volume to edema can predict overall survival (p < 0.001) 

Figure 4.  KM curve generated for training (a,b,c) and independent validation set (d,e,f) using the top radiomic 
features (a) short-term (red) and long-term (blue) (p = 0.0056) (b) mid-term (green) and short-term (red) 
(p = 0.8593) and (c) mid-term (green) and long-term (blue) GBM survivors (p = 9.21 × 10−6) (d) short-
term (red) and long-term (blue) (p = 0.0032) and (e) mid-term (green) and short-term (red) GBM survivors 
(p = 0.4459) (f) mid-term (green) and long-term (blue) (p = 0.2093).

Feature

Short term vs Long term Mid term vs Long term

Hazard Ratio p-value

Concordance Index

Hazard Ratio p-value

Concordance Index

Training set Validation set Training set Validation set

Age 1.03257 0.0103 0.627 0.52 0.977 0.041 0.61 0.51

Gender 1.4219 0.232 0.553 0.64 1.15 0.601 0.52 0.52

KPS 0.98002 0.0571 0.58 0.53 0.98 0.048 0.58 0.62

All radiomic features 0.9722–1.6271 0.0056 0.65 0.74 0.8443 −1.5108 9.2112 × 10−6 0.69 0.73

All radiomic features and clinical 
features (age, gender and KPS) 0.9363–1.5923 0.05269 0.69 0.83 0.8838–1.5604 0.01237 0.7 0.81

Table 4.  Hazard ratios of the training set, statistical significance (via p-value on training set) and concordance 
using clinical and radiomic features, obtained from different compartments (edema, necrosis, enhancing 
tumor) on multi-parametric MRI, for short term versus long term patients and mid term versus long term 
patients.
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in GBM44. Similarly, Carrillo et al., showed that edema can stratify GBM survival and is associated with poor 
prognosis in MGMT promoter methylated GBM tumors45. By assessing hypoxia using 18F-FMISO PET, Spence 
et al., demonstrated a strong correlation of volume and intensity of hypoxia with poor survival in radiotherapy 
nave patients of GBM (p < 0.002)46. Our findings are in consensus with the other research groups that have shown 
that enhancing region on FLAIR has significant associations with OS (p < 0.001) in GBM47. Our features also 
corroborate with our own previous work, where Prasanna et al., found that radiomic features from the edematous 
region on Gd-T1w are predictive of survival in STS and LTS GBM patients (p = 1.47 X 10−5)12. Similarly, in con-
cordance with previous findings12,47, the combination of radiomic features with clinical parameters (Table 4) were 
found to improve prediction of GBM survival, as compared to radiomic features and clinical parameters alone. 
This suggests the prognostic potential that hypoxia-associated radiomic features offer in conjunction with clinical 
parameters in characterizing overall survival in GBMs. Lastly, it was observed that the short and medium term 
survivors were not separable on both the training and validation cohort (Fig. 4), suggesting that these categories 
may potentially represent a more aggressive radiomic phenotype compared to the long term survival cases.

The work presented in this study did have its limitations. In this study, we limited our analysis to only iden-
tifying associations of radiomic features with the hypoxia enrichment score, due to hypoxia’s involvement in 
chemo-radiation resistance and poor outcomes in GBM. However, the radiomic features that were found to be 
associated with HES, may also be representative of other carcinogenic signaling pathways, such as tumor infil-
tration, proliferation, and angiogenesis that are implicated during hypoxia, and are known to contribute to poor 
outcome. For example, high expression of VEGFA (1 of the 21 genes that contributed to HES), promote repeated 
cycles of neo-angiogenesis that lead to microvascular hyperplasia, proliferation, and invasion in GBM tumors48. 
An extensive analysis of the association of the radiomic features with the other known pathways contributing to 
poor outcome (e.g. tumor infiltration, proliferation, and angiogenesis) will be a part of future study. Additionally, 
the results presented in this paper are preliminary and constrained by a relatively small sample size. A larger inde-
pendent validation of the radiomic surrogate markers of hypoxia will need to be performed to further validate our 
preliminary findings. As the data was retrospectively collected from TCIA, another limitation of our study is that 
only routinely acquired MRI sequences (Gd-T1w, T2w and FLAIR) were used for analysis, and did not employ 
any advanced imaging (i.e. perfusion, DWI) including PET imaging.

Conclusion
In this study, we investigated the feasibility of computer-extracted radiomic features from different sub com-
partments of the tumor on treatment-naïve routine MRI in predicting extent of hypoxia and overall survival in 
GBM patients. The results suggest that radiomic features from the enhancing and edematous regions appear to be 
predictive of the extent of hypoxia (as observed using hypoxia enrichment score on mRNA data). The radiomic 
features on the validation set were also found to be prognostic of LTS vs STS. The identified radiomic features in 
this work could be used to monitor hypoxia, help determine timeline of treatment resistance, and evaluate the 
efficacy of anti-angiogenic therapy in GBM and other tumors.

While in this work, we limited the radio-genomic analysis to capturing radiomic imaging phenotypes that 
were associated with hypoxia pathway, our presented radiogenomic framework, could potentially in the future 
help identify imaging biomarkers associated with other key pathways such as tumor infiltration, proliferation, 
and angiogenesis, that are implicated in GBM, and contribute to poor outcomes. Future work will also focus 
on incorporating complementary imaging parameters obtained from advanced imaging (PET, perfusion, DWI) 
which may further improve survival prediction using radiomic analysis, while taking into account the extent of 
resection and subsequent treatment.
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