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Onset of static and dynamic 
universality among molecular 
models of polymers
Kazuaki Z. Takahashi1,2, Ryuto Nishimura2, Nobuyoshi Yamato2, Kenji Yasuoka2 &  
Yuichi Masubuchi3

A quantitatively accurate prediction of properties for entangled polymers is a long-standing challenge 
that must be addressed to enable efficient development of these materials. The complex nature 
of polymers is the fundamental origin of this challenge. Specifically, the chemistry, structure, and 
dynamics at the atomistic scale affect properties at the meso and macro scales. Therefore, quantitative 
predictions must start from atomistic molecular dynamics (AMD) simulations. Combined use of 
atomistic and coarse-grained (CG) models is a promising approach to estimate long-timescale behavior 
of entangled polymers. However, a systematic coarse-graining is still to be done for bridging the gap 
of length and time scales while retaining atomistic characteristics. Here we examine the gaps among 
models, using a generic mapping scheme based on power laws that are closely related to universality 
in polymer structure and dynamics. The scheme reveals the characteristic length and time for the onset 
of universality between the vastly different scales of an atomistic model of polyethylene and the bead-
spring Kremer–Grest (KG) model. The mapping between CG model of polystyrene and the KG model 
demonstrates the fast onset of universality, and polymer dynamics up to the subsecond time scale are 
observed. Thus, quantitatively traceable timescales of polymer MD simulations can be significantly 
increased.

Entangled polymers are widely used in many industrial applications. Despite many years of basic polymer 
research and industrial use, quantitatively accurate predictions of polymer properties is a long-standing problem 
that is of great importance for efficient improvement of those properties. The complex structures, dynamics, 
and physical properties of polymers can change dramatically over different time scales1–3. However, phenomena 
occurring over a wide range of timescales are closely related to each other; i.e., parameters at the atomistic scale 
can affect properties at the meso and macro scales. Therefore, predictions of polymer properties require atomistic 
molecular dynamics (AMD) simulations.

While recent advances in computation have enabled a wide range of AMD simulations of chemical and bio-
logical polymers4–12, fully atomistic simulations of entangled polymer dynamics over long timescales are beyond 
the capability of current platforms. Thus, coarse-grained (CG) MD simulations have been used for long times-
cales. They can accelerate simulations by reducing the number of degrees of freedom and increasing the funda-
mental time scale. Accessible polymer characteristics depend on the coarse-graining level, which determines 
the smallest length scale to trace the polymer dynamics. Models with various CG levels have been developed 
for long timescale behaviors of polymers13–18, and some of the models have great potential for more widespread 
use. However, one critical issue remains unresolved: namely, systematically determining the CG level to which 
polymers can be coarse-grained while still appropriately tracing static and dynamic polymer properties18–22. One 
path to attack this challenge is the direct comparison of polymer properties between atomistic and CG models. 
All CG models can be quantitatively compared with atomistic models through a generic mapping scheme based 
on experimentally established universality in the structures and dynamics of polymers having different chemis-
tries1,2,21,23–29. Here, we examined the gap of length and time scales among models using the mapping scheme that 
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assumed universality for three properties closely related to polymer dynamics that have been described in the 
Rouse theory30. These are the mean square end-to-end distance, the end-to-end relaxation time, and the diffu-
sion coefficient. The gaps were estimated by mapping between the atomistic model of polyethylene (PE) and the 
bead-spring Kremer–Grest (KG) model14,17, a linkage between the vastly different scales of AMD and high-level 
CGMD. The gaps were also estimated by mapping between the multiscale molecular model of polystyrene (PS)31 
and the KG model, which involves linkage among the three different scales AMD, middle-level CGMD, and 
high-level CGMD. PE and PS are common commercial polymers that have been extensively studied experimen-
tally and theoretically, and several reliable molecular models are currently available. The KG model is the simplest 
very high-level CG model; it has been widely used for decades. With the exception of plain molecular geometries 
and excluded volume effects, chemical details are entirely omitted in the KG model. Despite its simplicity, it is 
highly useful and has been used in a wide range of studies on polymer nanocomposites32,33, polymer welding34, 
polymer brushes35–37, poly-electrolyte gels38, thermoresponsive polymers39, ring polymers40, polymer collapse41, 
healing of polymer interfaces42,43, and biopolymeric motions44. With using the generic mapping scheme, the 
spatial and temporal gaps among molecular models are systematically and accurately estimated. The gaps provide 
useful information for determination of appropriate CG level, showing a significant advance that will enable a 
quantitative solution for the challenging problems described above.

Methodology
For quantitative comparison among polymer models, the length and time scales of CG models should be rescaled 
by a generic way. Because of the Gaussian nature of long polymers, the length unit is usually arbitrary when the 
linkage to atomistic models is attempted for the static properties of the global polymer structure. Therefore, we 
assume universality for the onset of entanglement. The onset specifies the characteristic molecular weight at 
which the power law exponents describing the relationships between dynamical parameters and the molecular 
weight change significantly. If this universality is assumed, the length units of two different polymer models can 
be linked to each other. Once the length unit is fixed, the unit of time can be determined. In CG models, it is 
determined by comparing dynamical measurements with those obtained by the corresponding atomistic model. 
For example, the mean square displacement (MSD) of chain centers has been used22,31,45–51, based on reptation 
theory that predicts the inflection point in MSD at the characteristic time of entanglement. This strategy is useful 
because the characteristic time of entanglement does not depend on the molecular weight. Despite the success-
ful use of the linkage strategy, the universality of static and dynamic polymer properties is not fully attained for 
molecular models used in polymer simulations. Gaussian statistics assumed in Rouse models are not observed in 
atomistic models unless the molecular weight is sufficiently high. The non-Gaussian nature affects the dynamics, 
which deviate from predictions of the Rouse model. While these deviations are often concealed in the power law 
expressions52,53, this issue should be carefully considered when linking different models.

To obtain a reasonable linkage between the atomistic and CG models, we performed the following four steps. 
(i) The power law relations between the molecular weight M and the mean square end-to-end distance 〈R2〉, the 
end-to-end relaxation time τR, and the diffusion coefficient D, were evaluated for the atomistic and CG models 
(see Supplement Material for the simulation conditions). (ii) To determine the mass scaling factor, the critical 
molecular weight Mc was estimated from the change in τR – M and D – M power law exponents that indicate the 
onset of entanglement. The entanglement molecular weight, Me, was also estimated by primitive pass analysis 
(PPA)54,55 (see Supplement Material for the results of PPA). (iii) The spatial and temporal scaling factors were 
calculated using a set of 〈R2〉, τR, and D for each M, under the conditions of M ≤ Mc. (iv) The validity of the scaling 
factors was evaluated by comparison of 〈R2〉–M, τR–M, and D – M power law relations obtained from AMD with 
those obtained from CGMD, and rescaled by the mass, length, and time scaling factors. Based on these results, a 
simple and reasonable mapping scheme was evaluated.

Results and Discussion
Evaluation of mapping scheme.  Table 1 lists the representative parameters used for the estimation of 
scaling factors. The variables m, σ, and τ are the units of mass, length, and time for KGMD, respectively. The 
mass scaling factor can be accurately determined from the Me or MC results (for more details of the Me or MC 
values, see Supplement Material for the results of PPA). The spatial and temporal scaling factors can be deter-
mined by using any two of the following property combinations: 〈R2〉AMD/〈R2〉KGMD, τR,AMD/τR,KGMD, and DAMD/
DKGMD (suffixes “AMD” and “KGMD” denote the type of simulation). Therefore, three sets of two factors can be 
obtained from each condition of M. For the spatial scaling factor, the largest differences between the sets were 
19%, 11%, and 2.2% for the smallest M, Me, and Mc values, respectively. For the temporal scaling factor, the largest 
differences between the sets were 43%, 23%, and 4.5% for the smallest M, Me, and Mc values, respectively. Thus, 
the scaling factors converge at M = Mc, irrespective of the particular combination of these three properties. The 
results also imply that the AMD and KGMD simulations will be in quantitative agreement for the three power 

M conditions

AMD (standard error) KGMD (standard error)

M [g/mol] 〈R2〉 [nm2] τR [ps] D [10−3 nm2/ps] M [m] 〈R2〉 [σ2] τR [τ] D [10−3σ2/τ]

Smallest 282.5 2.61962 (0.00087) 41.19 (0.22) 4.50 (0.17) 20 29.409 (0.020) 414.8 (4.5) 3.51 (0.26)

≈Me 703.4 8.5151 (0.0098) 266.2 (2.1) 1.473 (0.060) 50 80.42 (0.19) 3108 (49) 0.967 (0.078)

Mc 983.9 12.515 (0.021) 552.1 (5.2) 0.914 (0.039) 70 114.72 (0.39) 6910 (130) 0.640 (0.055)

Table 1.  Representative parameters for estimation of scaling factors.
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laws mentioned above. Therefore, the following equations can be used for estimating the spatial and temporal 
scaling factors,

σ = R R m1 ( / ) [n ], (1)AMD KGMD
2

c,
2

c,
1/2

τ τ τ= s1 / [p ], (2)AMD KGMDc, c,

where 〈R2〉c and τc are 〈R2〉 and τR at M = Mc, respectively. Note that Eqs (1) and (2) are avaliable for any two 
different MD simulations. From Table 1, it is clear that DAMD/DKGMD should not be used to estimate the scaling 
factors because the standard errors or deviations were higher for D than for 〈R2〉 and τR.

The above scaling factors should be evaluated by comparing 〈R2〉 – M, τR – M, and D – M power laws from 
AMD simulations with those obtained from the rescaled KGMD data. Figure 1(a) plots the 〈R2〉 – M power law. 
The rescaled KGMD results begin to coincide with those from AMD at M = Me, and are almost equal to the AMD 
values at M ≥ Mc. This indicates that the spatial scaling factor is reasonable. In contrast, a discrepancy between 
AMD and KGMD is observed at M < Me. This implies that the spatial scaling factors calculated at M < Me are 
inadequate for quantitative static mapping. Figure 1(b) plots the τR – M power law. Similar to the 〈R2〉 results, 
those from rescaled KGMD start to coincide with the AMD data at M = Me and are almost identical to AMD val-
ues at M ≥ Mc. This indicates that the temporal scaling factor is reasonable. In contrast, a disagreement between 
AMD and KGMD was seen at M < Me. This implies that the temporal scaling factors calculated at M < Me are 
inadequate for quantitative dynamic mapping. For the D – M power law, the rescaled KGMD results are almost 
identical to the AMD data (see Fig. S1). Despite the discrepancies between the two types of simulations at M < Me 
for 〈R2〉 and τR (even at M < Me), the results of KGMD were close to the AMD results. This implies that the use of 
D may not lead to an accurate estimation of the scaling factors.

These results suggest a simple and reasonable mapping scheme consisting of three steps. (i) Estimate Mc for 
atomistic and CG models from τR – M (and D – M) power law. (ii) Determine the spatial and temporal scaling 
factors using Eqs (1) and (2). (iii) Evaluate the accuracy of the factors by comparing the 〈R2〉 – M, τR – M, and 
D – M power laws obtained from AMD with those obtained from rescaled CGMD. Note that the accuracy of 
the above scheme relies on the accuracy of the power laws. The uncertainty of power laws reported in previous 
studies56–58 implies that a lot of data for long-time trajectories are required for the accurate estimation of the laws. 
Therefore we carried out long-time MD simulations of atomistic PE (up to 1 microseconds) and bead-spring KG 
(up to 1 billion time steps) models for a number of initial structures (see Supplement Material for the simulation 
conditions).

Mapping between atomistic PE and KG models.  With using the present mapping scheme, the spacial 
and temporal gaps of representative static and dynamic properties can be accurately estimated. Figure 2(a) plots 
the static structure factor, (S(q), for M ≥ Me, where q is a spatial frequency that is equal to 2π/r (r is an intra- or 
intermolecular distance). The rescaled KGMD results begin to coincide with the AMD data at a threshold value 
qt = 1.78 rad/nm, indicating that the onset of static universality between AMD and KGMD occurs at a threshold 
length rt = 3.5 nm, which is equal to the square root of 〈R2〉c. This implies that the onset of static universality is 
closely related to Mc. Note that the two simulations can be reasonably linked, even though a true plateau is not 
reached at the highest M of the present study. Figure 2(b) plots the power law relation between M and the radius 
of gyration, RG

2 . The rescaled KGMD results begin to coincide with the AMD values at M = Mc. In contrast, the 
discrepancy between AMD and KGMD is observed at M < Mc because the onset of static universality occurs at 
M = Mc, in agreement with the S(q) results. The results for the radial distribution function, g(r) (see Fig. S2), are 
consistent with those discussed above. Thus, we have demonstrated that our mapping scheme reveals the charac-
teristic length for the onset of universality between the vastly different scales of AMD and KGMD, for the four 
static properties 〈R2〉, RG

2 , S(q), and g(r). The spatial gap between AMD and KGMD is considerably large, raising 
the discrepancy at M < Mc.
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Figure 1.  Comparison of power laws between AMD of PE and rescaled KGMD. (a) 〈R2〉 – M power law. (b) 
τR – M power law.
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Figure 2(c) plots the relaxation modulus, G(t), for M ≥ Me, where t is time. We also plotted [τs,G(τs)], where 
τs is the time when the shoulder of G(t) occurs. For M = Me, Mc, and 3509 g/mol, and τs = 149, 316, and 12400 ps, 
respectively. It was confirmed that τs is roughly proportional to τR and the terminal relaxation time τd (see 
Fig. S3). The rescaled KGMD results coincide with the AMD values at t ≥ τs. The coincidence of the AMD and 
KGMD results at t < τs is partially observed. Figure 2(d) plots the MSD of central monomers, g1(t), for M ≥ Me. 
Also plotted are [τs,g1(τs)], for times corresponding to the shoulder of G(t). The rescaled KGMD results coincide 
with AMD values at t ≥ τs, in contrast to the large discrepancy between AMD and KGMD data at t < τs. This 
indicates that the onset of dynamic universality for AMD and KGMD occurs at t = τs, and that a delay occurs 
in the onset of dynamic universality depending on M, because τs (which is roughly proportional to τR and τd) 
increases exponentially with increasing M. This delay arises from differences in chemical structure between the 
two simulation methods. In KGMD, the chemical details are absent, whereas in AMD, they are included explic-
itly. This leads to differences in the details of the modeled entanglement. Effects of these differences completely 
disappear at t ≥ τs. For the large M (=3509 g/mol), the coincidence of the AMD and KGMD results at t < τs is 
partially observed. This indicate that the delay in the onset of dynamic universality has a tendency to saturate 
with increasing M. The results of the autocorrelation function for the end-to-end vector C(t) were consistent with 
those for τR (see Fig. S4). Thus, the mapping scheme reveals the characteristic time for the onset of universality 
between the vastly different scales of AMD and KGMD, for the five dynamic properties τR, D, C(t), G(t), and g1(t). 
The temporal gap between AMD and KGMD is considerably large, raising the discrepancy at t < τs.

Mapping between multiscale PS and KG models.  Harmandaris et al. performed multiscale MD 
(MSMD) simulations of PS melts31. The simulations were a combination of AMD and middle-level CGMD that 
are linked with a specialized mapping scheme. Data for 〈R2〉, RG

2 , D, and g1(t) indicate that the rescaled CGMD 
provides quantitatively accurate results when compared to AMD and experimental data. Here, our mapping 
scheme was applied to estimate the gap between MSMD data (middle-level CGMD data rescaled by AMD data of 
PS) and that of KGMD. From the D – M power law of MSMD, Mc,MSMD = 25000 g/mol and 〈R2〉c,MSMD = 82.0 nm2 
(the suffix “MSMD” denotes MSMD simulation). The value τc,MSMD = 2.59 × 108 ps is estimated from the conver-
gence of the scaling factors discussed above: τc,MSMD/τc,KGMD = (〈R2〉c,MSMD/〈R2〉c,KGMD)(Dc,MSMD/Dc,KGMD)−1. The 
spatial and temporal scaling factors for this mapping were determined from the above values, KGMD values, and 
Eqs (1) and (2). Figure 3(a) and (b) plot the 〈R2〉 – M and D – M power laws, respectively. The rescaled KGMD 
results are almost identical to the MSMD data, confirming the validity of the spatial and temporal scaling factors. 
Figure 3(c) plots the −R MG

2  power law. The rescaled KGMD results are almost equal to those of MSMD, which 
indicates that the static mapping is reasonable. There was no discrepancy between two models, unlike the map-
ping between AMD and KGMD. Thus, the spatial gap between the middle-level CG and the KG model is smaller 
than that between the atomistic and KG models. Figure 3(d) plots the MSD of central monomers at M = 50000 g/
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Figure 2.  Results of mapping between AMD of PE and KGMD. (a) Static structure factors for M ≥ Me. (b) 
−R MG

2  power law. (c) Relaxation modulus for M ≥ Me. Also plotted are [τs,G(τs)], where τs, is a time at 
which a shoulder of G(t) occurs. (d) MSD of central monomers for M ≥ Me. Also plotted are [τs,g1(τs)], that 
correspond to the time at which the shoulder of G(t) occurs.
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mol. The interaction points per chain of atomistic, CG, and KG models are 7680 atoms (or 3840 united atoms), 
960 particles, and 140 beads, respectively. This implies the efficient multiscale mapping among the three molecu-
lar models. The rescaled KGMD results are almost equal to those of MSMD, which indicates that the dynamic 
mapping is reasonable. Furthermore, the results for g1(t) are a quantitative estimation of polymer dynamics up to 
a subsecond time scale (0.135 sec). This highlights the great potential of multiscale mapping for polymer molec-
ular dynamics with realistic time scales. A direct comparison between MD results and experimental data becomes 
much easier for polymer dynamics, and enables high-throughput screening in polymer development. There was 
no discrepancy between two models, unlike the mapping between AMD and KGMD. The onset of universality in 
g1(t) is much faster (t ≪ τc) than that for mapping between AMD and KGMD. Thus, the temporal gap between the 
middle-level CG and the KG model is smaller than that between the atomistic and KG models.

Again we focus on the characteristic of the spatial and temporal gaps. The large gaps are observed between 
AMD and KGMD despite the number of united-atoms per PE chain is almost equal to that of beads per KG chain. 
In contrast, The gaps between middle-level CGMD and KGMD is small despite the number of CG particles per 
PS chain is about 7 times larger than that of beads per KG chain. This means that the difference of chemical details 
(e.g., intra- and intermolecular interactions) is more effective for the gaps than the difference of the plain geom-
etries of polymer models. Significantly, the gaps become small when linking molecular models having not less 
than a certain CG level. Estimating this level is critical for the development of CG models, because it provides the 
threshold for the effective coarse-graining achieving a good balance between model accuracy and computational 
cost. Here the present mapping scheme can reasonably determine the spatial and temporal gaps for representative 
polymer properties. The quantified gaps are useful as the index for searching the appropriate CG level. Therefore, 
optimization techniques of coarse-graining for polymer molecular models will be systematically extended by 
using the present scheme.

Conclusions
The application of universal polymer behavior to the linkage among molecular models at various length and 
time scales was examined in terms of a mapping scheme focused on power laws that also show universality. The 
spatial and temporal gaps were evaluated by mapping between the atomistic model of PE and the coarse-grained 
KG model, a linkage between the vastly different scales of AMD and high-level CGMD. The scheme reveals the 
characteristic length and time for the onset of universality between AMD and KGMD for the representative static 
and dynamic properties. The large gaps raise the discrepancies of the properties at short length and time scales, 
showing the clear limit for bridging the two simulations while retaining atomistic characteristics. To overcome 
this limit, low-level (i.e., elaborate) CG models that introduce the effects of short length and time scales should 
be developed18,20,22. The scheme was then use to evaluate the gaps between the multiscale molecular models of PS 
and the KG model, which involves a linkage among the three different scales of AMD, middle-level CGMD, and 
high-level CGMD. The small gaps between middle- and high-level CGMD attain the fast onset of universality 
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Figure 3.  Results of mapping between MSMD of PS and KGMD. (a) 〈R2〉 – M power law. (b) D – M power law. 
(c) −R MG

2  power law. (d) MSD of central monomers at M = 50000 g/mol.
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without the discrepancies of the properties at any length and time scales. Furthermore, it allows a linkage between 
the two models that quantitatively estimates polymer dynamics up to the subsecond timescale. This demonstrates 
the great potential to that the combination of various scales of molecular models permits multiscale mapping for 
polymer MD simulations. Here, quantitatively traceable MD time ranges can be significantly scaled up, which 
introduces the possibility of direct linkage between MD simulations and macroscale approaches59,60. The present 
mapping scheme is simple, and the scaling factors can be estimated with reasonable accuracy by using existing 
MD simulations and computational resources. Therefore, it is anticipated that it will be applicable to the sequen-
tial multiscale mapping among AMD, low-, middle-, and high-level CGMD for quantitative estimation of poly-
mer properties at realistic length and time scales while maintaining a reasonable computational cost.
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