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Deep Learning based Radiomics 
(DLR) and its usage in noninvasive 
IDH1 prediction for low grade 
glioma
Zeju Li1, Yuanyuan Wang   1,2, Jinhua Yu1,2, Yi Guo1,2, Wei Cao3

Deep learning-based radiomics (DLR) was developed to extract deep information from multiple 
modalities of magnetic resonance (MR) images. The performance of DLR for predicting the mutation 
status of isocitrate dehydrogenase 1 (IDH1) was validated in a dataset of 151 patients with low-grade 
glioma. A modified convolutional neural network (CNN) structure with 6 convolutional layers and a fully 
connected layer with 4096 neurons was used to segment tumors. Instead of calculating image features 
from segmented images, as typically performed for normal radiomics approaches, image features were 
obtained by normalizing the information of the last convolutional layers of the CNN. Fisher vector was 
used to encode the CNN features from image slices of different sizes. High-throughput features with 
dimensionality greater than 1.6*104 were obtained from the CNN. Paired t-tests and F-scores were used 
to select CNN features that were able to discriminate IDH1. With the same dataset, the area under the 
operating characteristic curve (AUC) of the normal radiomics method was 86% for IDH1 estimation, 
whereas for DLR the AUC was 92%. The AUC of IDH1 estimation was further improved to 95% using DLR 
based on multiple-modality MR images. DLR could be a powerful way to extract deep information from 
medical images.

Radiomics is an emerging method that uses a series of qualitative and quantitative analyses of high-throughput 
image features to obtain predictive or prognostic information from medical images1. Recently, radiomics methods 
have been used to analyze various medical images and have provided information related to patient outcomes, 
tumor phenotypes and the gene-protein signatures of different diseases. For instance, Aerts et al. presented a 
radiomics method to decode tumor phenotypes of both lung cancer and head-and-neck cancer based on com-
puted tomography (CT) data2. That study showed that it is possible to improve cancer diagnosis and treatment 
by using routinely collected medical images. The features described in that study were divided into four groups: 
intensity, shape, texture and wavelet features. Then, the features with the best performance in each group were 
combined to establish the radiomics model. Kumar et al. summarized and demonstrated the processes and chal-
lenges of radiomics3 with non-small-cell lung cancer (NSCLC). They proposed an NSCLC classification model 
that uses radiomics features. More recently, Vallieres et al. evaluated the lung metastasis risk of soft-tissue sar-
comas (STSs) with a radiomics model4. Several non-textural features and texture features were extracted from 
the tumor regions in multiple medical scans. Their research showed that a combination of features extracted 
from positron emission computed tomography (PET) and magnetic resonance (MR) images could provide good 
metastasis estimation. Indeed, certain features in MR images were reported to exhibit characteristics associated 
with clinical diagnosis5. Gutman et al. analyzed the association between visual features of MR images and genetic 
alterations, gene expression and patient survival of glioblastoma (GBM)6. Visually Accessible Rembrandt Image 
(VASARI) features of the tumor regions from MR images were used in their study, and the results demonstrated 
a significant association between contrast-enhanced tumors and the Verhaak gene expression classification. A 
series of analyses of GBM was conducted by Gavaert et al.7. Gavaert et al. generated computational image features 

1Department of Electronic Engineering, Fudan University, Shanghai, China. 2Key laboratory of Medical Imaging 
Computing and Computer Assisted Intervention of Shanghai, Shanghai, China. 3Department of micro-electronics, 
Fudan University, Shanghai, China. Correspondence and requests for materials should be addressed to Y.W. (email: 
yywang@fudan.edu.cn) or J.Y. (email: jhyu@fudan.edu.cn)

Received: 14 December 2016

Accepted: 25 May 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0003-1984-1136
mailto:yywang@fudan.edu.cn
mailto:jhyu@fudan.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 7: 5467  | DOI:10.1038/s41598-017-05848-2

of necrosis, enhancements and edema regions of interests (ROIs). Their results showed that a certain image fea-
tures correlated with molecular subgroups.

Normally, the process of radiomics analysis includes image acquisition, image segmentation, feature extrac-
tion, feature selection and informatics analyses3. There are three basic problems with existing radiomics sequenc-
ing methods. First, the image segmentation step usually relies on manual delineation. This process is both 
time-consuming and subject to inter- or intra-segmentation variation. Second, even if the image segmentation is 
accurate, there is no standard evaluation method for image feature extraction. Different image features will lead 
to different analysis results. Because it is difficult to verify the accuracy and reproducibility of image features, 
extra errors may be introduced due to the miscalculation of image features. Last, but not least, current radiomics 
methods often characterize medical images by using several groups of image features, including intensity, shape, 
texture and wavelets. Although many such image features can be calculated, it is not possible for all these imaging 
characteristics of segmented areas to be included in the predesigned features.

To overcome the shortcomings of radiomics methods, we developed a more advanced method, called deep 
learning-based radiomics (DLR). DLR obtains radiomics features by normalizing the information from a deep 
neural network designed for image segmentation. The main assumption of DLR is that once the image has been 
segmented accurately by the deep neural network, all the information about the segmented region will have 
already been installed in the network. Unlike current radiomics methods, in DLR, the high-throughput image 
features are directly extracted from the deep neural network. Because DLR does not involve extra feature extrac-
tion operations, no extra errors will be introduced into the radiomics analysis because of feature calculations. The 
effectiveness of features is related only to the quality of segmentation. If the tumor has been segmented precisely, 
the accuracy and effectiveness of the image features can be guaranteed.

In the proposed DLR, a convolutional neural network (CNN) is used. CNN is a representative method used 
for deep learning, and it has been successfully applied to the field of image segmentation8. Recently, many groups 
have used CNN for the segmentation of medical images, and it has provided better results than traditional meth-
ods9. In glioma segmentation based on MR images, most of the CNN methods were proposed for high-grade 
gliomas10, 11. Compared with high-grade gliomas, low-grade gliomas are smaller and have lower contrast with the 
surrounding tissues12. Existing CNN structures would not work well for segmentation of low-grade gliomas. A 
major architecture adjustment of CNN is therefore essential for both image segmentation and feature extraction. 
To address the challenging characteristics of low-grade gliomas, we used a modified CNN architecture with 6 
convolutional layers and a fully connected layer with 4096 neurons for segmentation.

With the more accurate segmentation results obtained by CNN, more information can be extracted. Unlike 
traditional calculated features, CNN features preserve a great deal of the global spatial information using the oper-
ations of convolutional kernels for the entire image13. Indeed, CNN features have shown better performance than 
traditionally calculated features in many domains, such as scene recognition, domain adaptation and fine-grained 
recognition14. More recently, the features in a CNN showed promising results for texture attribute recognition, 
and CNN outperformed traditional approaches by more than 10%15. In DLR, CNN features are extracted from 
the last convolutional layer. A Fisher vector is used to normalize the network information from MR imaging slices 
of different sizes; 16,384 high-throughput image features were generated from the CNN for each case.

The performance of the proposed DLR was validated by using it to predict the isocitrate dehydrogenase 1 
(IDH1) statuses of low-grade gliomas16, 17. Since the introduction of the concept of molecular diagnosis for gli-
oma, which is the most common malignant brain tumor, large-scale genomics data are now available18–20. In 
the latest version of the WHO 201621, molecular diagnosis and pathological diagnosis were integrated for cen-
tral nervous system tumors, including glioma. Among all the molecular biomarkers, the IDH1 gene is the most 
important because of its unique diagnostic and predictive value. IDH1 mutation status accounts for more than 
50% of the predictive value in low-grade glioma22. The treatment regimen varies greatly in low-grade glioma 
according to IDH1 status23. Therefore, accurate prediction of IDH1 mutation status via noninvasive methods 
has been widely explored. Here, we used DLR to determine IDH1 mutation status in a low-grade glioma cohort 
composed of 151 patients. We demonstrate that DLR is a useful and accurate tool for predicting IDH1 mutation 
status in low-grade gliomas.

Results
Participants.  A cohort of 151 cases was selected from the image bank of the Department of Neurosurgery, 
Huashan Hospital. All patients enrolled in this study were diagnosed with grade II glioma. The diagnoses of 
low-grade glioma were re-confirmed independently by 2 pathologists for each case, and the IDH1 mutation sta-
tuses were confirmed by Sanger sequencing. Detailed information about the enrolled patients is summarized in 
Table 1. The cases were divided into two cohorts. The first cohort, consisting of 119 cases with both T2 flair and 
T1 contrast images, was used to test the DLR performance based on multiple MR imaging modalities. The sec-
ond cohort, consisting of 110 cases with T2 flair images, was used to compare the IDH1 prediction performance 
between DLR and the normal radiomics approach. The second cohort was used in our previous radiomics study 
for the same purpose24.

Tumor segmentation results.  The tumor segmentation results are shown in Fig. 1. The evaluation indexes 
are explained in the Supplementary methods section, and the results of different CNN structures are presented in 
Supplementary Table 1. As expected, the network was able to segment the tumor regions.

The results in Fig. 1(a) show that increasing the network depth or increasing the number of neurons in the 
fully connected layers led to more precise segmentation results. Ultimately, using a deeper network structure 
and employing more neurons in the fully connected layers at the same time led to the best overall segmentation 
results. Further performance improvements were achieved by combining multiple modal MR images.
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We present three typical segmentation results of CNNs trained with single-modality and multi-modality 
images in Fig. 1(b). As shown in the pictures, the CNN provided correct segmentation results for the tumor 
regions. The false recognition of other brain structures was reduced (in cases one and three), and the tumor 
region was recognized more accurately (in case two).

Prediction results for IDH1 using DLR.  To better understand the features extracted by DLR, we analyzed 
the selected features from multiple MR imaging modalities. In general, the CNN features represented the char-
acteristics of the responses of deep filter banks in the last convolutional layer. The dimension of CNN features 
was normalized using their distribution statistics with regard to 64 Gaussian kernels. Detailed information of the 
selected CNN features is presented in Supplementary Figure 1. The majority of the features were only related to a 
few Gaussian kernels. In other words, there are many correspondences among the features that showed significant 
responses to IDH1 status. On the other side, several filter banks show great responses to IDH1 status.

Parameters Total Cases

IDH1 Mutation Status

p-valueMutation Wild Type

All the dataset

Number of samples 151 112 39

Sex

Male 81(54.6%) 58(51.8%) 23(59.0%)
0.44

Female 70(46.4%) 54(48.2%) 16(41.0%)

Age (years)

Mean ± standard deviation 40.7 ± 10.8 38.7 ± 10.7 43.5 ± 12.1 0.03

Tumor volume (cubic centimeters)

Mean ± standard deviation 68.1 ± 47.4 69.0 ± 48.0 65.8 ± 46.8 0.843

Histopathological diagnosis

Astrocytoma 81(54.6%) 54(48.2%) 27(39.2%)

0.01Oligodendroglioma 31(20.5%) 27(24.1%) 4(10.2%)

Oligoastrocytoma 39(25.8%) 31(27.7%) 8(20.5%)

First cohort

Number of samples 119 89 30

Sex

Male 67(56.3%) 48(54.0%) 19(63.3%)
0.37

Female 52(43.7%) 41(46.1%) 11(36.7%)

Age (years)

Mean ± standard deviation 39.6 ± 10.2 37.9 ± 8.9 44.2 ± 11.7 0.03

Tumor volume (cubic centimeters)

Mean ± standard deviation 68.3 ± 57.4 66.7 ± 55.6 73.1 ± 63.0 0.146

Histopathological diagnosis

Astrocytoma 69(58.0%) 47(52.8%) 22(73.3%)

0.03Oligodendroglioma 24(20.2%) 21(23.6%) 3(10.0%)

Oligoastrocytoma 26(21.8%) 21(23.6%) 5(16.7%)

Diagnosis time

Before 2015 85(71.4%) 63(70.8%) 22(73.3%)
0.79

After 2015 34(28.6%) 26(29.2%) 8(26.7%)

Second cohort

Number of samples 110 76 34

Sex

Male 54(49.1%) 33(43.4%) 21(61.7%)
0.08

Female 56(50.9%) 43(56.6%) 13(38.2%)

Age (years)

Mean ± standard deviation 40.3 ± 11.3 39.0 ± 10.7 43.4 ± 12.7 0.06

Tumor volume (cubic centimeters)

Mean ± standard deviation 68.1 ± 57.9 74.3 ± 62.5 54.3 ± 43.8 0.06

Histopathological diagnosis

Astrocytoma 55(50.0%) 31(40.8%) 24(70.6%)

0.01Oligodendroglioma 21(19.1%) 18(23.7%) 3(8.8%)

Oligoastrocytoma 34(30.9%) 27(35.5%) 7(20.6%)

Table 1.  Characteristics of patients in all datasets, first cohort and second cohort.
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An example that illustrates our method is shown in Fig. 2. Two typical IDH1 mutation and wild-type cases 
were used as examples. The ROIs were entered into the network, and CNN features from the last convolutional 
layers were extracted and encoded by a Fisher vector. Of all the 16,384 CNN features, no. 13,751 and no. 13,768 
were the two most significant in their response to IDH1 status (with F-scores of 0.3501 and 0.3561, respectively). 
The two features corresponded to the first order statistics of the no. 36 kernel of the no. 107 deep filter response 
and the second order statistics of the no. 28 kernel of the no. 107 deep filter response. We visualized the feature 
maps of the no. 107 filter for the two cases in Fig. 2. Surprisingly, although the inputs of the two types of tumor 
were similar, the outputs from the no. 107 filter response were almost entirely different.

Next, the first order statistics of the no. 36 kernel and the second order statistics of the no. 28 kernel were 
calculated; these refer to the designs of the no. 13,751 and no. 13,768 features. The characteristics of the filter 
response were reflected in the two parameters. As the second order statistics of the no. 28 kernel show, the no. 
107 filter response of the wild-type tumor was more internally complicated and had more texture information. As 
the first order statistics of the no. 36 kernel show, the no. 107 filter response of the mutation-bearing tumors had 
lower intensity and was more gathered around the no. 36 kernel (the no. 36 kernel had a mean value of −0.1352 
and a variance of 0.0055). Thus, the prediction based on CNN features clearly provided good results. Indeed, the 
two types of tumors have significantly different responses in deep filter banks.

To make the analysis more comprehensive, we show the feature maps from the no. 107 filter in Supplementary 
Figure 2. The feature maps of IDH1 mutant gliomas showed a more uniform distribution. By contrast, the internal 
textures of the feature maps of the wild-type gliomas were more complex, and the response regions were more 
irregular. However, these differences were not obvious in the original MR images.

Comparison with normal radiomics methods.  In our previous study24, we used normal radiomics 
based on calculated features to estimate the IDH1 status of the second cohort used in this current study. In 
this study24, we extracted 671 image features from the segmented images. To evaluate the CNN features in the 
radiomics analysis, we used the same cohort and analysis process, but we replaced the 671 features with 16,384 
CNN features. The evaluation parameters of the prediction results are shown in Table 2(a). A comparison of the 
receiver operating characteristic (ROC) curves is presented in Fig. 3(a). The features used are summarized in 
Supplementary Table 2. The results show a great improvement as a result of using the CNN features.

The modified CNN architecture was able to provide joint information of multiple modalities for the DLR 
analysis. The performance of multiple modalities was evaluated using the dataset of the first cohort with both 
T2 flair images and T1 contrast images. Two evaluation methods were used: leave-one-out cross-validation and 

Figure 1.  Tumor segmentation results for single-modal images and multi-modal images using different 
network structures. (a) Comparison between the indexes of different segmentation results of different CNNs. 
Conv. indicates the number of convolutional layers in the CNN structures, and fc. indicates the number of 
neurons in the fully connected layers in the CNN structures. (b) Three typical cases with segmentation results 
for the CNN with 6 convolutional layers and fully connected layers with 4096 neurons.
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validation based on time of diagnosis. The evaluation parameters of the prediction results based on leave-one-out 
cross-validation are shown in Table 2(b), and a comparison of the ROC curves is presented in Fig. 3(b).

The results showed that DLR provided better prediction results by using multi-modal images rather than 
single-modal images. Moreover, further feature selection would improve the predictive ability of this model. The 
performance of further feature selection is shown in Supplementary Figure 3.

Another experiment was carried out to validate our method. Eighty-five patients diagnosed before 2015 (63 
mutations and 22 wild type) were used as a training set, and 34 patients diagnosed after 2015 (26 mutations 
and 8 wild type) were used as the validation set. The same features of multi-modal DLR with further feature 
selection were used for IDH1 status prediction. The results were similar to those obtained with leave-one-out 
cross-validation, as shown in Table 2(c).

DLR performance with CNN features with different layers.  As shown in Fig. 1, the CNN architec-
ture that we designed demonstrated better performance than previous methods for tumor segmentation. We 
demonstrated the importance of deepening the network structure by comparing prediction results using CNN 
features from different layers. The prediction results are summarized in Table 3. The numbers of features used for 
prediction in each case are summarized in Supplementary Table 2. As shown in the table, the overall prediction 
results improved when the network was built deeper. However, when we proceeded to the fully connected layers, 
no further improvement was achieved.

Next, we illustrated the importance of building a high-performance CNN with feature maps obtained from 
different depths of the network. Features maps were the output planes of different deep convolutional kernels 
and could be thought of as the responses of the local feature extractors. Feature maps of the four most significant 
filter banks of each convolutional layer are presented in Fig. 4. These feature maps are the responses of the CNN 
to the same two cases. Normally, feature maps are thought to provide more detailed information as the network 
becomes deeper13. In the lower convolutional layers, the CNN only acquires intensity and shape information from 
the tumor, and most filter banks do not show distinct responses to different disease phenotypes. As the CNN 

Figure 2.  CNN features from the last convolutional layers. (a) An example of specific CNN features. Deep filter 
responses showed noticeable differences between wild-type and mutant IDH1, and the Fisher vectors could 
successfully represent the differences.

Dataset Methods AUC ACC SENS SPEC PPV NPV MCC

(a) Normal Radiomics vs. DLR (single modality: T2 flair)

Second cohort with leave-one-out cross-validation
Radiomics24 0.8572 0.8000 0.8289 0.7353 0.8750 0.6579 0.5483

DLR 0.9207 0.8636 0.9342 0.7059 0.8765 0.8276 0.6713

(b) DLR based on single modality vs. multiple modality

First cohort with leave-one-out cross-validation

DLR with single modality 0.8045 0.8235 0.9326 0.5000 0.8469 0.7143 0.4927

DLR with multiple modality 0.9157 0.8655 0.9438 0.6333 0.8842 0.7917 0.6246

DLR with multiple modality 
improved by further feature selection 0.9521 0.9244 0.9438 0.8667 0.9545 0.8387 0.8018

(C) Divided test set based on diagnosis time

First cohort with divided test set DLR with multiple modality 0.9615 0.9118 0.9231 0.8750 0.9600 0.7778 0.7673

Table 2.  Prediction results of different cohorts using different methods. (a) Comparison of IDH1 prediction 
results between radiomics and DLR using T2 flair modal MR images of the first cohort by leave-one-out cross-
validation SVM. (b) Prediction results of IDH1 using multi-modal MR images of the second cohort by leave-
one-out cross-validation SVM and (c) validation on a divided test set. The data set was divided according to the 
diagnosis time.
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structure becomes deeper and the number of network parameters increases, the features become more difficult to 
describe. However, we can see from the figure that the feature maps of the deeper layers have more information 
about the details and internal textures. The mutation cases and wild-type cases can be distinguished in various 
ways. To demonstrate the ability of DLR to differentiate between phenotypes, we present a boxplot of the ten most 
significant features in Supplementary Figure 4.

Operation time.  All of our computations were carried out using an NVIDIA Quadro 600 GPU on an Intel 
Xeon E5620 2.40 GHz machine. It took 38 hours to train the tumor recognition CNN. Eighteen minutes were 
required per case for the tumor segmentation, and 40–80 seconds per case were needed for CNN feature extrac-
tion, depending on the tumor size. Approximately 2 seconds were used for the encoding of the Fisher vector.

Discussion
A modified CNN architecture designed for low-grade glioma segmentation was introduced in this study. 
Compared to previous neural networks, the proposed CNN was built with more convolutional layers and more 
neurons in the fully connected layers. Increasing the depth of the network and adding parameters enabled the 
CNN to make more adjustments to the input images and improved the learning ability of the CNN. For these rea-
sons, we were able to obtain more accurate segmentation results and better tumor identification using the CNN. 
Similar to CNN methods that process natural images in three-channel RGB25, we used multi-modal MR images 
as inputs for the CNN. CNN structures based on multiple imaging modalities obtained more information. More 
image information helped the CNN to better detect the tumor regions. Therefore, incorrect segmentation for 
non-tumor regions was reduced, and the identification of tumor regions was precise.

Radiomics has become a popular method to extract prognostic information from medical images that is not 
visible to the human eye. Many radiomics features can be analyzed using medical images. As topical issues, radi-
omics methods have already been widely adopted for the noninvasive analysis of genetic and clinical information 
in different medical fields. The success of radiomics is based on the idea that medical images can provide much 
information about the internal state, which could be related to disease characteristics and may help in treating 
and understanding disease26. Radiomics can be used to obtain information by extracting a tremendous number 
of features from lesion areas. Although radiomics methods have made substantial progress, the features were 
designed without a special purpose in mind. The features used for different diseases are similar, and fewer than 
hundreds of features can be used, including intensity, shape, texture, wavelets and other descriptive features. The 
clinical characteristics may not be obvious in the images, and it is difficult and time-consuming to design a suite 

Figure 3.  ROC curves of the prediction results. (a) ROC curves of the radiomics features and DLR of the 
second cohort with single-modal images. (b) ROC curves of DLR of the first cohort with multiple modal images 
are shown on the right.

Methods AUC ACC SENS SPEC PPV NPV MCC

Conv.1 0.6165 0.5630 0.5393 0.6333 0.8136 0.3167 0.1499

Conv.2 0.7109 0.6387 0.6404 0.6333 0.8382 0.3725 0.2402

Conv.3 0.8858 0.8403 0.9213 0.6000 0.8723 0.7200 0.5557

Conv.4 0.8734 0.7899 0.8876 0.5000 0.8404 0.6000 0.4132

Conv.5 0.9004 0.8571 0.9101 0.7000 0.9000 0.7241 0.6171

Fc.7 0.8614 0.8319 0.9326 0.5333 0.8557 0.7273 0.5212

Fc.8 0.7524 0.7647 0.8876 0.4000 0.8144 0.5455 0.3217

Conv.6 0.9157 0.8655 0.9438 0.6333 0.8842 0.7917 0.6246

Table 3.  Comparison of IDH1 prediction results using CNN features from different layers. Conv. means the 
convolutional layers, and fc. represents the fully connected layers. The same post-processing was applied in each 
situation.
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of related features. However, it is clearly difficult to tell whether the modeled radiomics features are related to a 
given problem. Traditional radiomics methods cannot guarantee that the features describe the pattern completely, 
and they cannot guarantee that the selected features are the best features.

The CNN features used in this study, unlike the features used in normal radiomics methods, were extracted 
directly from the networks. The CNNs were specifically trained on the given training data, and they were able 
to segment the tumor region automatically. The outstanding tumor recognition ability of the CNN inspired us 
to test whether more information about the disease could be extracted from the CNN structures. Indeed, we 
showed that the CNN features could better predict IDH1 status. We can summarize the superiority of DLR in 
three main improvements. First, the DLR can provide automatic segmentation results based on multi-modal 
images, and it can avoid the additional errors caused by subsequent feature extraction. We succeeded in simpli-
fying the radiomics process into a more elegant procedure by directly extracting features from the network and 
avoiding difficulties in designing features. The process of DLR, including lesion area segmentation, can thus be 
fully automatic. This automation makes the DLR more robust and useful for the prediction of disease phenotypes. 
Second, the high-performance object recognition of the CNN was utilized. DLR can make full use of the image 
information within and near the tumor regions. CNN features were extracted directly from the network, and the 
most distinct deep filter responses were found. The strong connection between the deep information and IDH1 
statuses benefited from the outstanding tumor recognition ability of the CNN. CNN structures with stronger 
tumor recognition ability, such as CNN structures based on multiple imaging modalities, could provide more 
value relevance information and lead to better discrimination of IDH1 statues. Third, the CNN can be specifically 
designed for the problem at hand, which means that CNN features can provide unique characteristics for par-
ticular images. The network was trained using medical images that needed to be processed. Therefore, the CNN 
learned a large number of general and unique features from the datasets, which would be impossible when using 
radiomics features or manually specified features.

In this study, information was extracted from the last convolutional layers. We were inspired to do this based 
on the idea that information from the deeper layers is more robust. The changes in details, such as shifting and 

Figure 4.  Feature maps of CNN features from different convolutional layers. The four most significant filter 
banks of different layers were selected. As shown in the figures, feature maps of deeper layers represented more 
detailed characteristics.
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scaling in the input images, would have an effect on the feature maps of lower layers but not on the deep layers13. 
This effect was illustrated by an experiment in this study. On the one hand, the nuanced differences between 
categories were highlighted by the abstract feature maps from the deep layers. These features were hard to depict, 
and they might correspond to the differences between disease phenotypes that are not visible to the human eye. 
They could help the classifier obtain more accurate prediction results. On the other hand, discrimination did not 
evolve any more by extracting features from the fully connected layers. The reason for this result is because the 
CNN features were too compressed in the fully connected layers, and the partial information reflecting the char-
acteristics of disease phenotypes was lost.

Despite the diagnostic significance of glioma according to the new version the WHO criterion, the IDH1 muta-
tion status was used to tailor personalized treatment regimens, including surgical extent and chemo-sensitivity. 
Patients with IDH1 mutations tend to have a positive prognosis. Currently, the prognosis evaluation of glioma is 
mainly decided by extensive histologic and genetic evaluation. Preoperative noninvasive prediction of IDH1 sta-
tus could help guide treatment decisions in some cases, but it remains a challenge. Several noninvasive methods 
to predict IDH1 mutation status have been explored and reported during the last few years. Of these methods, 
MR imaging-oriented computational analysis is considered the most convenient and cost-effective. Two major 
methods have been proposed based on routine MR imaging or magnetic resonance spectroscopy (MRS). The first 
method is called image analysis, and it is based on routine clinical MR imaging scans. Yamashita et al. reported 
that tumor necrosis area and tumor blood flow are useful for predicting IDH1 mutation status27. A total of 66 
patients with GBM were included in their study. IDH1 prediction results with area under the operating charac-
teristic curve (AUC) values of 87.3% and 77.2% were obtained using the features of relative tumor blood flow 
and necrosis area, respectively. However, their method lacks an overall evaluation of the tumor regions, and the 
specific cutoff parameters in their research might be not applicable to other datasets. Recently, radiomics intro-
duced another approach for the noninvasive prediction of IDH1 status. Our group also examined the possibil-
ity of predicting IDH1 mutation status using a radiomics method24. We carried out a preliminary classification 
prediction of IDH1 mutation statuses with T2 flair images of 110 patients with low-grade gliomas. Using 671 
radiomics features describing the intensity, shape, texture and wavelet characteristics of the tumor regions, we 
obtained an accuracy of 80% and an AUC of 86%. Compared to IDH1 prediction methods based on image anal-
ysis, DLR combines the steps of image segmentation and feature extraction, and it efficiently avoids error propa-
gation and could provide features with more comprehensive representation of the tumor regions that are relevant 
to the tumor molecular phenotype. Therefore, DLR outperforms other methods for IDH1 mutation prediction. 
Alternatively, the second method involves detecting metabolic changes caused by IDH1 mutation using MRS 
technology. When a tumor harbors an IDH1 mutation, it produces 2-hydroxyglutarate (2-HG), which is reflected 
in the MRS results18, 28. Several studies have reported ways to detect 2-HG by MRS using dedicated research scan-
ners under certain conditions29, 30. Verma et al. developed two-dimensional localized correlated spectroscopy (2D 
L-COSY) at 7 tesla for the detection of 2-HG30. Nine patients were enrolled in their study. The results showed 
that 2-HG was detected in the IDH1-mutant gliomas but was absent in IDH1 wild-type gliomas. Lombardi et al. 
predicted the presence of IDH1 mutations based on 2-HG concentrations in the plasma and urine of 84 patients31. 
These methods provided an accuracy of 70%, a sensitivity of 63% and a specificity of 76% when the cutoff ratio of 
2-HG was set to 19. De la Fuente et al. developed an MR imaging protocol to integrate 2-HG-MRS into routine 
imaging and validated the performance using 89 patients32. The results showed that 2-HG is closely linked to 
MRS voxel volume, with sensitivity values ranging from 8% for small tumors (<3.4 mL) to 91% for larger tumors 
(>8 mL). The main drawback of these 2-HG-based methods is that there are too many requirements for image 
acquisition, making it difficult to use in routine MR imaging processes32. Compared to IDH1 prediction methods 
based on measuring 2-HG, DLR can provide better results and relies only on the routine MR imaging modality. 
Our method can be applied to routinely collected MR imaging data instead of requiring additional samples or 
specific imaging parameters. Thus, it may be more practical to implement and more economical. One possible 
shortcoming of DLR may be encountered when processing data from different medical centers or data collected 
using different machines. Our CNN was built using MR images collected with the same parameters, but images 
with different imaging parameters might not be accurately identified by the settled network. This problem could 
be overcome by image normalization or fine-tuning using the new dataset.

In medical imaging applications, our method is able to noninvasively predict IDH1 mutation status with 
high accuracy by using routinely collected MR image modalities. In the future, we anticipate that DLR can be 
widely used in other cases where radiomics has been applied. Noninvasive prediction of other important glioma 
biomarkers, such as 1p19q and TERT, will be considered for future work. Prediction of survival time for GBM is 
also being considered as a future application of DLR. Our method can help related research obtain more specified 
features and greatly improve performance.

Methods
MR image data acquisition.  All images were acquired using a 3 Tesla Siemens Trio scanner (Siemens, 
Erlangen, Germany). 3D T2 flair images were acquired using the following scan parameters: TR = 9000 ms, 
TE = 99 ms, TI = 2501 ms, flip angle = 150°, slice thickness = 2 mm and pixel spacing = 0.4688 mm. In addition, 
a high resolution, T1 contrast 3D images were acquired (TR = 1900 ms, TE = 2.93 ms, TI = 900 ms, flip angle = 9°, 
slice thickness = 1 mm and pixel spacing = 0.4883 mm). This experiment was approved by the Ethics Committee 
of Huashan Hospital, and informed consent was obtained from every patient. All experiments were carried out in 
accordance with relevant guidelines and regulations.

For each case, polymerase chain reaction (PCR) and subsequent sequencing analysis were performed as 
described previously33.
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DLR: Deep Learning-based Radiomics.  An overview of DLR is shown in Fig. 5. Important concepts are 
described later.

Data pre-processing.  All T1 contrast MR images were first registered to the T2 flair MR images using 
Statistical Parametric Mapping (SPM)34. Then, Brainsuite35 was used to remove the skull and scalp from the brain 
MR images and correct the bias field for the MR images, leading to better recognition for the CNN. After that, the 
tumor regions were manually labeled by two experienced neurosurgeons. The manual segmentation results were 
used as ground truth in the CNN training phase.

Tumor segmentation by deep learning.  The structure of the CNN was mainly based on a previous 
study10. The selected method was used to participate in the Brain Tumor Segmentation Challenge (BRATS)12 and 
ranked first place and second place in BRATS 2013 and BRATS 2015, respectively.

The task of tumor region recognition was transformed into pixel-wise classification in the fashion of CNN. 
Taking into account the lack of brain MR image resolution in the coronal and sagittal planes, we considered using 
two-dimensional information for tumor recognition from the axial view. During the training phase, 33 × 33 pixel 
patches were extracted from the MR images. The mean gray levels of the patches in one channel were removed, 
and the gray values and variance were normalized. Normalized patches were input into the network with the cat-
egory of the center points for training. However, the proportion of tumors in the images was very small. To better 
identify the tumor region, we used an unbalanced selection strategy, such that approximately 40% of the patches 
in the input contained tumor regions.

The convolutional kernels were convolved over the image to obtain the local features and global features of 
the images at the same time. The weights of the convolutional kernels were adapted by back-propagation in every 
training process. Therefore, the networks were adjusted to the characteristics of the input data. Stochastic gradient 
descent (SGD) was used as the parameter back-propagation algorithm.

When applying the structure to our dataset, we built it deeper and included more neurons in the fully con-
nected layers. Detailed information about the structure used in our study is shown in Fig. 5 and Supplementary 
Table 3. Two convolutional layers were added, and the parameters in the fully connected layers were increased 
from 256 to 4096 to obtain more precise segmentation results. Rectified linear units (ReLU) were chosen as 
the activation function, and they were set following every convolutional layer. Additionally, dropout layers 
were applied after every fully connected layer. To ensure the accuracy and effectiveness of the image features, 
we selected network structures with 6 convolutional kernels and fully connected layers with 4096 neurons for 
subsequent processing.

Typically, full images were used as direct input to the network to obtain the segmentation results in the test 
phase. The same pre-processing parameters from the training phase were used, including the mean gray value, 
normalized gray value and variance. Bicubic interpolation was used for the up-sampling of network output to 
make up for the dimensional changes produced by the pooling process. After obtaining the segmentation results 
of the CNN output, we corrected the segmentation results by post-processing using several morphology methods. 
The largest connectivity region of each slice was first chosen as the candidate region. Then, the selected tumor 
regions were smoothed by a box filter with a 3-dimensional convolution kernel.

Figure 5.  An overview of our DLR. Our approach included two selection steps. The first step is to recognize 
the tumor regions in the MR images based on a state-of-the-art CNN structure. In the second step, deep filter 
responses were extracted from the last convolutional layer through Fisher vector encoding. Then, the prediction 
results were evaluated by a leave-one-out cross-validation SVM.

http://3
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Selection of deep filter responses.  After confirming that the network was able to identify tumor regions, 
we added tumor region images to the network. To fully examine the tumor responses in the network, we used 10 
images with different scales for each tumor slice, and the scale ratios ranged from 0.5 to 2.

The CNN was taken as an image filter, and the features of the tumor regions were generated from the 
feature maps from the last convolutional layer. However, features chosen from the network had different 
dimensions for different cases and lacked statistical characteristics. To overcome these difficulties, we intro-
duced an improved Fisher vector encoding36 for feature normalization and description. The Fisher vector 
was summarized in a vectorial statistic for a number of local feature descriptors by constructing a visual 
word dictionary obtained with Gaussian Mixture Models (GMM)37. Multi-scale information regarding the 
tumor regions was seamlessly incorporated by the description of the Fisher vector. In our study, a GMM 
with 64 Gaussian components was obtained based on the training data. Then, feature maps of all slices from 
a single case were stretched into a one-dimensional vector for each deep filter, and these were pooled into 
a Fisher vector representation with 64 Gaussian components. The pooled descriptors represented the first 
order and second order statistics of each of the 64 Gaussian components of each of the 128 deep filters, 
resulting in descriptors with 16k-dimensions (128 × 64 × 2). The calculations for the Fisher vector are 
described in the supplementary methods.

In this study, 30 patients were used to obtain the encoder of the generated CNN features for both cohorts, 
separately. After that, the CNN features were extracted from all of the images and encoded with a Fisher vector to 
obtain a 16,384-dimensional feature set for each patient. The DLR model based on multiple modalities was built 
and tested on the first cohort. The DLR based on a single modality was built using the second cohort and was 
tested on both cohorts.

Feature selection and classification.  To evaluate the ability of the CNN to recognize tumors, we assessed 
the tumor segmentation results of the CNN. The Dice Similar Coefficient (DSC), Positive Predictive Value (PPV) 
and sensitivity38 were calculated for the CNN tumor recognition results, with manual segmentation as the ground 
truth.

To select features associated with IDH1 mutation status, we included several feature selection methods in our 
method. Student’s t-test was applied to all of the extracted features to identify the features with significant power 
according to the criterion that a p-value < 0.05 indicated statistical significance. In addition, feature selection 
based on F-score39 was used for further pre-processing to remove irrelevant and redundant features.

In our study, a support vector machine (SVM) was chosen as a classifier. SVM shows good robustness and 
high precision, and it has been used by other studies for cancer analysis40. The linear kernel was chosen for the 
SVM in this study, and the box constraint c was set as 1.

Several indexes were calculated in this study to evaluate the predictive performance of our model. Parameters, 
including ROC curves, AUC, accuracy (ACC), sensitivity (SENS), specificity (SPEC), PPV, negative predictive 
value (NPV) and Matthew’s correlation coefficient (MCC), were calculated and presented as the prediction 
results. The detailed calculations for these parameters can be found in the supplementary methods.

Dividing training data and test data.  The CNN was trained using the first cohort with 119 cases and 
multi-modal MR images. Sixty cases from the first cohort were selected as the training data, and the remaining 
59 cases were used as test data. Leave-one-out cross-validation was used for IDH1 prediction. An experiment was 
carried out for validation using another division of the cases. Eighty-five cases diagnosed before 2015 were chosen 
as the training data, and 34 cases diagnosed after 2015 were used as the test data.

Data Availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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