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DES-TOMATO: A Knowledge 
Exploration System Focused On 
Tomato Species
Adil Salhi1, Sónia Negrão2, Magbubah Essack1, Mitchell J. L. Morton2, Salim Bougouffa   1, 
Rozaimi Razali   1, Aleksandar Radovanovic1, Benoit Marchand3, Maxat Kulmanov   1, Robert 
Hoehndorf1,4, Mark Tester   2 & Vladimir B. Bajic   1,4

Tomato is the most economically important horticultural crop used as a model to study plant biology 
and particularly fruit development. Knowledge obtained from tomato research initiated improvements 
in tomato and, being transferrable to other such economically important crops, has led to a surge of 
tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for 
exploration of information related to tomato. Information exploration is enabled through terms from 
26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide 
several examples how one can efficiently use this KB to retrieve known or potentially novel information. 
DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/
des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.

The Solanaceae family is a major plant family comprising several economically important crop species such as 
potato (Solanum tuberosum), eggplant (Solanum melongena), tomato (Solanum lycopersicum), peppers (Capsicum 
annuum) and chili peppers (Capsicum frutescens). Globally, cultivated tomato is the most important horticul-
tural crop, with an annual production of approximately 164 million tons, and with a value of about $US 60 bn 
(FAOSTAT, 2013). Because of its value as a food source, tomato has been a target for crop breeding programs 
focused on traits that contribute to lower production costs, higher quality fruit with extended shelf-life, and 
sustainable production with higher yield1. Tomato, like many other domesticated crops, has suffered a drastic 
erosion of genetic variation. Thus, wild tomato species have been widely used in breeding programs to increase 
genetic variation especially for stress tolerance1, 2. All of the 13 known wild tomato species3, 4 are diploid, can be 
crossed with cultivated tomato and are important for the evolutionary history of the Solanum section Lycopersicon 
clade5–7. Due to tomato’s unique features, such as its sympodial shoot, compound leaves, and fleshy fruit, this spe-
cies has become an established model to study plant biology and particularly fruit development8.

The availability of the reference genome of S. lycopersicum ‘Heinz 1706’9, the identification of millions of 
single-nucleotide polymorphisms (SNPs)10–12, and the launch of the ‘150 tomato genome re-sequencing project’ 
(http://www.tomatogenome.net/)5 together with the SNP data from other 360 tomato accessions13, have paved 
the way for a myriad of genomic studies in tomato and its wild relatives. The large volume of data generated from 
these studies further prompt the development of tomato-related resources such as the TOMATOMICS data-
base (http://bioinf.mind.meiji.ac.jp/tomatomics/index.php)14, the Micro-Tom mutant database - TOMATOMA 
(http://tomatoma.nbrp.jp/)15, and the Plant Omics Data Center (PODC; http://bioinf.mind.meiji.ac.jp/podc/)16, 
which includes core gene expression information for tomato and other species. The tomato-related research 
addresses different topics, such as stress tolerance17, 18, plant-pathogen interactions19, transcriptional control of 
biological processes20, 21 and fruit biology22, 23. This plethora of information is becoming overwhelming. Thus, 
proper insights into metadata are critical to allow a straightforward way to analyze and establish associations 
within tomato-related literature. The Sol Genomics Network (SGN) (http://solgenomics.net)24 presents a 
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clade-oriented database for the Solanaceae family. However, the SGN is only able to retrieve information pre-
viously curated by the Solanaceae consortium, such as genes, quantitative trait loci, and computationally pre-
dicted gene family members. As such, the most appealing ingredient in the SGN, which is manual curation, is 
also its most limiting aspect. The SGN depends on past curation and therefore can only capture a small part of 
information.

Several text-mining derived knowledgebases (KBs) that explore topic-specific literature and focus on “term 
associations”/“terms co-occurrence”, have been developed for life science topics25–39. Text-mining in these KBs 
is restricted to titles and abstracts from PubMed records, which is beneficial for extracting a significant portion 
of useful information. However, the increasing availability of full-text articles in electronic form is expanding 
sources of information. For example, when comparing the distribution of information contained in full-text arti-
cles versus abstracts, Shah, et al.40 recommended the use of full-text articles instead of just abstracts for extraction 
of keywords. Also, Schuemie, et al.41, who reported that, although abstracts have the highest information density, 
results sections have the highest information coverage. In plant sciences, however, text-mining has not been fully 
exploited35. These include, for example, textual data on Arabidopsis in combination with an integrated network 
approach42, the Ondex data integration platform (http://www.ondex.org/index.shtml), designed to identify key 
protein-stress associations43, and VESPA mining, a platform to access data information contained in documents 
(in this case printed bulletins) to explore pest and crops interactions44. In addition, HRGRN resource (http://
plantgrn.noble.org/hrgrn/) enables the exploration of regulatory networks in Arabidopsis (i.e. signaling transduc-
tion, metabolism and gene regulation) through a graph search-empowered integrative database45. Nevertheless, 
and while effective in identifying topic-specific associations, the previous use of text-mining in plant sciences, to 
our knowledge, tends to have a relatively narrow scope.

To enable users to make a more thorough exploration of the information related to tomato and its close rela-
tives, we developed a topic-specific KB, DES-TOMATO, with an upgraded text-mining methodology similar to46. 
Our KB uses a dictionary-based approach in which enriched terms and phrases (referred to as terms from here 
on) belonging to different thematic categories (e.g. pathways, genes, taxonomy, etc.) are pre-compiled to form the 
basis for indexing text. Terms can be atomic, when the data source provides only one name variation for the entity 
in question, or they can have a number of synonymous words/phrases that are normalized to the same internal 
identifier within our knowledgebase. These internal identifiers allow for the universal identification of the term 
(e.g. through its EntrezGene gene ID, NCBI Taxonomy ID, etc.), and for complementing text-mined information 
with data from external sources if needed. This dictionary approach allows the user to focus on entities of their 
interest as defined from commonly used authoritative sources such as ChEBI47 and EntrezGene48. Our KB aims 
to discover associations between enriched terms, where these terms are searched for in titles and abstracts (from 
PubMed Wheeler, et al.49) as well as full-length articles allowed for text-mining (from PubMed Central Wheeler, 
et al.49). Moreover, due to the importance of tomato as a model for the study of plant-pathogen interactions, rel-
evant dictionaries have been included so that users can explore the tomato-associated viral, bacterial, archaeal, 
and fungal species, as well as their genes and pathways involved in the biotic stress response. The KB also enables 
users to explore abiotic stress responses.

DES-TOMATO is a resource designed to assist in the exploration, analysis and discovery of tomato-related 
information inferred through the integration of several data sources. We demonstrate the effectiveness of 
DES-TOMATO in finding useful associations by presenting four case studies. These examples demonstrate how 
users can, with ease and speed, identify putative candidate genes, build a network of gene regulation for a specific 
trait, generate topic-specific hypotheses and explore enriched pathways. To our knowledge, this is the only KB 
derived through literature text-mining that has a comprehensive information exploration capabilities dedicated 
to the Lycopersicon section of the Solanaceae.

Systems and Methods
DES-TOMATO is a topic-specific literature exploration system, designed to be visual, intuitive and interactive, 
and was generated using the Dragon Exploration System v2.0 (DES v2.0). DES was originally developed by VBB 
and AR and subsequently improved in various ways.

The knowledgebase is implemented and hosted on a CentOS-7 operating system. It uses Apache 2.4.6 as a web 
server. The literature repository is hosted on a MongoDB 2.6.11 database, and the KB index and related tables are 
hosted on a PostgreSQL 9.2.15 database. DES-TOMATO uses a Lucene text index for fast querying of the litera-
ture. Different components of the KB were developed using various programming languages/tools, namely: Java 
(openjdk 1.8.0_91), C/C++ (gcc 4.8.5), Perl v5.16.3, PHP 5.4.16, JavaScript, and JQuery 3.0.0.

DES-TOMATO is functional across major web-browsers on Linux, Windows, and Mac OS platforms. It was 
specifically tested for Firefox, Chrome and Safari. The only feature that we are aware of, which is functional only 
on Firefox, is the network export function. DES-TOMATO was not tested for hand-held devices, and is not cur-
rently intended for such use.

The workflow used within DES to create a KB such as DES-TOMATO comprises the following steps (Fig. 1): 
1/data imports and normalization into DES unified schema for dictionaries; 2/indexing of literature repositories 
using the said dictionaries, and using the resulting index for preliminary data cleaning; 3/preparation of literature 
corpus via querying of PubMed and PubMed Central articles; 4/extracting term-document mapping information 
from the global index (created in step 2) that are specific to the corpus in context (defined in step 3); 5/creation of 
the KB by applying various analysis tasks, including statistical enrichment of terms, extraction and enrichment of 
pairs, and integrating these data with relevant external resources.

Preparing the literature corpus.  To create DES-TOMATO, we first queried our local literature repository, 
a MongoDB repository hosting PubMed and PubMed Central articles, backed up by a Lucene text index for 
fast query servicing. The following DES-TOMATO query was used to incorporate all tomato species: [tomato* 
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OR lycopersicum OR lycopersicon OR ((Solanum OR S.) AND (esculentum OR pimpinellifolium OR pennel-
lii OR sitiens OR habrochaites OR neorickii OR cheesmaniae OR galapagense OR peruvianum OR arcanum 
OR chilense OR huaylasense OR juglandifolium)]. This retrieved 22,647 articles. The query was made on data 
updated on August 30, 2016.

Terms and dictionaries.  Terms are compiled into thematic dictionaries. Terms can be atomic, when the 
data source provides only one name variation for the entity in question, or they can have a number of syn-
onymous words/phrases that are normalized to the same internal identifier within our knowledgebase. These 
internal identifiers allow for the universal identification of the term (e.g. through its EntrezGene gene ID, NCBI 
Taxonomy ID, etc.), and for complementing text-mined information with data from external sources if needed.

Regarding the dictionaries of genes, we combine EntrezGene nomenclature (for genes) with UniProt 
nomenclature (for proteins) for a number of reasons. In literature, gene names or symbols are frequently used 
interchangeably with the names or symbol of their products. Thus, we also use UniProt nomenclature. These 
nomenclatures provide naming conventions that are the most used by the biomedical community in literature. 
When reporting results related to a particular gene/protein, it is customary to use the official name/symbol of 
the gene/protein or one of its aliases and EntrezGene and UniProt exhaustively provide these. EntrezGene also 
provides loci names for genes as unique identifiers within a species, which are also heavily used in text. There is 
an initiative by the Tomato Genome Consortium50 to introduce a standardized annotation for gene loci following 
Arabidopsis type identifiers, that is, these loci names have a general format of the type such as Solyc00g005440.1. 
Although we intended to use these identifiers, our search for ‘Solyc’ type identifiers in the whole of PubMed pro-
duced no hits, which may be partly due to their relatively recent adoption.

Dictionary selection and curation is one of the most important tasks in our KB building process. To ensure rel-
evance and comprehensiveness, we imported 19 relevant dictionaries from the pre-existing DES v2.0 vocabular-
ies. Furthermore, we compiled seven additional theme-specific dictionaries, namely: “Stress-related Vocabulary”, 
“Plant-related Vocabulary”, “Green Plants Genes (EntrezGene)”, “Solanaceae Genes (EntrezGene)”, “Green Plants 
(NCBI Taxonomy)”, “Solanaceae (NCBI Taxonomy)” and “Tomato Species (NCBI Taxonomy)” (see Table 1 for 
more details).

The following is a description of the process of importing/generating data for compiling dictionaries:

The general case.  Irrespective of how the dictionary is generated, the importing and integration of a new diction-
ary into DES typically includes the following steps:

Figure 1.  Workflow used within DES to create a KB such as DES-TOMATO.
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•	 Transforming the vocabulary data into a format that adheres to our local Term schema. This schema includes:

•	 a unique identifier for the term,
•	 a concept identifier shared by synonymous terms but unique across concepts,
•	 the English version of the term itself (so removing non-English nomenclatures if they exist), as well as
•	 metadata about the term, such as description, source (e.g. PO), the ID used by the source, (PO:0025002 for 

‘basal root’), etc.

•	 This is then used to update the dictionary set with the new data. New entries are checked for term redundan-
cies within the same dictionary, in which case they are unified into one term with multiple source IDs.

•	 An initial indexing is performed to see how the newly imported dictionaries match the literature, (e.g. which 
terms did actually have mentions, and how frequently across the whole PubMed and the whole (allowed for 
text-mining) PubMed Central documents). This information also provides the basis for dictionary cleaning, 
as it is often the case that promiscuous terms from thematic dictionaries appear with high false positive rates 
due to the high frequencies of their use usually as common English words. Such terms we generally have 
excluded. An example is term “content”: one of the synonyms for PATO:0000025.

•	 Once the dictionary data is cleaned, another re-indexing occurs so that the index and the subsequent analyses 
are built around reasonably clean dictionary data.

We eliminated ambiguous terms from the dictionaries where possible. The problem of ambiguous words that 
might blur the outcome of a search, is a well-known challenge in the field of text-mining and natural language 

Dictionary
Enriched Unique 
Terms in the KB Source

Chemicals/Compounds

Chemical Entities of Biological 
Interest (ChEBI) 4561 pre-existing in DES

Metabolites (MetaboLights) 1556 pre-existing in DES

Enzymes (IntEnz) 1182 pre-existing in DES

Toxins (T3DB) 886 pre-existing in DES

Antibiotics 244 pre-existing in DES

Industrially Important Enzymes 
(EC) 215 pre-existing in DES

Functional Annotation

Pathways (KEGG, Reactome, 
UniPathway, PANTHER) 576 pre-existing in DES

Biological Process (GO) 1288 pre-existing in DES

Molecular Function (GO) 474 pre-existing in DES

Cellular Component (GO) 466 pre-existing in DES

Genes/Proteins/Transcripts

Green Plants Genes 
(EntrezGene) 16579 newly compiled

Solanaceae Genes (EntrezGene) 2994 newly compiled

Bacteria Genes (EntrezGene) 2879 pre-existing in DES

Fungi Genes (EntrezGene) 2758 pre-existing in DES

Viruses Genes (EntrezGene) 971 pre-existing in DES

Archaea Genes (EntrezGene) 536 pre-existing in DES

Taxonomy

Green Plants (NCBI Taxonomy) 5733 newly compiled

Fungi (NCBI Taxonomy) 2426 pre-existing in DES

Bacteria (NCBI Taxonomy) 1498 pre-existing in DES

Viruses (NCBI Taxonomy) 1109 pre-existing in DES

Solanaceae (NCBI Taxonomy) 297 newly compiled

Source Microbes for Antibiotics 113 pre-existing in DES

Archaea (NCBI Taxonomy) 40 pre-existing in DES

Tomato Species (NCBI 
Taxonomy) 15 newly compiled

General

Plant-related Vocabulary 2688 newly compiled

Stress-related Vocabulary 759 newly compiled

Table 1.  List of dictionaries used in DES-TOMATO. References for the data sources indicated in Table 1 are as 
follows: ChEBI (Hastings et al.47), MetaboLights113, IntEnz114, T3DB115, Industrially Important Enzymes EC116, 117,  
GO118, KEGG119, Reactome120, PANTHER121, UniPathways122, EntrezGene48, NCBI Taxonomy123, KOBAS52.
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processing, because it is inherent to language51. Even in manual analysis of text, human interpretation is the key 
to disambiguate the meaning. In the case of DES-TOMATO, this disambiguation is left to the user and his/her 
knowledge and skills. Furthermore, this problem is more relevant to some dictionaries (types of biological enti-
ties) than others, e.g. gene names/abbreviations coinciding with disease names/abbreviations, or some ontologies 
containing some semantically broad terms. However, to reduce the proportion of these cases in DES-TOMATO, 
we carried out stringent term pre-processing steps: 1/initial data cleaning of the most frequent promiscuous 
terms, 2/eliminating terms shorter than three characters that have no synonyms in the same document, and 3/sta-
tistical enrichment, which filters out an additional good proportion of common and highly promiscuous terms.

The “Plant-related Vocabulary”.  The “Plant-related Vocabulary” incorporates terms from a number of ontologies 
(see Table 2), which in some cases (e.g. FLOPO) are in turn, partially or completely, composed of information 
from other ontologies.

The “Stress-related Vocabulary”.  This vocabulary was built from scratch to account for certain terminology that 
we believe is important for this KB, but was lacking in the plant ontologies that we considered. For compil-
ing the “Stress-related Vocabulary”, we created 19 categories of keywords: ‘Salt’, ‘Heat’, ‘Cold’, ‘Flood’, ‘Drought’, 
‘Light’, ‘pH’, ‘Osmotic’, ‘Oxidative’, ‘Anaerobia’, ‘Anoxia’, ‘Hypoxia’, ‘Hyperoxia’, ‘Nitrosative’, ‘Physiology’, ‘Nutrients’, 
‘Pathology’, ‘Growth’, and ‘Biotic’. In each category, we manually searched the literature and added keywords that 
are related to the category, with the condition that the keyword must not exist in any plant ontology. For example, 
under the ‘Osmotic’ and ‘Flood’ categories, we included terms ‘Osmoprotectant’ and ‘Submergence’, respectively. 
These two keywords are related to stress and they are not found in any of the other DES-TOMATO dictionaries. 
In total, 92 keywords from the literature for the 19 categories were identified. Concurrently, we created 23 key-
words that act as prefixes, such as ‘tolerance to’ (e.g. tolerance to salt stress) and 7 keywords that act as suffixes, 
such as ‘tolerance’ (e.g. salt stress tolerance). We then computationally compiled these affixes to the 92 keywords 
that resulted in 2,760 new terms that we used in the text-mining process. Some of these combinations were not 
detected in text, either because they were not used or because they do not representing viable term combinations.

Post-processing and indexing.  Terms in the aforementioned dictionaries were then mined in the retrieved 
articles, highlighted and color-coded according to dictionary. This process is enabled by the back-end index that 
matches terms to their occurrences, up to the character level, within the mined articles. In total, 9,499,592 terms 
from 26 dictionaries were used to index the literature corpus in DES-TOMATO. A term is defined as enriched 
when it is overrepresented in DES-TOMATO documents as compared to all PubMed and all PubMed Central 
articles (for which text-mining is allowed) from our local repository. We used a false discovery rate (FDR) < 0.05, 
which was calculated based on the Benjamini–Hochberg procedure to correct for multiplicity testing. Terms in all 
dictionaries are normalized, i.e. names, symbols and synonyms referring to the same concept are represented by a 
single entity when analyzed. This process allowed us to identify 52,886 unique terms that are statistically enriched 
(FDR <= 0.05) in tomato-related documents and present in DES-TOMATO. We further identified 1,388,952 
enriched unique term pairs (FDR <= 0.05) formed from the 52,886 statistically enriched terms.

Additionally, by matching genes and proteins enriched in DES-TOMATO to other resources beyond the KB 
literature corpus, in this case KOBAS52, we found hits to: 1/930 Bacterial pathways, of which 677 are statistically 
enriched (FDR <= 0.05), 2/427 Archaeal pathways, of which 90 are statistically enriched (FDR <= 0.05), 3/523 
Fungi pathways, of which 86 are statistically enriched (FDR <= 0.05), and 4/1,747 Plant pathways, of which 488 
are statistically enriched (FDR <= 0.05).

Terms or Phrases Definition

Enriched Terms Biological terms or keywords (e.g. lycopene, peroxidase activity, Solanum pimpinellifolium, etc.) 
used to mine the literature and organized into thematic dictionaries

Enriched Term Pairs
Connection/association (possibly biological) between two terms that is inferred based on 
the co-occurrence of these terms (e.g. signaling and salicylic acid; lycopene and carotenoids; 
Solanum lycopersicum and begomovirus, etc.)

Hypothesis New connection of terms; a starting point for possible further investigation (e.g. AGO5 and 
‘DNA methylation’; SNI1 and ‘jasmonic acid’)

KOBAS Pathways Enriched pathways that were identified by the set of genes and/or proteins extracted from 
tomato-based literature

Dictionary A set of terms, which are categorized into themes (e.g. Pathways, Metabolites, or Genes)

Interactive tools Definition

Network Viewer A tool for the visualization of term associations as a graph of interlinked nodes

Term Co-occurrences A list of all the enriched terms from all dictionaries that is potentially associated with the term 
in question.

Term Link Sources A graph/pie chart that visualize the distribution of data sources (dictionaries) from which 
associations to the term in question are drawn

Table 2.  Plant-related ontologies used to compile the “Plant-related Vocabulary”. Note that sometimes 
ontologies reuse and integrate entities from other ontologies/sources when appropriate, such as is the case for 
FLOPO and PTO ontologies.
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Results
Indirect assessment of the quality of extracted information.  It is difficult to provide a global assess-
ment of the quality of extracted information by DES-TOMATO KB. In an attempt to provide an independent 
assessment of the quality of associations identified by KB, we evaluated the quality of the gene pairs extracted 
by the KB by comparing them to their functional similarity, where functions of the genes are obtained from 
an independent data source. Specifically, we computed the semantic similarity of gene pairs based on their GO 
annotations using the Semantic Measures Library (SML)53. We hypothesize that a strong correlation between our 
extracted associations between gene pairs and their functional similarity is reflective of the quality of the data in 
DES-TOMATO and its analysis approach. Essentially, we propose that a correct association between two genes in 
DES-TOMATO will generally be reflected by the two genes’ sharing similar GO annotations, although some gene 
pairs may also be associated in a manner not reflected by GO term similarities. In other words, we performed an 
assessment of the quality of extracted tomato gene-gene associations under strict conditions.

EntrezGene IDs for normalized genes were mapped to identifiers in the agriGO annotation54. Starting with 
a total of 16,056 Solanaceae gene pairs, we removed all gene pairs between genes that are in another Solanaceae 
species, and retained 13,139 pairs in which at least one of the genes is present in tomato. Selecting pairs in which 
both genes are present in tomato produced a set of 3,975 pairs of which 2,227 had an agriGO annotation for both 
genes in each pair. We use only these 2,227 pairs in the assessment by semantic similarity. Here we used default 
parameters (lin_resnik_bma) with the aspect parameter set to GLOBAL. Of the 2,227 tomato gene pairs, 575 
(26%) had maximum possible semantic similarity (value of 1.0), which means that genes in these pairs have iden-
tical GO annotations. Table 3 lists some examples from this set. In Table 4, we show the percentage of identified 
pairs of genes at different semantic similarity thresholds.

Furthermore, results shown in Supplementary Material (distribution of high similarity pairs across FDR 
rank) demonstrate that the higher the FDR rank of a gene pair, the more likely it would have a high similarity 
rank. This shows the usefulness of the enrichment measure we use in DES-TOMATO. Therefore, our system 
not only extracts gene pairs through co-occurrence, it also has a robust means for ranking, or prioritizing, these 
associations.

It is important to note that for a number of pairs suggested by DES-TOMATO it was not possible to calculate 
the similarity score due to either one or both of the tomato genes in the pair lacking GO annotation in agriGO (as 
mentioned above). These gene pairs, which were false positives in our stringent assessment, should not be con-
sidered as unrelated. In fact, we manually evaluated a number of these ‘inconclusive’ pairs and found that some 
do have an association that was not reflected in the semantic similarity (see examples in Table 5). Unfortunately, 
manual curation of the entire dataset is beyond our means.

Using one of the most challenging text-mining entities (genes/proteins), we have demonstrated that the qual-
ity of the associations in our KB is reasonably reliable and by extension we extrapolate that entities and associa-
tions in the other dictionaries in the KB are also reasonably reliable.

Navigating the KB.  The users of DES-TOMATO can explore and find relevant information in the literature, 
based on enriched terms. The content of this KB can be explored via links (described in detail by Salhi et al.34  
under names in brackets), which include “Enriched Terms” [Concepts], “Enriched Term Pairs” [Associated 
Concepts], “Explore Hypotheses” [Hypothesis Explorer], and “KOBAS Pathways” [KOBAS pathways]. By navigat-
ing these links, users can view enriched terms via several types of ranking options and/or by restricting the FDR 
to zoom in on an enriched subset of interest. Moreover, users can access a menu with a right-click, which enables 
all terms to generate a “Network” view, “Term Co-occurrences” and “Term Link Sources” (refer to Table 6). It is 
important to note that users should always refer to organisms by their Latin name, namely for pathogens (except 
virus) and plant species. Case study examples are given below. We provided a detailed Manual that explains var-
ious functionalities of the DES-TOMATO and its use. Each page of the KB contains a link to “Help” for the fast 
instructions about how to use the page. In addition, we provided a quick start video on the “Home” page, which 
demonstrates basic functionalities of the KB.

Case studies that substantiate the effectiveness of DES-TOMATO as a research supporting system.  
Example 1. “Enriched Terms” used for the exploration of genetic interactions underlying bacterial speck disease.

Here we explore the efficacy of DES-TOMATO in the exploration of plant-pathogen molecular interactions 
towards identifying the genetic components of resistance to bacterial speck (caused by Pseudomonas syringae) in 
the Solanaceae family. The genetic-basis for resistance to this disease was linked to the Pto gene55, 56.

We started exploring DES-TOMATO by clicking “Enriched Terms” (Fig. 2, Step 1), we, then, searched the list 
for ‘Pseudomonas syringae’, and generated a network with the right-click menu (Fig. 2, Step 2). On the network 
page, we selected “Solanaceae genes” and “Plant-related Vocabulary” from the dictionaries top-menu, then pop-
ulated the network starting from the ‘Pseudomonas syringae’ node using the ‘Expand from the term’ right-click 
menu. Afterwards, we removed redundant terms, generic terms, and all “Plant-related Vocabulary” terms except 
‘Disease resistance’ using the ‘Remove highlighted’ right-click menu (Fig. 2, Step 3). Using the “Solanaceae genes” 
dictionary only, a second round of network expansion was performed on all nodes obtained in Step 3, followed 
by a third round of expansion from the resulting ‘Pto’ node. The resulting network was simplified by removing 
nodes with a single link (Fig. 2, Step 4).

The final network is clearly divided into two sub-networks; one is centered on ‘Pto’ while the other is centered 
on ‘NPR1’ (Fig. 2), which is consistent with previous knowledge. Upon infection, Pto detects the cognate AvrPto 
bacterial effector proteins, triggering a signal transduction cascade55, 57. Additionally, it is known that Pdk1 reg-
ulates Adi3 activity together with Pto58–60, and the loss of Adi3-mediated cell death suppression is believed to 
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contribute, through MAPKKKα signaling, to the resistance response upon P. syringae infection61, 62. Similar rele-
vant connections can be made by expanding from the other Pto-associated genes (not shown).

On the other hand, NPR1 is a master immune regulator that indirectly drives transcription of PR 
genes in response to the immune signal salicylic acid (SA), eliciting a defense response63. Additionally, 
Coronatine-insensitive 1 (COI1), inhibits jasmonate (JA) signaling-dependent process that is known to impair 
SA-mediated pathogen defense responses64. This pathway is hijacked by various P. syringae strains expressing the 
phytotoxin coronatine (COR), which mimics a bioactive JA conjugate to suppress immune responses through 
interactions with COI165, 66. Other noteworthy PRR genes associated with P. syringae include:

	 i)	 R gene Resistance to P. syringae 2 (rps2), which encodes an NB-LRR protein involved in the recognition of 
the P. syringae effector AvrRpt267, 68;

	 ii)	 R gene Resistance to P. syringae (rps4), which cooperates with Ralstonia solanacearum 1 (RRS1), to recog-
nize the P. syringae effector AvrRps469; and

	iii)	 Two PR genes, PR5 and PR1 (LOC107840155).

Through this example we demonstrate the ability of DES-TOMATO to effectively identify key factors under-
pinning systems of interest. In this case, DES-TOMATO enables the construction of complex networks represent-
ing the genetic interactions underlying plant-pathogen responses with relative ease and speed, with little prior 
knowledge. This approach identified many well-characterized components as well as less evident connections, 
such as the one between COI1 and SGT1 (only hypothesized in Meldau, et al.70, yet not experimentally shown), 
which can used as suggestions for future investigations.

Example 2. “Enriched Term Pairs” used to explore “Na+/H+ antiporter” associated gene for the discovery of a puta-
tive candidate gene involved in salinity tolerance.

The accumulation of toxic levels of sodium in the cytosol is the main cause of salinity stress in plants, and cells 
cope through an efficient cytosolic Na+ homeostasis mechanism (e.g. Na+/H+ antiporters)71. To explore poten-
tial genes involved in this process, we start by clicking “Enriched Term Pairs” (Fig. 3, Step 1). This opens a page 
with two columns listing associated terms from all dictionaries. In the first dictionary (term A), we filtered the 
name for ‘Na+/H+ antiporter’ while in the second dictionary (term B), we selected the “Solanaceae genes” dic-
tionary from the drop-down menu (Fig. 3, Step 2). The first two enriched term pairs are SOS1 and NHX1 genes, 

Gene Symbol/Description Gene Symbol/Description Common Annotations

SERK3A/ID: 100736467 somatic 
embryogenesis receptor kinase 3 A 
[Solanum lycopersicum (tomato)]

LOC101259548/ID: 101259548 
leucine-rich repeat receptor-like 
serine/threonine/tyrosine-
protein kinase SOBIR1 [Solanum 
lycopersicum (tomato)]

“protein kinase activity”;“molecular_
function”;“GO:0004672” “protein 
binding”;“molecular_function”;“GO:0005515” 
“ATP binding”;“molecular_function”;“GO:0005524” 
“protein phosphorylation”;“biological_
process”;“GO:0006468”

PHYF ID: 101259349 phytochrome 
F [Solanum lycopersicum (tomato)]

PHYB1 ID: 101262847 phytochrome 
B1 [Solanum lycopersicum (tomato)]

genes are involved in photoreceptor activity 
(GO:0009881)

APX2 ID: 778224 cytosolic 
ascorbate peroxidase 2 [Solanum 
lycopersicum (tomato)]

LOC101264261 ID: 101264261 
L-ascorbate peroxidase 3, 
peroxisomal [Solanum lycopersicum 
(tomato)]

“peroxidase activity”;“molecular_
function”;“GO:0004601” “peroxidase 
activity”;“molecular_function”;“GO:0004601” 
“response to oxidative stress”;“biological_
process”;“GO:0006979” “heme binding”;“molecular_
function”;“GO:0020037” “oxidation-reduction 
process”;“biological_process”;“GO:0055114”

Table 3.  Examples of gene-gene associations identified in KB with semantic similarity equal to 1.0.

Semantic 
Similarity

Number of Gene 
Pairs

Percentage (out of 
2,227)

>=0.4 1098 49%

>=0.45 991 45%

>=0.5 943 42%

>=0.55 913 41%

>=0.6 875 39%

>=0.65 832 37%

>=0.7 794 36%

>=0.75 760 34%

>=0.8 697 31%

>=0.85 674 30%

>=0.9 613 28%

>=0.95 579 26%

=1 575 26%

Table 4.  The change of the number of gene pairs according to the change of required semantic similarity level.
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which are widely known in the literature to be involved in salinity response, meanwhile the third hit was ‘ATPase’. 
ATPases are proton pumps that are essential for establishing the proton gradient that powers the transport of Na+ 
by Na+/H+ antiporters across the plasma membrane and the tonoplast71, 72. Salinity stress induces the expression 
of H+-ATPases in both the tonoplast and the plasma membrane73, 74; thus, we chose to expand our search through 
‘ATPase’. We right clicked on ‘ATPase’, and selected “Network” (Fig. 3, Step 2). In the new window, we selected 
‘ATPase’ and expanded the association using the “Solanaceae Genes” dictionary (Fig. 3, Step 3). To focus the net-
work, we removed redundant terms using the right click menu. Next, we searched PubMed for the other genes 
captured by the network and found the following:

	 i)	 LOC107803903, which encodes the ‘zinc transporter 5-like’ in Nicotiana tabacum.
	 ii)	 HSP90, which encodes the ‘Heat Shock Protein 90’ that has been reported to be involved in heat stress in 

tomato75;
	iii)	 HSP70, which encodes the ‘Heat Shock Protein 70’ from S. lycopersicum. HSP70 was proposed to act to-

gether with HSP90, at least, under heat stress75;
	iv)	 LOC107766295, which encodes for the ‘Heat Shock cognate 70 kDa protein 2-like’ from N. tabacum;
	 v)	 PPA1, which encodes the soluble inorganic pyrophosphatase-like from S. tuberosum;
	vi)	 14-3-3 protein family, which is known to bind to several signaling proteins, namely activating the auto-in-

hibited plasma membrane H+-ATPases76;
	vii)	 SOS1, which is a gene known to be involved in salinity response, and abundantly described in the tomato 

literature77;
	viii)	 LHA2, which encodes for a plasma membrane H+-ATPase with higher expression in hypocotyls and 

leaves78; and
	ix)	 LHA4, which encodes for a plasma membrane H+-ATPase with higher expression in roots and 

hypocotyls78.

As an example, we then focused on LHA4 in tomato and by matching its sequence by BLAST79 against the 
NCBI nt database, we found that LHA4 is homologous to AHA2 in A. thaliana. AHA2’s overexpression has 
been suggested to improve salinity tolerance80. AHA2 was also shown to be phosphorylated upon salt stress81. 
However, and despite the growing amount of evidence, little is known about the role of AHA2 (Arabidopsis) in 
salinity stress. This example demonstrates how DES-TOMATO can facilitate an easy review of dictionary terms 
associated with a term of interest.

Example 3. Using “Explore Hypotheses” to demonstrate how topic-specific hypothesis can be generated and tested.
Plant growth is affected by various abiotic stress conditions in which abscisic acid (ABA) biosynthesis is a 

major hub. To generate a hypothesis on this topic, we used the “Explore Hypotheses” tool, which opens a page 
with two columns listing associated enriched terms from all dictionaries (Fig. 4, Step 1). The first dictionary 

Gene Symbol/Description Gene Symbol/Description Common Annotations Reference

IAA3/ID: 543540 
IAA3 protein [Solanum 
lycopersicum (tomato)]

EXP2/ID: 543582 expansin 
[Solanum lycopersicum 
(tomato)]

Volatile Organic Compounds (albuterol and 1,3- 
propanediole) were shown to promote lateral root 
formation that correlates with an increase in levels of 
EXP2 and IAA3 in the roots of tomato plants

124

MAF1/ID: 543586 MFP1 
attachment factor 1 [Solanum 
lycopersicum (tomato)]

FPP/ID: 543699 filament-
like plant protein [Solanum 
lycopersicum (tomato)]

Filament-like plant proteins (FPP) belongs to a family 
of long coiled-coil proteins that interacts with the 
nuclear envelope-associated protein, MAF1

125

LOC543607/ID: 543607 
pirin [Solanum lycopersicum 
(tomato)]

DAD1/ID: 543753 
dad-1 protein [Solanum 
lycopersicum (tomato)]

Both DAD1 and pirin are mediators of programmed 
cell death in plants. However, DAD1 was shown to 
interact with BCL2 family members, while pirin 
plays more of a downstream role as it forms a NF-kB, 
BCL3, Pirin complex that is capable of modulating 
NF-kB-driven gene expression through interaction 
with an NF-kB DNA-binding site.

126

Table 5.  Some examples of gene-gene associations that have functional association but do not have semantic 
similarity.

Ontology Description

PO Plant Ontology127, 128: A structured vocabulary which incorporates: plant anatomy, morphology and growth and 
development. PO was developed as part of the Planteome project (License: http://planteome.org/License)

FLOPO Flora Phenotype Ontology129: an ontology of phenotypes reported in Floras. This ontology incorporates a 
number of entities from other ontologies, in addition to indigenous FLOPO entities.

PTO/TO Plant Trait Ontology128: A controlled vocabulary to describe phenotypic traits in plants. This ontology also 
incorporates classes from various other ontologies.

PECO/EO Plant Environmental Conditions Ontology128. This ontology describes the treatments, growing conditions, and/
or study types used in plant biology experiments.

SPTO Solanaceae Phenotype Ontology130: Solanaceae crop phenotypes and traits, developed in collaboration with the 
research community, especially for breeder traits of agronomic importance.

Table 6.  Glossary.

http://planteome.org/License
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(term A) was filtered with ‘ABA biosynthesis’ while for the second dictionary (term C), we selected “Green Plants 
Genes” dictionary from the drop-down menu, after which we clicked ‘test’ for hppd (Fig. 4, Step 2). This generated 
a hypothesis that hppd may be linked to ABA biosynthesis via the linking term LOC107839360 (term B), also 
known as carotenoid 9,10(9’,10’)-cleavage dioxygenase 1-like.

The hppd gene encodes the enzyme p-hydroxyphenylpyruvate dioxygenase that acts as an oxireductase on 
pyruvate carriers. To our knowledge, current literature provides no direct link between p-hydroxyphenylpyruvate 
dioxygenase and ABA biosynthesis. But interestingly, pyruvate carriers have recently been implicated in ABA 
signaling82. In Arabidopsis, the putative mitochondrial pyruvate carrier, NRGA1, is a negative regulator of guard 
cell ABA signaling through the alleviation of ABA effect. This suggests that NRGA1 is responsible for the main-
tenance of optimal stomatal aperture during drought stress82. Here we show that by using “Explore Hypotheses”, 
we were able to conjecture that p-hydroxyphenylpyruvate dioxygenase (encoded by hppd) may act on the NRGA1 
pyruvate carrier and consequently may indirectly interact with ABA. Further studies are required to validate this 
hypothesis.

Example 4. Exploring S. lycorpersicum enriched pathways using “KOBAS Pathways”.
Here we demonstrate how users can easily access the supplementary information from the KOBAS database52 

using DES-TOMATO. First, we clicked on “KOBAS Pathways” (top menu) and selected ‘Solanum lycorpersicum’ 
from the “taxonomy for enrichment” drop-down menu. By selecting Benjamini-Hochberg correction and a sig-
nificance level of 0.05 (View Enrichment Filters button), we obtain five enriched pathways (Fig. 5): (1) carotenoid 
biosynthesis; (2) brassinosteroid biosynthesis; (3) zeatin biosynthesis; (4) cysteine and methionine metabolism; 
and (5) butanoate metabolism. All of these pathways have been described in tomato as major contributors to plant 
and fruit development, fruit ripening and pathogen-resistance83–89. To further understand why these pathways are 
statistically enriched in tomato literature, we provide a brief and simple description for each.

	 1)	 Carotenoid biosynthesis. Carotenoids are colored pigments present in all plant tissues, and their formation 
is highly regulated. Lycopene is the major carotenoid in tomato. During fruit ripening, lycopenes’ con-
centration increases enormously90. The regulation of carotenoids biosynthesis in tomato and other major 
genes (e.g. phytoene synthase - Psy and and phytoene desaturase -Pds) that are involved in this process 
have been extensively studied84, 90–92;

	 2)	 Brassinosteroid biosynthesis. Brassinosteroids are steroidal hormones that are essential for plant growth 

Figure 2.  Step-by-step illustration of how DES-TOMATO can be used to identify components of genetic 
resistance for P. syringae (marked in yellow). The pink octagons represent the “Solanaceae Genes” dictionary; 
the dark green triangles represent the “Bacteria (NCBI Taxonomy)” dictionary; and the pale green trapezoids 
represent “Plant-related Vocabulary” dictionary. The edge color is distributed across a color spectrum from hot/
red (high frequency co-occurrence/strong association) to cold/blue (small number of co-occurrences, weaker 
association). The numbers on the edges provide the number of publications that link the associated nodes.
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and development, and are also involved in stress-response mechanisms93, 94. Castasterone is a precursor in 
the brassinosteroid biosynthesis pathway, which is the product of a cytochrome P450-catalyzed conversion 
reaction from 6-deoxocastasterone. The cytochrome P450 and its Dwarf encoding gene have been exten-
sively studied in tomato fruit development85, 95–97;

	 3)	 Zeatin biosynthesis. Zeatins are plant-growth hormones that belong to the cytokinins family. They regulate 
cell division and expansion and delay senescence. In tomato, changes in root-synthesized zeatins have been 
implicated in stress-responses86, 88, and fruit development89;

	 4)	 Cysteine and methionine metabolism. Methionine is an essential amino acid, and is the precursor of 
ethylene. Ethylene is a plant hormone that is involved in several processes in plant life-cycle including seed 
germination, root hair development, flower senescence and fruit ripening87. In tomato, biosynthesis of 
ethylene has been extensively studied due to its importance in controlling fruit ripening83, 87, 98;

	 5)	 Butanoate metabolism. Gamma-aminobutyric acid (GABA) is a non-protein amino acid, and a major 
plant-growth regulator99. GABA levels undergo drastic fluctuations during fruit development, by increas-
ing during the mature green stage, and rapidly decreasing during the ripening stage100, 101.

Discussion
General Comments.  Text-mining will not replace other types of computational data analysis in the biomed-
ical field, the same way computational methods in general will not replace laboratory experiments and clinical 
research. However, text-mining should be considered as complementary to other (experimental and computa-
tional) approaches. The information obtained through text-mining, in many cases, cannot be obtained through 
other means in any simple manner102. Indeed, text-mining approaches have been deployed to complement other 
lines of investigation or as stand-alone tools for gaining quick insights. There are several reports where text-mined 
data alone were used to correctly infer links between concepts, e.g. Smalheiser and Swanson correctly inferred a 
link between Alzheimer’s disease and indomethacin103, 104 and Wren et al. correctly inferred a link between chlor-
promazine and the progression of cardiac hypertrophy105. Text-mining was also used in conjunction with gene 
expression analysis to show that sphingosine 1-phosphate independently regulates glioblastoma cell invasiveness 
through urokinase-type plasminogen activators106, 107. Similarly, text-mining was also used with other types of 
data-mining to successfully identify disease genes in Wilms’ tumor108. Moreover, text-mining was successfully 
used to identify protein-protein interactions (see e.g. refs 36 and 37), transcription factor associations38, and 

Figure 3.  Step-by-step illustration of how DES-TOMATO can be used to find relevant candidate genes involved 
in salinity tolerance by focusing on Na+ homeostasis and plasma membrane H+-ATPases (in yellow). In the 
network, the pink octagons represent the “Solanaceae Genes” dictionary. The edge color is distributed across a 
color spectrum from hot/red (high frequency co-occurrence/strong association) to cold/blue (small number of 
co-occurrences, weaker association). The numbers on the edges provide the number of publications that link 
the associated nodes.
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methylated genes in various diseases and species39, 109. Thus, text-mining approaches are increasingly playing a 
role in a number of biomedical problems110 from pharmacogenomics111 (for the extraction of relations between 
drugs, genes and diseases), to precision medicine and drug repositioning26.

Limitations.  DES-TOMATO generally has the same limitations as other existing text-mining-based 
resources. Here we list some of the most common constraints: 1/text-mining-based resources are confined to 
information presented in electronically available documents; 2/some documents are protected by copyright from 
text-mining; 3/all text-mining systems are far from being able to extract all useful information from available 
texts; 4/peer-reviewed literature contains errors that are often propagated in different articles and automated 
text-mining information extraction cannot correct for such errors. This field undoubtedly requires significant 
improvements. Additionally, an association in DES-TOMATO does not specify the type of relationship among 
the extracted pairs of entities, e.g. co-occurrence of terms does not necessarily imply direct or physical interaction 
between paired terms.

Coverage is also affected by the common practice of authors to report only on what are deemed as the most 
relevant data. For example, papers reporting on genomic studies related to gene expression data, describe only a 
handful of genes in the text, while the bulk of experimental results are deposited separately from the published 
articles. In DES-TOMATO, dictionaries cover 3,050 Solanaceae species and all of their 300,973 non-redundant 
genes. This was necessary in order to maximize coverage of the tomato genes and their potential homologs. 
However, only 297 species (10%) and 2,994 genes (1%) were enriched in the text, which is not surprising.

The question now becomes, given the constraints imposed on the information that can be extracted from 
text, is it even worth using it? We believe the answer is yes, for the very fact that the type of information in the 
published scientific literature in the vast majority of cases conveys what researchers considered the most impor-
tant facts regarding the topic of interest. The vast majority of scientific studies start by reviewing literature on the 
topic of interest and not by delving directly into the analysis of experimental data. However, due to limitations 
in terms of coverage and sometimes uncertainty of the quality of automatically extracted information through 
text-mining, the resulting data presented to the user are mainly advisory, aimed to guide exploration and draw 
attention to linked concepts. Domain knowledge and expertise are required for the interpretation of linked con-
cepts, equally as they are required for the interpretation of experimental results.

Concluding Remarks
Recent biotechnological advances have unleashed a tsunami of scientific literature that has become overwhelming 
for researchers. Even for the topic-specific literature insight, the volume of information is huge. To meet this chal-
lenge, we developed the DES-TOMATO KB that is focused on tomato species and its close relatives. DES-TOMATO 
performs the critical task of rapidly and comprehensively sifting through more than 20 thousands topic-specific 
publications and extracting relevant knowledge, both established and possibly novel. The current release comprises 
mined text elements from 22,647 tomato-related articles, in which 52,886 statistically enriched terms from 26 rele-
vant dictionaries were identified, together with 1,388,952 statistically enriched pairs of these terms.

Figure 4.  A simple demonstration of how a use “Explore hypotheses”. Boxed in yellow are the criteria used to 
direct or test the hypotheses generated.
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DES-TOMATO has various tools that enable users to perform complex tasks including querying for enriched 
terms or pairs of terms, building and testing hypotheses based on transitive associations, identifying enriched 
KOBAS pathways based on list of genes and proteins identified in the KB corpus. Using the network viewer, 
results can be visualized and further developed by successively expanding upon terms of interest using selected 
dictionaries; thus, offering a highly flexible exploration experience. In addition, publications that substantiate 
enrichment of a term or an association are readily accessible to the user. DES-TOMATO exceeds other discovery 
platforms in plant sciences (such as SGN and HRGRN), through the use of a literature text-mining methodology 
that enables: 1) computational assignment of terms-to-publication associations (i.e. independent of gene iden-
tifiers); 2) very comprehensive coverage of information not easily or not at all available in other tomato-related 
databases; 3) straightforward and regular updates with new publications to ensure the KB remains current and 
relevant.

DES-TOMATO is a unique information/knowledge exploration system in plant sciences. It was built to 
explore and generate useful information using a broad set of topic-related dictionaries that provide the user the 
flexibility to examine various questions. DES-TOMATO also provides a user-friendly interface, and an extensive 
instructional material to facilitate the navigation through the KB. Altogether, we hope that DES-TOMATO will 
be a useful tool for supporting tomato-related research questions112.
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