
1Scientific Reports | 7: 2872  | DOI:10.1038/s41598-017-02602-6

www.nature.com/scientificreports

Genomic Selection in Commercial 
Perennial Crops: Applicability and 
Improvement in Oil Palm (Elaeis 
guineensis Jacq.)
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Genomic selection (GS) uses genome-wide markers to select individuals with the desired overall 
combination of breeding traits. A total of 1,218 individuals from a commercial population of Ulu Remis 
x AVROS (UR x AVROS) were genotyped using the OP200K array. The traits of interest included: shell-
to-fruit ratio (S/F, %), mesocarp-to-fruit ratio (M/F, %), kernel-to-fruit ratio (K/F, %), fruit per bunch 
(F/B, %), oil per bunch (O/B, %) and oil per palm (O/P, kg/palm/year). Genomic heritabilities of these 
traits were estimated to be in the range of 0.40 to 0.80. GS methods assessed were RR-BLUP, Bayes A 
(BA), Cπ (BC), Lasso (BL) and Ridge Regression (BRR). All methods resulted in almost equal prediction 
accuracy. The accuracy achieved ranged from 0.40 to 0.70, correlating with the heritability of traits. 
By selecting the most important markers, RR-BLUP B has the potential to outperform other methods. 
The marker density for certain traits can be further reduced based on the linkage disequilibrium (LD). 
Together with in silico breeding, GS is now being used in oil palm breeding programs to hasten parental 
palm selection.

Genomic Selection (GS) is defined as marker assisted selection using markers representing all QTL in the 
genome1. These markers are used to build a predictive model using individuals with known genotypic and phe-
notypic information. With this model, genomic estimated breeding values (GEBVs) for the desired trait can be 
calculated and used to rank the individuals with unknown phenotype for subsequent selection. This method was 
initially developed for the use in cattle breeding, and is revolutionizing the industry2. Since then, this method has 
been introduced in plant breeding, inclusive of wheat, maize3 and pines4. However, in most crops, GS approaches 
are still in the research phase and yet to be applied in a large scale breeding program5. With the high marker 
density required for GEBV estimation, genotyping cost increases and the economic viability of GS remains in 
question for certain applications. In commercial perennial crops breeding, such as oil palm, each generation or 
selection cycle involves multiple crosses which easily produce far larger progeny numbers than in cattle breeding. 
A reduction in marker density will lower the genotyping cost. Thus, in order to maximize the value of GS in com-
mercial crops such as oil palm, marker density needs to be optimized.

Being the major oil crop of the world, oil palm (Elaeis guineensis Jacq.) accounted for 35% of the world’s vege-
table oil consumption in 2015, with a steady upward trend seen since the late 90’s6. However, the realized oil yield 
in Malaysia remains stagnant at the range between 3.0 to 4.0 t/ha/yr, for more than 25 years7. Breeding gain needs 
to be increased significantly to address new challenges such as land degradation, climate change and agricultural 
land constraints. To provide a solution while ensuring a sustainable future, marker assisted breeding/selection 
has been introduced into oil palm breeding programs. The implementation of these programs requires genetic 
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markers, which are more readily discovered now through resequencing, after the reference genome of oil palm 
became available8.

Examples of markers acquired recently are the SHELL markers, which are capable of distinguishing fruit forms 
in oil palm: dura, tenera and pisifera9. The dura fruit form is known to have a thick shell and absence of fiber ring, 
tenera has a thin-shell with a fiber ring, while pisifera is shell-less with a fiber ring and is often female sterile. With 
shell thickness being inversely correlated with mesocarp thickness in the oil palm fruitlet, tenera, the hybrid of 
dura and pisifera, is preferred and exploited commercially. Characterization of simple Mendelian traits such as 
fruit form requires only a few markers. Most of the traits which are economically important, however, are quan-
titative and complex in nature and require whole genome coverage of markers. Through the calculation of GEBV, 
GS provides a potential solution to select for these traits in breeding populations.

GS is a relatively new approach in oil palm breeding that enable early selection of elite materials, maximizing 
genetic gains over generations. The principle of GS has been described in oil palm through simulated data10 and 
the implementation of it using SSR has been proven to be feasible11. Still, to implement GS in oil palm requires 
more in depth studies regarding the use of such high density data in the characterization and representation of the 
genetic component of the traits of interest. For this purpose, a large commercial tenera population was selected to 
assess GS applicability in terms of selection response of the targeted traits and prediction accuracy. With genotyp-
ing the entire genome being expensive, the cost of GS implementation is generally high. A method that reduces 
markers without compromising on the prediction accuracy will definitely make GS more economically viable in 
all plant breeding programs, inclusive of oil palm.

Results
Kinship Coefficient Estimate.  The kinship coefficient of the assayed UR x AVROS population averaged 
0.23, ranging from 0.00 to 0.74, with > 74% of the individuals having relatedness between 0.20 and 0.40. Kinship 
coefficients distribution of this population can be found in Supplementary Fig. 1.

Genomic Heritability.  Based on an association score cut-off of 1.3, approximately 3,500 markers were used 
for the heritability estimation of S/F and 3,900 were used for M/F, K/F, F/B, O/M, O/B, O/P traits (Fig. 1). The 
traits, ranked based on heritability from the highest to the lowest were K/F, M/F, S/F, O/M, O/B, F/B and O/P. 
Overall, genomic heritability estimated using the full marker set and the marker subset showed good correlation 
(r = 0.99) (Supplementary Fig. 2), with higher heritability being estimated using the subset. M/F, S/F and K/F 
were classified as traits with high heritability, whereas F/B, O/B and O/P were classified as traits with medium 
heritability.

Genomic Selection.  Overall, the prediction accuracy ranged from 0.43 to 0.75 after averaging them by trait 
across all methods (Table 1). The trait with the highest accuracy was K/F (0.75) and the ones with lowest accuracy 
were O/B and F/B (0.43). RR-BLUP and all Bayesian methods performed almost equally in predicting the traits. 
Representative plots that show the relationship between predicted trait values versus observed trait values were 
shown in Fig. 2. Given these accuracy values, the estimated selection response for all the traits were as reported 
in Supplementary Table 1.

For both traits with high and medium heritability, Bayesian methods and RR-BLUP performed almost equally. 
Within the traits with high heritability, the average accuracy for M/F was 0.71 (RRBLUP 0.71, BA 0.72, BC 0.71, 
BRR 0.71, BL 0.69), S/F was 0.64 (RRBLUP 0.63, BA 0.67, BC 0.63, BRR 0.63, BL 0.63) and K/F was 0.75 (RRBLUP 
0.75, BA 0.75, BC 0.75, BRR 0.75, BL 0.74). The prediction accuracy for O/M across all methods was 0.50. For the 

Figure 1.  Genomic heritability estimate for 7 traits using the full marker set against marker subset based on 
association score.
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traits with medium heritability, the average accuracy for F/B was 0.43 (RRBLUP 0.44, BA 0.43, BC 0.44, BRR 0.44 
and BL 0.42), O/B was 0.43 (RRBLUP 0.43, BA 0.43, BC 0.43, BRR 0.43 and BL 0.42) and O/P was 0.46 (RRBLUP 
0.47, BA 0.46, BC 0.47, BRR 0.47 and BL 0.43).

Figure 3 was generated using marker subset-estimated genomic heritability and prediction accuracies of traits 
averaged across different methods. A high correlation (r = 0.98) between prediction accuracy and genomic herit-
ability was observed, which indicates that the higher the heritability, the higher the accuracy. For subsequent anal-
ysis, GS accuracy assessments for both RR-BLUP-B and LD-based marker filter were carried out using RR-BLUP 
as the basis for comparison.

Marker Reduction by Association/RR-BLUP-B.  The result for marker reduction differed according to 
traits. For M/F (Fig. 4a), the highest accuracy peak of 0.7 was achieved with 3,800 markers. This peak was slightly 
lower than 0.71 achieved from RR-BLUP. A small peak at 0.69 was observed at 840 markers. For S/F (Fig. 4b), 

M/F S/F K/F F/B O/M O/B O/P
Average by 
Method

RRBLUP 0.71 (0.02) 0.63 (0.02) 0.75 (0.02) 0.44 (0.05) 0.50 (0.03) 0.43 (0.06) 0.47 (0.07) 0.56

BA 0.72 (0.02) 0.67 (0.02) 0.75 (0.02) 0.43 (0.05) 0.50 (0.03) 0.43 (0.06) 0.46 (0.07) 0.57

BC 0.71 (0.02) 0.63 (0.04) 0.75 (0.02) 0.44 (0.05) 0.50 (0.03) 0.43 (0.06) 0.47 (0.07) 0.56

BRR 0.71 (0.02) 0.63 (0.02) 0.75 (0.02) 0.44 (0.05) 0.50 (0.03) 0.43 (0.06) 0.47 (0.07) 0.56

BL 0.69 (0.03) 0.63 (0.03) 0.74 (0.03) 0.42 (0.04) 0.50 (0.03) 0.42 (0.06) 0.43 (0.07) 0.55

Average by 
Trait 0.71 0.64 0.75 0.43 0.50 0.43 0.46

Table 1.  Prediction accuracy (with standard deviation in brackets) for 7 traits based on RR-BLUP and Bayesian 
methods.

Figure 2.  Representative plots for predicted trait values versus the observed trait values for all traits.
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the graph was a half sigmoid with the highest accuracy at 0.66, requiring 10,530 markers, surpassing 0.63 from 
RR-BLUP. For O/B (Fig. 4c), RR-BLUP B outperformed RR-BLUP at 870 markers, before hitting a local peak of 
0.44 at 2,150 markers, and plateauing at 12,500 markers with 0.48 accuracy. The maximal accuracy acquired for 
O/P (Fig. 4d) was 0.51 at 990 markers, before dropping off and plateauing at 0.47, which is the accuracy acquired 
from RR-BLUP. More information is available in Supplementary Table 2.

Based on Fig. 5, the optimal marker density before reaching minimal accuracy increment was 300 SNPs for 
M/F (accuracy 0.66), 400 SNPs for S/F (accuracy 0.54), 200 SNPs for O/B (accuracy 0.39) and 200 SNP for O/P 
(accuracy 0.48).

Figure 3.  Correlation between prediction accuracy and genomic heritability for all traits.

Figure 4.  Average prediction accuracy for 4 traits across different marker densities using RRBLUP-B method: 
(a) M/F, (b) S/F, (c) O/B and (d) O/P. (a) RRBLUP-B result for M/F with accuracy 0.7 at 3,800 markers 
(RRBLUP 0.71), (b) for S/F with accuracy 0.66 at 10,530 markers (RRBLUP 0.63), (c) for O/B with accuracy 0.48 
at 12,500 markers (RRBLUP 0.43) and (d) for O/P with accuracy 0.51 at 990 markers (RRBLUP 0.47). The red 
dotted line represents accuracy acquired from RR-BLUP for each trait.
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Marker Reduction by LD.  Marker reduction by LD was carried out for M/F and O/P using the first 300 
ranked markers for each trait. Figure 6a shows that there were “drags” for accuracy of M/F without the LD-filter 
at 10–40, 60–80, 90–110, 150–190 markers. From the result, M/F was able to achieve an accuracy of 0.60 with 
120 markers using the LD-filter, as compared to 200 markers required without the LD-filter. This method did not 
work for O/P (Fig. 6b). In fact, in this trait this approach caused a slight decrease in accuracy. More information 
is available in Supplementary Table 3.

Discussion
A commercial tenera population derived from multiple UR x AVROS families was studied. The average kinship 
within this population was calculated to be 0.23. This result agreed with known pedigree records, which mainly 
comprised of half siblings. A few of the individuals were found to be unrelated, which might be due to uncommon 
ancestors used in the founding population. The UR background is generally chosen in oil palm breeding for high 
bunch number and a high ratio of female: male inflorescences12, with the AVROS pollen parent conferring the 
properties of growth uniformity, precocity and high mesocarp oil content. This combination results in a hybrid 
population suitable for commercial oil production, with improved oil yield traits such as high O/M and low S/F. 
With high oil yield being one of the key characteristics of this population, the traits selected for this study were 
traits closely related to it. These traits included M/F, S/F, K/F, F/B, O/M, O/B and O/P. The selection response of 
each trait corresponded to their heritability estimates.

In this study, we found that the heritability estimates correlated well with the conventional heritability of 
published phenotypes (K/F, M/F, O/B and F/B)13. To distinguish this from the conventional heritability, the her-
itability estimates are referred to as “genomic heritability”. This estimate of genomic heritability is based on whole 
genome regression, where the regression on the markers is used to explain the phenotypic variance14, 15. This 
differs from conventional heritability calculation, which is usually calculated from the slope of parent-offspring 
regression16. The calculation of genomic heritability is affected by the number of markers used under a linear 
model. Selection of the whole marker set assumes that every QTL is represented by a marker which accounts for 
a certain amount of the total trait variance, whereas the subset assumes that only certain QTL are responsible for 
the majority of trait variance1. Since the latter models the true biology better, higher heritability was estimated for 
all traits using this approach in this study. From another perspective, the use of all the markers in linkage equilib-
rium with QTL introduces more inconsistencies into the estimates of genomic heritability15. The problem with 
the use of marker subsets, however, is that defining every single QTL controlling a trait is difficult, and setting 
an association analysis cut-off for complex traits is rather subjective. Although the absolute heritabilities calcu-
lated were different, there was an almost perfect correlation between the values calculated from both methods 
(r = 0.99). Since the role of heritability in GS is to provide an estimate of the response to artificial selection for a 
trait, the relative comparison of trait heritability within a single method will still provide important information. 
One method for determining the marker density is to select them based on the highest prediction accuracy 
achievable under RR-BLUP B. However, this could only be done if every single QTL in the genome is represented 
by at least one marker. Even so, this method of calculation still slightly underestimates the true heritability, since it 
assumes that the causal variant for each QTL has been captured, whereas in fact, many of the markers are merely 
in LD with them17, 18. With this, genomic heritability should only be estimated by this method with the basic 
condition that the marker density is representative of the entire genome, a condition that is also a must in GS.

The earliest GS method, namely RR-BLUP did not detect QTL and assumed that all markers explain the same 
amount of phenotypic variance1. This was followed by the Bayesian methods that allow for different marker 
variances, which invariably indicate a preference of certain markers over others in modeling for a trait19, 20. Both 
methods have met with varying degrees of success21, 22. From our study, the accuracies for all the traits under both 
methods were generally high, ranging from 0.40 to 0.70. The current accuracy can be further improved with a 
larger training population. The prediction accuracies achieved were almost in a perfect correlation with the trait 
genomic heritability, with the highly heritable traits having high accuracy and vice versa. Similar results have 
been reported in other crops23, 24. As both genetics and environment play an important role in determining the 
phenotype, a high heritability indicates a high genetic effect for the trait. Since GS captures the additive genetic 
effect, this would explain the good correlation between heritability and prediction accuracy. It has been reported 

Figure 5.  Prediction accuracy increment for every additional 100 SNP for M/F, S/F, O/B and O/P traits.
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that Bayesian methods are better options than RR-BLUP for traits with a few large QTL effects25. We observed 
that there is only a slight advantage in using Bayesian methods as compared to RR-BLUP (M/F, S/F, K/F, O/M). 
Similarly, in traits controlled by many small QTL effects (F/B, O/B, O/P), there is also only a slight increase in 
accuracy using RR-BLUP as compared to Bayesian methods. This is probably due to the fact that all important 
QTL were in LD with at least one polymorphic marker and represented in the genotyping array, and that we have 
used sufficient iterations for the Bayesian modeling step.

In order for GS to perform well, the LD r2 26 threshold of more than 0.2 between a marker and a QTL was 
found to be important2. In practice, since the QTL is not known, LD could only be calculated between markers 
used in the study. LD could be used as a method to reduce the marker density required, since markers in the 
same LD essentially carry the same information regarding the QTL. This method is particularly useful for traits 
where the QTL are few and have long LD regions with many markers, such as for M/F. For traits controlled by 
more QTL, inclusive of O/P, this method might not be effective. A way to distinguish between these two cases is 
by identifying accuracy drags when the accuracy per marker graph shape is not a perfect half sigmoid. A note of 
caution when applying this filter is that there might be a slight reduction in the global maximum accuracy. This 
is because it is difficult to set a common cut-off as every LD has a different length. A case by case approach would 
be better than setting a global cut-off. Even though the filtering by the LD method provides an option to reduce 
the number of markers required, in order to maintain prediction accuracy, a method that selects markers best 
representing the QTL must precede this step. RR-BLUP B provides a solution to this problem.

A modification of RR-BLUP, termed RR-BLUP B, was found to be as effective as the Bayesian method27. This 
method ranks and subsets the SNPs based on marker effect. The accuracy of RR-BLUP B is dependent on the 
markers selected, which in turn is dependent on the association score cut-off being set. In Fig. 4, we show that 
RR-BLUP B has the potential to outperform RR-BLUP when the threshold being set for marker selection is opti-
mal for accuracy. This result is similar to that reported in rice28. Also, this method required shorter running time. 
Each of the diagrams in Fig. 4 represents a different potential scenario for RR-BLUP B. For both M/F and S/F, 
the association analysis detected important QTL, resulting in fewer markers required before hitting the accuracy 
close to RRBLUP. However, for the case of M/F, the accuracy from RR-BLUP B (0.70) was slightly lower than 
RRBLUP (0.71). In the case of O/P, the global maximal accuracy was achieved before a subsequent reduction in 
accuracy with additional markers. This reduction of accuracy trends towards the accuracy of RRBLUP for the 
same trait. For O/B, a local maximum (0.44) was achieved through the association ranking approach. The global 
maximum was achieved after 20,000 markers, with accuracy estimated to be 0.48, higher than that of RR-BLUP 
(0.43). These graph patterns are largely similar to results obtained from loblolly pine27. The principle behind 
RR-BLUP B is to use the most informative/largest effect marker up-front, and is therefore dependent on the 
efficiency of marker selection. Given the fact that the population in this study was split into smaller sets before 
attempting association studies, there were inconsistencies in the QTL detection due to the relatively small sample 
size, and this best explains the result observed for M/F and O/B. With sufficient sample size, the accuracy of all 
the traits can be improved. Association studies, therefore, are not only useful in detecting large QTL effects, but 
also offer the possibility of ranking QTL with small effects.

With the associated markers showing more importance than other markers in the RR-BLUP B model, and 
RR-BLUP-B outperforming RR-BLUP in most cases, it might be more apt to define genomic selection as marker 
assisted selection that considers all markers representing all QTL responsible for a trait, instead of the entire 
genome. The problem that remains is what cut-off needs to be set for association or marker effects for the clear 
definition and representation of a QTL. This decision directly affects the number of markers to be used. On the 
other hand, the greatest strength of RR-BLUP B is the ability to control for the number of markers to be used in 
the model. In this study, approximately 200–400 top-ranked SNP markers for each trait (M/F, S/F, O/B and O/P) 
were required to achieve the optimal prediction accuracy. In other words, only the top 1–2% of the whole-genome 

Figure 6.  Comparison of prediction accuracy for ascending number of markers, with or without LD filter. (a) 
GS accuracy for RRBLUP-B markers filtered based on LD for M/F. (b) for O/P.
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SNP markers need to be deployed in GS implementation. The increment in accuracy was minor or negligible 
when the number of markers exceeded 400, when used with these models. The higher the number of markers, the 
higher the cost of implementation. Therefore, the number of markers to be selected for GS is also an economical 
decision instead of a purely scientific decision.

Characterization of simple traits requires only a few markers. Important traits in plants, for example O/P in 
oil palm, are complex in nature and require markers representative of the whole genome. The implementation of 
GS consolidates the effects of these markers into a GEBV, enabling ranking of the best performing individuals. 
The calculation of genomic heritability allows us to know the selection response of the trait of interest, which also 
implied the GS accuracy. The practical application of GS, however, is dependent on the cost, which is influenced 
by the number of markers used. Our results with marker sub-setting and LD filtering showed that marker reduc-
tion is possible without much reduction in accuracy. While it is recognized that the subsets of effective markers 
may be different according to the targeted traits, with a crop such as oil palm with large progeny numbers from a 
long breeding cycle, it would be feasible and practical to minimize genotyping costs by selecting the best markers 
for each trait and modeling them independently. In this study, our focus has been on selecting the best perform-
ing progenies for planting. However, the selection of parents is of utmost importance for commercial plant breed-
ing programs. Therefore, instead of selecting for progenies, the models built can also be used in combination with 
in silico breeding, through crossing simulation, to select the best parents. The GEBV calculated for the simulated 
progenies can be used as the means to rank and select the best parents. This will reduce the cost even further, 
making genomic selection an even more attractive option for commercial perennial crop breeding.

Materials and Methods
Plant Materials and Data.  A total of 1,218 tenera palms derived from multiple UR x AVROS crosses13 was 
selected as the study population. The population is maintained at Sime Darby R&D Centre, Malaysia and was 
phenotyped for the traits of M/F, S/F, K/F, F/B, O/M, O/B and O/P according to the industry standard29, 30. The 
phenotying of these traits, except O/P were conducted under bunch analysis to generate reliable mean values with 
at least 3 bunches per palm. The O/P trait was then calculated based on the multiplication between 4-year average 
fresh fruit bunch (FFB) and O/B.

The genomic DNA of each palm was extracted from 100 mg of dried leaf tissue and purified using the 
DNAeasy Plant Mini Kit (Qiagen, Germany). Genotyping of this population was done using the OP200K SNP 
array31 and 92,057 SNPs were found to be polymorphic and were used for GS purposes.

Kinship Coefficient Estimate.  Kinship coefficients within the population were calculated based on pair-
wise comparison between all the individuals used in this study. A total of 15,000 SNPs were selected at random 
from the full SNP genotypes. The resulting file was reformatted using an in-house Perl script. Kinship was esti-
mated using the related package32 implemented in R. Lynch & Li method33 was selected to calculate the pairwise 
kinship. This was done using the command “coancestry” and setting “lynchli” as 1. The bootstrap replication 
parameter was set at 100 and the inbreeding was set as False.

Genomic Heritability.  Heritability was calculated based on a linear model using all informative SNP mark-
ers15, 17. Another calculation of heritability was based on marker subsets with selection criteria as defined under 
the RR-BLUP B section below. However, in this case, we set the association scores (−log(P-value)) cut-off to be 1.3.

Genomic Selection.  The different methods studied were RR-BLUP, Bayes A (BA), Bayes Cπ (BC), Bayes 
Ridge-Regression (BRR) and Bayes Lasso (BL). RR-BLUP was implemented using the rrBLUP package34 and all 
the Bayesian methods were implemented using the BGLR package35. For the Bayesian methods, the number of 
iterations was set to 20,000, with the first 2,500 discarded as burn-in. For BL, the additional parameter of lambda 
was set to 25, type as gamma, rate as 1e-4 and shape as 0.55. A 5-fold cross validation was carried out, where the 
data was divided into 5 subsets, 4 of which (975 individuals) were used for modeling, and the last subset (243 indi-
viduals) was used for validation. This process was repeated 5 times, until all subsets were used for both modeling 
and validation. Correlation between the GEBV and observed trait value was used as a measurement for prediction 
accuracy24, 36, 37. Selection response for each of the traits was estimated based on the top 25% best performing 
individual as compared to the overall mean of unselected individuals.

Marker Reduction by Association/RR-BLUP B.  Due to the large number of iterations required, only 
two traits with high heritability (M/F and S/F) and another two with medium heritability (O/B and O/P) were 
selected. For each of the traits, a genome-wide association study (GWAS), using the same method as described 
in our previous publication38, was carried out independently for each iteration during the cross validation step. 
Markers were ranked according to the association score. Subsequently, a stepwise increase by 10 markers, up to 
20,000 markers, was carried out for model training. Genomic selection was carried out as described in the previ-
ous section for RR-BLUP. The accuracy for each marker set was defined based on the mean accuracy achieved. In 
addition, we have also looked at the optimal number of markers by calculating the accuracy increment for every 
100 markers. The optimal marker density was defined as the point where the increment in the number of markers 
causes an improvement in accuracy of less than 0.05.

Marker Reduction by LD.  To illustrate LD-based marker reduction, the traits M/F and O/P were selected. 
LD was estimated using PLINK39 on top of association-ranked SNP. Pairwise LD calculation was done for each of 
the selected markers using R-squared and a cutoff at 0.6. Only one SNP was selected from a LD. Prediction accu-
racy was determined by RR-BLUP using the parameters described above. To illustrate the result, the prediction 
accuracy for the first 600 markers selected was plotted for both cases, with and without the LD filter.
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