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Global soil, landuse, 
evapotranspiration, historical and 
future weather databases for SWAT 
Applications
K. C. Abbaspour1, S. Ashraf Vaghefi   1, H. Yang1* & R. Srinivasan2

Large-scale distributed watershed models are data-intensive, and preparing them consumes most 
of the research resources. We prepared high-resolution global databases of soil, landuse, actual 
evapotranspiration (AET), and historical and future weather databases that could serve as standard 
inputs in Soil and Water Assessment Tool (SWAT) models. The data include two global soil maps and 
their associated databases calculated with a large number of pedotransfer functions, two landuse 
maps and their correspondence with SWAT’s database, historical and future daily temperature and 
precipitation data from five IPCC models with four scenarios; and finally, global monthly AET data. 
Weather data are 0.5° global grids text-formatted for direct use in SWAT models. The AET data is 
formatted for use in SWAT-CUP (SWAT Calibration Uncertainty Procedures) for calibration of SWAT 
models. The use of these global databases for SWAT models can speed up the model building by 75–80% 
and are extremely valuable in areas with limited or no physical data. Furthermore, they can facilitate 
the comparison of model results in different parts of the world.

Background and Summary
Soil and Water Assessment Tool (SWAT)1 is a comprehensive hydrological model for watershed simulation. 
SWAT is a continuous-time, semi-distributed, and process-based model, which includes coupled upland and river 
processes. The land phase of SWAT includes hydrology, soil erosion, crop growth, nutrient cycling, algae trans-
port, pesticide fate and transport, crop management, water transfer, snowfall and snowmelt, and soil temperature. 
The routing phase in the channels and rivers include processes such as flood routing, sediment routing, nutrient 
routing, pesticide routing, and routing in the reservoirs. The model is now being upgraded and restructured to 
SWAT+, and also coupled to glacier melt, heavy metal fate and transport, and other watershed-related processes.

SWAT is the most widely used hydrological and water quality model in the world2. SWAT models are used 
in a variety of applications, including quantification of water resources availability3–10, the impact of climate and 
landuse changes11–16, soil erosion17–19, water quality4,20–25, and ecosystem services26–28. SWAT also contains a mod-
ified version of the Environmental Policy Integrated Climate (EPIC) model29,30 for crop yield simulation8,12,31. In 
total, more than 4,500 ISI publications can be found using SWAT on various watershed-related issues and ecosys-
tem services around the world, which is by far the most extensive collection of such literature in the world with 
an average of 550 peer-reviewed publications per year in the last 4 years (data gathered from the Web of Science, 
October 2019).

Lack of data in many parts of the world is a severe impediment to hydrologic modeling. At the same time, 
much data generated on the global and local scales is also posing a modeling problem creating an additional 
source of uncertainty. Previous works have shown that the use of different databases for the same region leads 
to different model outputs and, consequently, different water resources estimates and different estimates of eco-
system variables4,32. Next to model uncertainty, we have previously used the term conditionality4,33,34 to describe 
another constraint to a so-called calibrated model. All calibrated model parameters are uniquely conditioned on 
model assumptions, model structure, input data, as well as calibration data, calibration routines, and objective 
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function definition. A calibration program, SWAT-CUP (SWAT Calibration and Uncertainty Procedures)25,35, 
was developed for the calibration of SWAT models. SWAT-CUP provides five different calibration routines and 
the option of choosing between 11 different objective functions. We have previously shown that the choice of 
different routines and objective functions lead to different parameters while producing equally acceptable cali-
bration results36,37. It would be desirable to always obtain unconditional model parameters independent of cali-
bration procedures and objective functions. For this reason, in the new version of the program, we have provided 
an option for multi-objective calibration, which provides an option of choosing any combination of the objective 
functions.

Furthermore, data processing and formatting of data for different applications are highly time-consuming and 
prone to errors, resulting in much of the research time to be spent on data preparation instead of modeling appli-
cation and analyses. For this reason, we have put together global soil, landuse, and historical and future weather 
databases for use in SWAT and other similar watershed models (Table 1) as described in the next section. The 
collection of these data provides a valuable resource for modeling, especially in regions of data scarcity.

Methods
Soil maps of the world.  FAO/UNESCO soil map of the world.  There is a general lack of reliable soil infor-
mation for many parts of the world, which has significantly disadvantaged evaluation of soil erosion, land degra-
dation, environmental impact studies, and sustainable land management programs. Two highly-used global soil 
maps are the FAO/UNESCO Soil Map of the World and Harmonized World Soil Database (HWSD_v121). Both 
maps provide a limited description of parameters, which are not directly useful for hydrologic models. We have, 
therefore, used pedotransfer functions developed from soils around the world to create the needed parameters 
such as hydraulic conductivity, available water capacity, and bulk density. Pedotransfer functions “translate data 
we have into data we need”38. These functions estimate parameters that are difficult to measure using easily meas-
ured soil properties such as texture, color, and structure, that are routinely recorded by soil surveyors39.

The FAO/UNESCO soil map of the world was prepared using the topographic map series of the American 
Geographical Society of New York at a nominal scale of 1:5,000,000 consisting of a 30 cm topsoil layer, and a 
70 cm subsoil layer (Fig. 1). Associated files, which we produced, include “Lookup_Soil_FAO-UNESCO.txt,” 
which contains the correspondence between soil map and soil database, and the SWAT’s usersoil table in the main 
SWAT database “SWAT2012.mdb”.

Initially, in 2004, the first author created the soil database for the FAO/UNESCO 1995 soil map for quantifica-
tion of water availability and quality in Africa9,10. The soil names were created as a concatenation of the FAO map-
ping unit (e.g., Af14-3C) and FAO Soil-ID (e.g., 1) to give Af14-3C-1. Soil hydrologic groups were determined 
according to SWAT Manual40 based on the criteria in Supplementary Table S1. The fraction of anions exclusion 
(ANION_EXCL) was set to 0.5 according to the SWAT Manual40. The potential or maximum crack volume of the 
soil profile (SOL_CRK) expressed as a fraction of the total soil volume was set to zero as there was no information 

Data Type Resolution Source

Soil
5 km - FAO/UNESCO global soil map

(1995) http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/

Soil
1 km - Harmonized World Soil Database v 1.21

(1995) http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html?sb=1

Landuse

0.3 km - GlobCover European Space Agency

(2004–2006) http://due.esrin.esa.int/page_globcover.php

http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036356/

Landuse

1 km - Global Land Cover Characterization, USGS

(1992–1993) http://landcover.usgs.gov/glcc/

https://archive.usgs.gov/archive/sites/landcover.usgs.gov/globallandcover.html

Climate
0.5° - Climate Research Unit (CRU)

(1970–2005) https://crudata.uea.ac.uk/cru/data/hrg/

Actual Evapo-transpiration
0.5° - Remote sensing global monthly Actual Evapotranspiration dataset (NASA-MODIS

(1983–2006) http://files.ntsg.umt.edu/data/ET_global_monthly_ORIG/Global_HalfDegResolution/

GCM1
0.5° GFDL-ESM2M, daily, RCP (2.6, 4.5, 6.0, 8.5), NOAA/Geophysical Fluid Dynamics Laboratory

(1960–2099) https://www.isimip.org/gettingstarted/details/51/

GCM2
0.5° HadGEM2-ES, daily, RCP (2.6, 4.5, 6.0, 8.5), Met Office Hadley Center

(1960–2099) https://portal.enes.org/models/earthsystem-models/metoffice-hadley-centre/hadgem2-es

GCM3
0.5° IPSL-CM5A-LR, daily, RCP (2.6, 4.5, 6.0, 8.5), L’Institut Pierre-Simon Laplace

(1960–2099) https://cmc.ipsl.fr/international-projects/cmip5/

GCM4
0.5° MIROC, daily, RCP (2.6, 4.5, 6.0, 8.5), AORI, NIES and JAMSTEC

(1960–2099) https://translate.google.com/translate?hl=en&sl=ja&u=http://ccsr.aori.u-tokyo.ac.jp/project.html&prev=search

GCM5
0.5° NorESM1-M, daily, RCP (2.6, 4.5, 6.0, 8.5), Norwegian Climate Center

(1960–2099) https://portal.enes.org/models/earthsystem-models/ncc/noresm

Table 1.  Sources and resolutions of databases available at the Pangaea and www.2w2e.com website.
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available to evaluate this parameter. Other soil properties have initially been calculated9,10 using the program 
ROSETTA41. In the current study, we have updated this database using a large number of pedotransfer functions, 
as described below.

Harmonized world soil database (HWSD).  The Food and Agriculture Organization of the United Nations (FAO) 
and the International Institute for Applied Systems Analysis (IIASA) combined the available regional and national 
soil information with the data already contained within the 1:5,000,000 scale FAO-UNESCO map, into a new 
comprehensive Harmonized World Soil Database (HWSD_v121). This map has a resolution of about 1 km (30 arc 
seconds) and consists of a 30-cm topsoil layer, and a 70-cm subsoil layer (Supplementary Fig. S1).

The soil variables provided in the Harmonized World Soil Database42 and FAO/UNESCO Soil Map of the 
World included soil texture (%sand, %silt, %clay), organic carbon, pH, and electrical conductivity (EC). However, 
from a hydrological point of view, we require parameters such as bulk density, water storage capacity, and hydrau-
lic conductivity for different soil layers, which we used pedotransfer functions to estimate. We estimated soil 
bulk density (Table 2), soil available water capacity (Table 3), soil hydraulic conductivity (Table 4), soil erodibility 
factor for universal soil loss equation (USLE) (Table 5), and moist soil albedo (Table 6). The used pedotransfer 
functions are based on the soils from around the world; hence, providing parameters that are more universally 
applicable. The above variables were calculated for all soil records in the two soil maps.

Furthermore, to account for parameter uncertainty, the soils were sorted by their textural classes based 
on USDA classification42 that included Clay, Clay-loam, Heavy-clay, Loam, Loamy-sand, Sand, Sandy-clay, 
Sandy-clay-loam, Sandy-loam, Slit-loam, Silty-clay, and Silty-clay-loam. For each textural class, we pooled the 
estimates of various pedotransfer functions from both FAO_UNESCO and HWSD databases and calculated 
their cumulative probability distributions from which we obtained parameter values at the 5%, 50%, and 95% 
probability levels. Values for bulk density are shown in Table 7 as an example, while other parameters are given 
in Supplementary Tables S2–S6. An example calculation of the 95 percent prediction uncertainty (95PPU) is 
shown in Supplementary Fig. S2 for the hydraulic conductivity of topsoil sandy loam. The 95PPU parameter 
range sets a physically meaningful limit on the parameters for different soil textural classes and is instrumental 
in constraining the respective parameters in model calibration. These ranges can, of course, be modified by the 
user as needed.

In the pre-processing of HWSD database, similar to FAO/UNESCO, we modified the data where necessary by 
replacing zero values of %sand, %silt, and %clay by 1, and making sure that their summation equals 100%. Also, 
after applying various pedotransfer functions, we replaced the negative or unreasonable values with the overall 
averages to avoid model-generated errors. Finally, we should point out that the soil parameters in both databases 
must still be calibrated for a specific location.

Landcover maps of the world.  Global land cover characterization (GLCC).  The GLCC from USGS is 
a landuse and land cover classification dataset based primarily on the unsupervised classification of the 1-km 
AVHRR (Advanced Very High-Resolution Radiometer) 10-day NDVI (Normalized Difference Vegetation Index) 
composites (Supplementary Fig. S3). The AVHRR source imagery dates from April 1992 through March 1993. 
The GLCC map contains 24 land cover types. We made the correspondence between the GLCC map units and 

Fig. 1  Unique soil units in FAO/UNESCO Soil Map of the World.
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SWAT’s (crop) database in Supplementary Table S7 based on the description of the land covers provided by the 
maps and the SWAT landuse definitions.

Global landuse GlobCover.  The GlobCover is a European Space Agency initiative to develop global composites 
and land cover maps using observations from the 300-m MERIS sensor onboard the ENVISAT satellite mission 
(Soolementary Fig. S4). The GlobCover map covers the period of December 2004 to June 2006 and is derived 
by automatic and regionally-tuned classification of a MERIS full resolution surface reflectance time series. The 
GlobCover map contains 23 land cover types. We made correspondence between the GlobCover units and 
SWAT’s (crop) database in Supplementary Table S8 based on the description of the land covers provided by the 
maps and the SWAT landuse definitions.

The databases for the above two global landuse maps are supported by the table (crop) in the SWAT2012.mdb 
database and the lookup tables “Lookup_Landuse_GlobCover.txt” and Lookup_Landuse_USGS.txt. However, 
similar to the soil parameters, landuse parameters must be calibrated for a given location.

Historical weather data.  The historical (1970–2005) reanalysis temperature and precipitation data from 
the Research Unit East Anglia (CRU TS 3.1)43 were reformatted from NetCDF into SWAT-readable text files. The 
database is daily and has a resolution of 0.5° and covers the entire globe in 67,420 files.

Future weather data.  We provide five global climate models (GCM), each with four carbon evolution sce-
narios supported by ISI-MIP5 (Inter-Sectoral Impact Model Intercomparison Project)44. These daily data cover 
the period of 1950–2099 and have a resolution of 0.5°. Similar to CRU, they have been reformatted from NetCDF 
into SWAT-formatted text files.

The five GCM models include HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, and 
NorESM1-M (Table 1) with Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP6.0, 
and RCP8.5)45. The 0.5° grid WATCH Forcing Data46 for the period of January 1, 1960, to December 31, 1999 
(the reference period) was used as observation data to downscale the five GCMs44. WATCH is a combination of 
the ERA-40 daily data, the 40-year reanalysis of the European Centre for Medium-Range Weather Forecasts, and 
the Climate Research Unit TS2.1 dataset (CRU)43. The WATCH Forcing Data data combines the daily statistics 
of ERA-40 with the monthly mean characteristics of CRU and Global Precipitation Climatology Centre (GPCC) 
datasets and represents a complete gridded observational dataset for bias correction of global climate data44.

The historical and future data can be downloaded for any given geographic location from www.2w2e.com 
using the template illustrated in Supplementary Fig. S5. The Climate Change Toolkit (CCT) program47 is linked 
to the above databases and can be used for bias correction if local data is available. CCT uses additive correction 

Bulk Density Pedotransfer Function Reference

ρb = 100/[1.72*OC/0.224 + (100 − 1.72*OC)/1.27] Adams65

ρb = 1.66 − 0.308*OC^0.5 Alexander66

ρb = 1.72 − 0.294*OC^0.5 Alexander66

ρb = exp[−2.31 − 1.079*ln(1.72*OC/100) − 0.113*(ln(1.72*OC/100))^2] Federer67

ρb = exp[− 2.39 − 1.316*ln(1.72*OC/100) − 0.167*(ln(1.72*OC/100))^2] Huntington et al.68

ρb = exp[0.263 − 0.147*ln(OC) − 0.103*(ln(OC)^2 Huntington et al.68

ρb = 1.51 − 0.113*OC Manrique and Jones69

ρb = 1.66 − 0.318*OC^0.5 Manrique and Jones69

ρb = 0.111*1.450/[1.450*(1.72*OC/100) + 0.111*(1 − 1.72*OC/100)] Federer et al.70

ρb = 1.524 − 0.0046*C − 0.051*OC − 0.0045*pH + 0.001*S Bernoux et al.71

ρb = 1.398 − 0.042*OC − 0.0047*C Bernoux et al.71

ρb = 1.578 − 0.054*OC − 0.006*T − 0.004*C Tomasella and Hodnett72

ρb = 1.70398 − 0.00313*S + 0.00261*C − 0.11245*OC Leonavičiute73

ρb = 1.07256 + 0.032732*ln(S) + 0.038753*ln(C) + 0.078886*ln(S) − 0.054309*ln(OC) Leonavičiute73

ρb = 0.244*1.640/[1.640*1.72*OC/100 + 0.244*(1 − 1.72*OC/100)] Post and Kwon74

ρb = exp(0.313 − 0.191*OC + 0.02102*C − 0.000476*C^2 − 0.00432*T) Kaur et al.75

ρb = 0.120*1.400/[1.4*1.72*OC/100 + 0.120*(1 − 1.72*OC/100)] Tremblay et al.76

ρb = exp(−1.81 − 0.892*ln(1.72*OC/100) − 0.092* (ln(1.72*OC/100))^2) Prevost77

ρb = 0.159*1.561/[1.561*(1.72*OC/100) + 0.159*(1  −  (1.72*OC/100)] Prevost77

ρb = 1.5688 − 0.0005*C − 0.0090*OC Benites et al.78

ρb = −1.977 + 4.105*(1.72*OC/100) − 1.229*ln(1.72*OC/100) − 0.103*(ln(1.72*OC/100))^2 Perie and Ouimet79

ρb = 0.111*1.767/[1.767*1.72*OC/100 + 0.111*(1 − 1.72*OC/100)] Perie and Ouimet79

ρb = exp(0.5379 − 0.0653*(10*1.72*OC)^0.5 Han et al.80

ρb = 1.02 − 0.156*ln(1.72*OC) Hong et al.81

ρb = 0.071 + 1.322*exp(−0.0715*OC) Hossain et al.82

Table 2.  Soil Bulk Density (ρb) pedotransfer function (g cm−3). OC = %organic carbon, C = %clay, T = %silt, 
S = %sand.
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for temperature and a multiplicative correction factor for precipitation. The program can also be used for extreme 
climate analysis48.

Global actual evapotranspiration data.  Actual evapotranspiration (AET) from the earth’s land surface 
is collected by NASA using satellite data from 1982 to 200349,50 (Supplementary Fig. S6). The algorithm calculates 
canopy transpiration and soil evaporation using a modified Penman-Monteith approach with biome-specific 
canopy conductance determined from the normalized difference vegetation index (NDVI). Priestley-Taylor 
approach was used to quantify open water evaporation. The observations from 34 flux network (FEUXNET) 
tower sites51 were used to parameterize an NDVI-based canopy conductance model to validate the global ET 
al.gorithm using measurements from 48 additional, independent flux towers49,50.

AET has been used before to calibrate SWAT when other observed data is not available52. It is crucial to have 
a measure of AET when calibrating a SWAT model with river discharge data. Using river discharge alone, we can 
confidently estimate runoff and infiltration. However, components of the infiltrated water cannot be estimated 
with any degree of confidence. These components include soil moisture (S), aquifer recharge (AR), and actual 
evapotranspiration (AET) (Fig. 2). Using an estimate of AET in calibration can significantly increase our confi-
dence in the other components of infiltrating water.

To use the provided MODIS–NASA data for calibration in SWAT-CUP, users, should overlay the MODIS-AET 
grids with the subbasin map of their ArcSWAT/QSWAT project and average the AET grid points inside each sub-
basin to one single value to represent the subbasin’s AET.

Available Water Capacity Pedotransfer Function Source

θ33 = 0.1183 + 0.0096*C − 0.00008*C^2
Petersen et al.83

θ1500 = 0.0174 + 0.0076*C − 0.00005*C^2

θ33 = 0.2081 + 0.0045*C + 0.0013*T − 0.0595*ρb Hall et al.84

θ1500 = 0.0148 + 0.0084*C − 0.000055*C^2

θ33 = 0.003075*S + 0.005886*T + 0.008039*C + 0.001284*OC − 0.1434*ρb Gupta & Larson85

θ1500 = 0.000059*S + 0.001142*T + 0.005766*C + 0.001326*OC + 0.02671*ρb

θ33 = 0.2576 − 0.002*S + 0.0036*C + 0.0299*OC
Rawls et al.86

θ1500 = 0.0260 + 0.005*C + 0.0158*OC

θ33 = 0.3486 − 0.0018*S + 0.0039*C + 0.0228*OC − 0.0738*ρb Rawls et al.87

θ1500 = 0.0854 − 0.0004*S + 0.0044*C + 0.0122*OC − 0.0182*ρb

θ33 = 0.3862 − 0.0000479*S − 0.000019*(S/T)^2
Rajkai & Varallyay88

θ1500 = 0.0139 + 0.0036*C + 0.006508*OC^2

θ33 = 0.01*ρb*(2.65 + 1.105*C − 0.01896*C^2 + 0.0001678*C^3 + 15.12*ρb − 6.745*ρb^2 − 0.1975*C*ρb)
Canarache89

θ1500 = 0.01*ρb*(0.2805*C + 0.0009615*C^2)

AWC = 0.000976*C + 0.001875*T + 0.004694*OC Batjes90

AWC = 0.001082*C + 0.001898*T + 0.007705*OC Batjes90

θ33 = 0.04046 + 0.00426*T + 0.00404*C
Tomasella & Hodnett72

θ1500 = 0.0091 + 0.00150*T + 0.00396*C

x = −0.837531 + 0.430183*OC

Rawls et al.91

y = −1.40744 + 0.0661969*C

z = −1.51866 + 0.0393284*S

θ33 = 0.297528 + 0.103544*(0.0461615 + 0.290955*x − 0.0496845*x^2 + 0.00704802*x^3 + 0.269101*y − 0.176528*x*y + 0.0543138*x^2*y + 0.1982*y^2–
0.060699*y^3–0.320249*z − 0.0111693*x^2*z + 0.14104*y*z + 0.0657345*x*y*z − 0.102026*y^2*z − 0.04012*z^2 + 0.160838*x*z^2–0.121392*y*z^2–
0.0616676*z^3)

θ1500 = 0.142568 + 0.0736318*(0.06865 + 0.108713*x − 0.0157225*x^2–
0.017059*y^2 + 0.00102805*x^3 + 0.886569*y − 0.223581*x*y + 0.0126379*x^2*y + 0.013526*x*y^2–0.0334434*y^3–
0.0535182*z − 0.0354271*x*z − 0.00261313*x^2*z − 0.154563*y*z − 0.0160219*x*y*z − 0.0400606*y^2*z − 0.104875*z^2 + 0.0159857*x*z^2–
0.0671656*y*z^2–0.0260699*z^3)

β = −0.00251*S + 0.00195*C + 0.0064*OC + 0.000035*S*OC − 0.00016*C*OC + 0.0000452*S*C + 0.299

Saxton and Rawls92
γ = −0.00024*S + 0.00487*C + 0.0035*OC + 0.00029*S*OC − 0.0000756*C*OC + 0.0000068*S*OC + 0.031

θ33 = β + (1.283*β^2–0.374*β − 0.015)

θ1500 = γ + (0.14*γ − 0.02)

θ33 = 0.0055*(C + T) − 0.0013*S*ρb + 0.1288
Aina & Periaswamy93

θ1500 = 0.0031*C + 0.0213

θ33 = 0.3697–0.0035*S
Dijerman94

θ1500 = 0.0074 + 0.0039*C

θ33 = [0.0029*(C + T) + 0.0993] *ρb Arruda et al.95

θ1500 = [0.0027*(C + T) + 0.0107]*ρb

Table 3.  Available Water Capacity, AWC( = θ33–θ1500) (cm cm−1) pedotransfer functions. θ33 = soil water content 
at field capacity, θ1500 = soil water content at wilting point, C = %clay, ρb = bulk density (g cm−3), T = %silt, 
OC = %organic carbon, S = %sand.
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Data Records
The Global FAO/UNESCO Soil Map of the World and associated SWAT data files (Lookup Table and SWAT2012.
mdb)53 are deposited at Pangaea and www.2w2e.com sites. There are 4,931 soil records in this data set.

The Harmonized World Soil map and associated SWAT data files (Lookup Table and SWAT2012.mdb)54 are 
deposited at Pangaea and www.2w2e.com sites. There are 16,328 soil records in this data set.

The Global Land Cover Characterization (GLCC) map from USGS and SWAT data file (Lookup Table and 
SWAT2012.mdb)55 are deposited at Pangaea and www.2w2e.com sites. There are 24 landcover types in this 
database.

Hydraulic Conductivity Pedotransfer Function Source

Ks = 60.96*10^(−0.884 + 0.0153*S) Cosby et al.96

Ks = 60.96*10^(−0.6 + 0.0126*S − 0.0064*C) Cosby et al.96

Ks = 24.0*exp(12.012–0.0755*S + α)

Saxton et al.97α = (−3.895 + 0.03671*S − 0.1103*C + 0.00087546*C^2)/θs

θs = 0.332–0.0007251*S + 0.1276*log(C)

Ks = 339.0*(1.3/ρb)^(1.3* β)*exp(−0.0688*C − 0.0363*T − 0.025)

Campbell and 
Shiozawa98

γ = exp{0.01*[ln(1.025)*S + ln(0.026)*T + ln(0.001)*C]}

µ = exp{0.01*[ln(1.025)]^2*S + [ln(0.026)]^2*T + [ln(0.001)]^2*C]−[ln(γ)]^2}^0.5

β = [γ^ − 0.5 + 0.2*µ]^ − 1

KS = 4632(θs–θ33)^(3 − λ)

Saxton and Rawls92

θs = θ33–0.064–0.00097*S + 1.636(0.00278*S + 0.00034*C + 0.0128*OC − 0.000104*S*OC − 0.000157*C*OC − 0.0000584*S*C + 0.078)

λ = [ln(θ33) − ln(θ1500)]/[ln(1500) − ln(33)]

θ33 = β + (1.283*β^2–0.374*β − 0.015)

β = −0.00251*S + 0.00195*C + 0.0064*OC + 0.000035*S*OC − 0.00016*C*OC + 0.0000452*S*C + 0.299

θ1500 = γ + (0.14*γ − 0.02)

γ = 0.00024*S + 0.00487*C + 0.0035*OC + 0.00029*S*OC − 0.0000756*C*OC + 0.0000068*S*OC + 0.031

θs = 1 − ρb/2.65

Rawls and 
Brakensiek99

KS = 24*exp(α)

α = 19.52348*θs − 8.96847–
0.028212*C + 0.00018107*(S^2) − 0.0094125*(C^2) − 8.395215*(θs^2) + 0.077718*S*θs − 0.00298*(S^2)*(θs^2) − 0.01949-
2*(C^2)*(θs^2) + 0.0000173*(S^2)*C + 0.02733*(C^2)*θs + 0.001434*(S^2)*θs − 0.0000035*S*(C^2)

KS = exp(α)
Woesten et al.100

α = 7.755 + 0.0352*T + 0.93(topsoil) − 0.967*(ρb^2) − 0.000484*C^2–0.000322*(T^2) + 0.001/T − 0.129/
OC − 0.643*ln(T) − 0.01398*ρb*C − 0.0973*ρb*OC + 0.02986(topsoil)*C − 0.03305*(topsoil)*T

KS = exp(α)
Weynants et al.101

α = 1.9582 + 0.0308*S – 0.6142*ρb – 0.01566*OC

Table 4.  Soil Hydraulic Conductivity (cm day−1) pedotransfer functions. θ33 = soil water content at 
field capacity, θ1500 = soil water content at wilting point, C = %clay, ρb = bulk density (g cm−3), T = %silt, 
OC = %organic carbon, S = %sand, topsoil = an ordinal variable having the value of 1 for (depth 0–30 cm) or 0 
(depth > 30 cm).

Soil Erodibility Pedotransfer Function Source

KUSLE = ES*EC-T*EOC*EHS

Williams30

Where:

Es = 0.2 + 0.3*exp[−0.256*S*(1 − T/100)]

EC-T = [T/(C + T)]^0.3

EOC = 1−(0.25*OC/(OC + exp(0.72 − 2.95*OC)]

EHS = 1−{0.7*(1 − S/100)/[(1 − S/100) + exp(−5.51 + 22.9*(1 − S/100)]}

Table 5.  Soil erodibility factor (cm day−1) pedotransfer function. S = %sand, T = %silt, C = %clay, 
OC = %organic carbon.

Albedo Pedotransfer Function Source

Albedo = 0.1807 + 0.1019*exp(−3.53*θ33) Wang et al.102

Albedo = 0.15 + 0.31*exp(−12.7*θ33) Gascoin et al.103

Albedo = 0.26 + 0.1068*exp(−4.9*θ33) Sugathan et al.104

Table 6.  Moist Soil Albedo based on the water content at field capacity (θ33).
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The GlobCover from the European Space Agency and associated data files (Lookup Table and SWAT2012.
mdb)56 are deposited at Pangaea and www.2w2e.com sites. There are 23 landcover types in this database.

The historical CRU and future GCM weather data57 are deposited at Pangaea and www.2w2e.com.
Finally, the Global Actual Evapotranspiration Data58 in text format is deposited at Pangaea and www.2w2e.com.

Technical Validation
The global soil and landuse databases have been successfully used in many SWAT applications around the 
world4,6,9,10,16,59–62. Validation of these maps, which are based on satellite observations, are offered by ground-truth 
observations conducted by the map developers and also in various literature63,64.

There is a significant variation in the reported values of soil parameters in the literature and by various agen-
cies. In this research, we used a large number of pedotransfer functions and soil samples from around the world 
to estimate the textural-based soil parameters. In Table 8 we compared our estimated values of bulk density 
and hydraulic conductivity with values reported by the U.S. Department of Agriculture (USDA), STRUCTx 
(STRUCTURAL ENGINEERING RESOURCES website, see Table 8), and other reported values. The rest of the 
parameters could not be found based on textural classes. As evident, there are significant variations in all esti-
mates, especially for saturated hydraulic conductivities. For this reason, it is essential to have a range of estimates, 
so one can limit the values to a likely range during model calibration.

Usage Notes
There are 4,931 soil records in the FAO/UNESCO database, and 16,328 records in the HWSD soil map. Both 
(usersoil) tables are in the SWAT2012.mdb database. The field (Name) is concatenated by using the fields 
SU-SYM74, SU-SYM90, MU_GLOBAL, and ISSOL as given in the original HWSD database. SU-SYM74 is the 
soil unit symbol according to the FAO-74 soil classification, SU-SYM90 is the soil unit symbol according to the 
FAO-90 soil classification, MU_GLOBAL is the Global Mapping Unit identifier, which provides the link between 
the GIS soil units and the attribute database, and ISSOL is a field indicating if the soil mapping unit is a soil (1) 
or a non-soil (0). All maps provided have the World WGS-84 Spatial Reference without any projection. The users 
will have to project these maps as needed before using it in the ArcSWAT or QSWAT models.

Different soil and landuse maps are provided to emphasize the fact that often more than one database is avail-
able for building and calibrating a model, and also to encourage the users to use different databases to realize the 
conditionality of their calibrated models. Calibrated model parameters are always conditioned on the input data, 
meaning one could obtain a different set of parameters if one had used a different set of available data. This is 
probably the most disappointing aspect of calibration.

Topsoil Bulk
density (g cm−3)

5% prob. 
Level

50% prob. 
Level

95% prob. 
Level

Subsoil Bulk
density (g cm−3)

5% prob. 
Level

50% prob. 
Level

95% prob. 
Level

Clay (2324) 0.80 1.19 1.58 Clay (2221) 1.19 1.34 1.49

Clay-loam (3034) 1.03 1.30 1.57 Clay-loam (4936) 1.19 1.37 1.55

Heavy-clay (284) 1.04 1.21 1.38 Heavy-clay 548) 1.21 1.32 1.42

Loam (6612) 0.98 1.26 1.54 Loam (5150) 1.08 1.34 1.61

Loamy-sand (1171) 1.11 1.30 1.49 Loamy-sand (1072) 1.31 1.40 1.50

Sand (918) 1.33 1.41 1.49 Sand (793) 1.38 1.41 1.44

Sandy-clay (136) 1.10 1.27 1.44 Sandy-clay (461) 1.15 1.39 1.62

Sandy-clay-loam (2463) 1.19 1.34 1.49 Sandy-clay-loam (2518) 0.97 1.36 1.74

Sandy-loam (3040) 1.08 1.32 1.57 Sandy-loam (2533) 1.14 1.37 1.60

Silt-loam (864) 0.79 1.19 1.60 Silt-loam (608) 0.74 1.26 1.77

Silty-clay (120) 0.88 1.17 1.47 Silty-clay (142) 1.04 1.32 1.59

Silty-cla-loam (95) 0.95 1.21 1.47 Silty-cla-loam (89) 1.19 1.36 1.53

Table 7.  Average and uncertainty estimates of bulk density for top and subsoil based on the textural classes. The 
numbers in the brackets are the number of samples.

R=rainfall
AET=actual evapotranspiration
I=infiltration
RO=runoff
RF=return flow
LF=lateral flow
CF=capillary flow
AR=aquifer recharge
DAR=deep aquifer recharge
S=soil moisture

S

R
AET

I

RO

RF

AR
CF

DAR

LF

Fig. 2  Schematic illustration of the conceptual water balance model in SWAT.
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A calibrated model is, therefore, always: non-unique, subjective, conditional, and subsequently limited on the 
scope of its use. To achieve unconditionality, the calibrated parameters must be integrated over all conditioning 
factors. Hence, we recommend using different physical inputs and multi-objective calibration procedures.
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