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Abstract 
 
Single-cell RNA sequencing is at the forefront of high-resolution phenotyping experiments for complex 
samples. Although this methodology requires specialized equipment and expertise, it is now broadly 
applied in research. However, it is challenging to create broadly applicable experimental designs 
because each experiment requires the user to make informed decisions about sample preparation, RNA 
sequencing and data analysis. To facilitate this decision-making processes, in this Tutorial we 
summarize current methodological and analytical options, and discuss their suitability for a range of 
research scenarios. Specifically, we provide information about best practices to separate individual cells 
and provide an overview of current single-cell capture methods at different cellular resolutions and 
scales. RNA sequencing library preparation methods vary profoundly across applications and we 
discuss features important for an informed selection process. An erroneous or biased analysis can lead 
to misinterpretations or obscure biologically important information. We provide a guide to the major 
data processing steps and options for meaningful data interpretation. These guidelines will serve as a 
reference to support users in building a single-cell experimental framework from sample preparation to 
data interpretation, tailored to the underlying research context. 
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Introduction 

 

Single-cell transcriptomics studies have dramatically improved our understanding of the complexity of 

tissues, organs and organisms1. Profiling gene expression in individual cells has revealed an 

unprecedented variety of cell types and subpopulations that were invisible to traditional experimental 

techniques. As well as providing profound insights into cell composition, single-cell studies have 

changed established paradigms regarding cell plasticity in dynamic processes such as development2 and 

differentiation3. Cell states are now known to be more flexible than previously thought, and present 

multipotent characteristics before reaching fate decision endpoints. While various approaches are 

available for phenotyping individual cells (e.g. transcriptomics4, proteomics5 and epigenomics6), single-

cell RNA sequencing (scRNAseq) is currently at the forefront, facilitating ever larger-scale 

experiments. The scalability of scRNAseq experiments has advanced rapidly through the use of 

automation and sophisticated microfluidics systems, producing datasets from more than a million cells7. 

As a result, experimental designs have shifted from focusing on specific cell types to unbiased analysis 

of entire organs8–10 and organisms11,12, enabling a hypothesis-free approach to explore the cellular 

composition of a sample. 

Most scRNAseq methods are now broadly applied in both basic research and clinically translational 

contexts; even though they require specialized equipment and expertise in sample handling, sequencing 

library preparation, and data analysis. As a result, single-cell research has become one of the fastest 

growing fields in life science, producing fascinating new insights into tissue composition and dynamic 

biological processes. Large-scale scRNAseq experiments have permitted cellular maps of 

Caenorhabditis elegans12, the planarian Schmidtea mediterranea13, Drosophila11,14 and different mouse 

organs8,15 to be defined. In humans, single-cell analysis has improved our understanding of 

developmental processes16, aging17 and different diseases, such as cancer18–21. However, it is 

challenging to create generalizable designs for single-cell transcriptomic experiments because each one 

requires the user to make informed decisions in order to obtain interpretable results. These include 

selecting sample types, cell numbers and preparation methods, choosing scRNAseq techniques and 

sequencing parameters, and designing computational analysis strategies to generate insights from 

single-cell datasets. Ultimately, successful single-cell transcriptomic studies with interpretable datasets 

and meaningful scientific output can only be achieved using tailored experimental designs. To inform 

this decision-making process, in this Tutorial we provide a comprehensive description of the phases of 

single-cell transcriptomic studies, including 1) sample preparation, 2) single-cell RNA sequencing, 3) 

data processing, and 4) data analysis (as discussed further below, and see Figure 1). We summarize the 

methodological and analytical options, and highlight their suitability for distinct research scenarios to 

support users in designing an end-to-end experimental framework tailored to the underlying research 

context. 
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1. Sample preparation 

 

Preparation of high-quality single-cell suspensions is key for successful single-cell studies. Irrespective 

of the starting material, the condition of the cells is critical to ensure efficient cell capture and optimal 

performance of the scRNAseq protocols (Table 1). While most methods use fresh viable single cells, 

alternatives include preserved samples22–24 and nuclear RNA from frozen tissue25–29. Here, we provide 

common general guidelines applicable for all tissues, and optimized parameters tailored to the major 

tissues of interest. In principle scRNAseq applications are not restricted to specific species as long 

polyA-tailed RNA is present. However, some organisms might require additional processing steps to 

efficiently release molecules into the reactions (e.g. cell wall removal for plant material).    

 

Good practices for sterile sample handling are recommended, including use of nuclease-free reagents 

and consumables. To minimize cell damage, pipetting and centrifugation should be kept to the 

minimum. Cell concentration and size both influence pelleting efficiency at a given centrifugation 

speed, time, and temperature, and a tightly-packed cell pellet may require extra pipetting, which can 

damage cells through shearing effects; thus, centrifugation conditions should be optimized. Sufficient 

volumes should be used when washing and re-suspending cells, as high concentrations can cause 

aggregation and clumping. Suspensions should be filtered with appropriately sized cell strainers (pore 

size larger than cell diameter) to remove clumps and debris. The recommended cell washing and 

resuspension solution is phosphate-buffered saline (calcium and magnesium free) containing bovine 

serum albumin to minimize cell losses and aggregation. Primary cells, stem cells, and other sensitive 

cell types may require washing and suspension in alternative buffers to ensure viability, which also may 

diminish when cells are kept in suspension for a prolonged period. Cell clumps cause automated cell 

counters to underestimate the effective concentration of single cells, so suspensions should be processed 

as soon as possible after preparation, ideally within 30 minutes. It is important to minimize cellular 

aggregates, dead cells, non-cellular nucleic acids, and reverse transcription inhibitors in single-cell 

preparations. To minimize these contaminants while maximizing the purity and the unbiased recovery 

of different cell types, optimization may be necessary (e.g. adjusting the number of wash steps, the 

composition of the wash solution, centrifugation conditions, strainer type).  

 

Preparation of cell suspensions. To isolate single cells from suspensions (e.g. blood samples), samples 

are density centrifuged (for example Ficoll-Paque or Histopaque-1077)30 and then can be used directly 

for single-cell capture. Solid tissues must firstly be dissociated using mechanical and enzymatic 

treatment. Initially, tissues are disaggregated by mechanical cutting or mincing with blades. Then, 

enzymatic digestion is used to separate cells, using specific enzymes and digestion times for different 
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tissues (Table 2). Enzyme types include accutase, elastase or collagenases, or commercial enzymatic 

mixtures such as TrypLE Express or Liberase Blendzyme 3. An  elevated cell lysis can lead to cell 

clumping, which is reduced through the treatment with DNaseI during cell separation. Finally, 

suspensions are cleaned by filtering samples through a mesh or strainer, before capture of single cells.   

It is important to note that sample processing might introduce variation in the gene expression profile, 

as has been shown for the activation of stress-related genes31. Also, sensitive cell types might be 

damaged during sample preparation, so processing time should be kept to the minimum required. In 

contrast, too short digestion times could result in incomplete cell separation and the exclusion of tightly 

interconnected cells from subsequent single-cell analysis.  

To avoid  biases in cell type composition an alternative strategy involves disrupting cellular membranes 

and isolating the nuclei25–29. The sequencing of nuclear RNA was shown to be sufficient for 

deconvoluting cell types29, although this diminished the overall resolution per cell. Single-nuclei 

sequencing has been performed extensively for differentiated neurons, for example, as it is largely 

impracticable to isolate intact cells from the highly interconnected adult neuronal tissue.  

 

Single-cell capture. To profile the transcriptomes of single cells, most methods require the physical 

isolation of cells into individual reaction volumes. Cells can be isolated by microdissection or 

pipetting32, although high-throughput experiments use fluorescence-activated cell sorting (FACS)33 or 

microfluidics34 to guide cells into micro- or nanoliter reaction volumes, respectively. Microfluidic 

systems capture cells in integrated fluidics circuits (IFC), droplets or nanowells, allowing thousands of 

cells to be processed simultaneously while minimizing reaction volumes and reagent use. FACS sorts 

cells into microtiter plates ready for library preparation by manual or automated processing, and 

facilitates the exclusion of dead or damaged cells, and the enrichment of target cell populations (e.g. 

through surface marker labelling). To reduce background and maximize assay performance, we also 

recommend FACS or magnetic-activated cell sorting (MACS) processing of single-cell solutions for 

microfluidic systems, to remove debris, damaged/dead cells and cell aggregates.  

 

Sample size and composition. To obtain an unbiased view of the cellular composition of a sample, all 

cells need to be captured during the isolation process. Here, attention must be paid to very small and 

large cells that may be excluded during FACS isolation or captured in microfluidic systems, 

respectively. However, for many experiments it may be necessary to enrich for or exclude some cell 

types to increase the total number of cells of interest in the final scRNAseq libraries. For example, 

profiling specific immune responses requires enrichment of blood cell subtypes, while cancer studies 

might need to exclude blood cells (e.g. CD45 positive) to increase the overall number of tumour cells. 

Target populations can be selected using FACS and MACS using appropriate labelling (e.g. antibodies 

or transgenic systems). Microtiter plates and some nanowell capture systems allow index-sorting, where 

fluorescence intensity or cell size (FACS information) is associated to capture coordinates and 
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subsequently to single-cell indices. Here, the FACS device records the sorting position and intensity 

values of a given cell, enabling the subsequent integration of transcriptome profiles with the recorded 

cell properties. For microfluidic systems, CITE-seq35 provides a viable alternative to conserve the 

information of surface markers. Here, epitopes of interest are targeted with oligonucleotide-labelled 

antibodies. The antibody-specific sequences are poly-A tailed and contain barcodes that allow epitope 

tracking after scRNAseq library preparation and sequencing. 

To define adequate cell numbers per experiment, one must consider sample heterogeneity and sub-

population frequency (estimated abundance of the cell type of interest). In particular, larger cell 

numbers are required to resolve the structure of heterogeneous samples with many expected 

subpopulations. Also the total number of cells required increases when rare cell types need to be 

identified. The required cell numbers can be calculated by estimating both sub-population structure and 

low-frequency cell type abundance and defining the desired cell number per group (computational tool 

accessible at: https://satijalab.org/howmanycells). Since most experiments target poorly described 

systems, heterogeneity can only be estimated, so pilot experiments are recommended before entering 

large-scale data production. In line, in comparative studies across experimental conditions, patient 

samples or larger population cohorts, control experiments can inform about optimal cell numbers and 

the need for sub-population enrichment steps. Note that higher cell numbers can also be beneficial for 

homogenous samples, as this increases statistical power during analysis36.  

 

Sample preservation. All common scRNAseq methods were initially designed to use freshly isolated 

cells. However, in research and clinical practice, immediate sample processing can be challenging due 

to a lack of the required infrastructure or specialized equipment, such as FACS devices. Moreover, 

although samples may be collected at multiple time points, simultaneous sample processing may be 

preferred to avoid technical batch effects. Sample preservation is a viable solution because it 

disconnects the location and time of sampling from downstream processing steps. In this context, 

cryopreservation has been established for single-cell transcriptome analysis22. After sample storage at -

80 ºC or in liquid nitrogen and thawing, cryopreserved cells from cell lines and primary samples show 

complete integrity of the RNA molecules and unchanged expression profile as compared to freshly 

prepared cells. Note that multiple freeze-thaw cycles should be avoided through the preparation of 

aliquots or by scraping out cells from frozen vials. Similarly, methanol fixation has been established as 

an alternative for droplet-based single-cell methods, which could also avoid technically induced 

variations in gene expression triggered by prolonged sample processing time23. Importantly, both 

methods allow the archiving and transport of samples and broaden the range of applications of 

scRNAseq methods, for example to the clinical context. However, both approaches detected a potential 

bias in cell type composition and it is strongly recommended to thoroughly evaluate preservation 

methods for new cell types that have not been tested. For previously archived samples, such as snap-

frozen specimens, nuclei sequencing provides the only solution for scRNAseq25–29. In contrary to 
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cryopreservation, the formation of ice crystals during snap-freezing disrupts the outer cellular 

membrane, however, the nuclei remain intact. Nevertheless, it is preferable to make an initial estimation 

of the RNA integrity to avoid biases related to the sample quality.   

 

2. Single-cell RNA sequencing  

 

Transcriptome profiling of individual cells can be split into four major components: RNA molecule 

capture, reverse transcription and transcriptome amplification, sequencing library preparation, and 

single-cell RNA sequencing. Various scRNAseq methods exist, but all apply the same underlying 

principles. Below we discuss these basic experimental design considerations, and highlight common 

and emerging microtiter plate-based and microfluidic scRNAseq techniques and their applications. Key 

features of the different scRNAseq approaches discussed below are also summarized in Table 3. Many 

of these methods have been systematically evaluated, confirming their generally high accuracy, 

although efficiency, scalability and costs vary significantly37,38. This should be taken into account when 

selecting methods for a given experiment.  

 

RNA molecule capture, reverse transcription and transcriptome amplification for sequencing library 

preparation. Most scRNAseq methods, including those described below, capture polyA-tailed RNA, 

although specific protocols are available for profiling total RNA39,40 or miRNAs41. After cell lysis, 

polyA-tailed RNA is captured by polyT-oligonucleotides, which excludes abundant RNA types such as 

rRNA or tRNA. Following capture, the RNA is reverse-transcribed into stable cDNA, at which point 

most methods add single-cell-specific barcodes within the polyT-oligonucleotides that allow cost-

effective multiplexed processing of pooled samples. Moreover, random nucleotide sequence stretches 

in the polyT-oligonucleotide serve as unique molecule identifiers (UMI) that allow the user to correct 

for amplification biases and reduce technical noise42. Reverse transcription (RT) is a crucial step, and 

different protocols have been optimized in various ways using efficient enzymes and specific additives 

that maximize efficiency (Box 1). cDNA can then be amplified by PCR or through in vitro transcription 

(IVT). To enable this, adapter sequences or RNA polymerase promoter sequences are introduced during 

RT or second strand synthesis. Although IVT is less prone to biases through linear amplification of 

molecules, it requires additional downstream steps to convert the amplified RNA into cDNA and 

sequencing-ready libraries. PCR-based protocols however, require less hands-on time, but the 

exponential amplification phase leads to biases in RNA composition in the final libraries. Both 

approaches were shown to results in interpretable results and were successfully implemented in several 

scRNAseq methods (Table 3).  
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Full-length vs 3’- or 5’-end transcript sequencing. Single-cell transcriptome profiling can be 

performed using full-length transcript analysis, or by digital counting of 3´- or 5´-transcript ends42. The 

choice of sequencing method would be dictated by the goal of the experiment, i.e. prioritizing cost-

effectiveness versus retaining sequence information. Digital RNA counting is a cost-effective 

quantification strategy, although sequence information of the transcripts is lost. Full-length 

transcriptome sequencing allows the detection of splice variants and alternative transcripts, as well as 

genetic alterations in the transcribed fraction, such as single-nucleotide variants19,43 or fusion 

transcripts44. Moreover, T- and B-cell receptor genotypes can be obtained from full-length 

transcriptomes45. Unlike 3´- and 5´-end methods, full-length protocols do not allow the introduction of 

UMI and impede an early cellular barcoding and pooling, resulting in higher costs for library 

preparation. This limitation can be overcome using long-read sequencing technologies that do not need 

library fragmentation46. However, such technologies generate lower quantities of sequencing reads and 

transcriptome quantification is not yet possible.  

 

scRNAseq methodologies: Microtiter plate-based approaches. After isolating single cells into 

microtiter plates by FACS, a full-length transcript or 3`/5`-end protocol can be applied. Smart-seq247 

is a widely-used method to reverse transcribe and amplify full-length transcripts. Following RT the 

enzyme adds cytosines to the cDNA, providing the basis for a template switching reaction. Here a 

template switching oligonucleotide (TSO) binds to the extra cytosine and provides the template for the 

addition of   PCR adapter sequences for subsequent cDNA amplification. Compared to the original 

version48, the updated protocol improves molecule capture efficiency and yield by using locked nucleic 

acids in the TSO and adding betaine to the RT reaction. Sequencing libraries are prepared using 

tagmentation, simultaneously fragmenting and indexing the cells. The Smart-seq2 protocol is highly 

efficient in capturing RNA molecules37, although the late indexing step makes it more expensive than 

other methods. Furthermore, the absence of UMI makes downstream data analysis more challenging. 

Nevertheless, the protocol provides an adequate solution if deep single-cell phenotyping is required 

(e.g. for homogeneous samples or for analysing weakly expressed genes). 

STRT-seq49 uses a similar strategy for RT and template switching, but incorporates single-cell barcodes 

in the TSO. This allows early pooling of cells and cost-effective multiplex processing. STRT-seq 

enriches 5’-transcript ends using biotinylated purification and 5’-specific PCR primers. Analysing the 

5’-transcript has the advantage of providing information about transcription start sites. Moreover, cell 

barcodes and transcripts are obtained in a single read, enabling cost-effective single-end sequencing. 

While the original STRT-seq protocol could not correct for amplification biases, later updates for the 

first time included UMI in a scRNAseq method42. The SCRB-seq50 protocol incorporates single-cell 

barcodes and UMI in the polyT-primer, enabling 3’ amplification of transcripts, and like STRT-seq, 

early indexing allows cell pooling to reduce costs. The RNA capture efficiency of the original protocol 

was improved by increasing the RT mix density: molecular crowding SCRB-seq (mcSCRB-seq51) 
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includes polyethylene glycol to increase binding event probabilities. In addition, the PCR enzyme was 

switched from KAPA to the Terra polymerase to further improve library complexity. In Quartz-seq52 

the template-switching reaction is replaced by a polyA-tailing step. The additional adenosines provide 

a template for a polyT-primed second strand synthesis, followed by PCR amplification. The amplified 

transcriptome then undergoes ultrasound fragmentation and sequencing adapter ligation. A later 

version, Quartz-seq253, improved the molecule detection efficiency by using shorter RT primers and 

improving polyA-tagging efficiency. 

Amplification biases during exponential PCR are addressed in CEL-seq32, where transcripts are copied 

through IVT. The linear amplification of molecules enabled by inclusion of a T7 promoter in the polyT 

primer results in more evenly duplicated transcriptomes. Also, transcriptome amplification by IVT does 

not require template switching, which improves molecule capture efficiency. This workflow was further 

optimized in MARS-seq54 by including UMI in the polyT primers and allowing upscaling of cell 

numbers through automation. Also, the original CEL-seq protocol was updated in CEL-seq255 for more 

efficient RNA capture and a simplified workflow. Briefly, the CEL-seq2 protocol uses UMI, a shorter 

RT primer, and more efficient RT and second strand synthesis enzymes. Furthermore, cDNA synthesis 

following IVT is initiated by random priming instead of adapter ligation.  

 

scRNAseq methodologies: microfluidic systems-based approaches. Microfluidics allows higher 

throughput scRNAseq workflows, eliminating the technical constraints on scalability associated with 

using microtiter plates. Moreover, reducing reaction volumes from micro- to nanoliters reduces costs 

and technical variability56, while improving cDNA yield57. There are three strategies for capturing cells; 

IFC, droplets, and nanowells, all of which increase the number of capture sites relative to microtiter 

plates. The first microfluidics system used for scRNAseq was designed as an automated array solution 

(Fluidigm C1), where single cells enter a fluidics circuit, are immobilized in hydrodynamic traps, lysed, 

and processed in consecutive nanoliter reaction chambers using a modified Smart-seq2 protocol. While 

early versions could only use commercial scRNAseq assays, a more recent open format accommodates 

custom scRNAseq protocols42 and additional applications for genetics and epigenetics single-cell 

experiments58. Costs were further reduced by increasing throughput and cell capture from 96 to 800 

sites (C1 HT-IFC), and including an early-indexing strategy that allows cell pooling. Notably, this 

high-throughput version switched from full-length to 3’ RNA sequencing. Also, the array formats 

restricted to specific cell sizes (small, medium and large arrays) affects the unbiased sampling from 

complex sample types. To further increase cell numbers, microfluidics progressed to open nanowell 

systems that allow better scalability. In STRT-seq-2i59, the original protocol was applied in a nanowell 

platform with 9,600 sites, with cells loaded by limiting dilution or direct addressable FACS sorting. 

Positioning cells by FACS allows index sorting that assigns cell properties (e.g. fluorescence signal or 

size) to array coordinates and barcodes. Nanowells containing cells can be specifically utilised by 

targeted dispensing, significantly reducing reagent costs and contamination of ambient RNA. Moreover, 
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the array format allows imaging to exclude doublets. To guarantee high cell viability during the time-

consuming loading into nanowells, FCS can be added to the buffer and sample aliquots kept on ice. 

Alternatively, Seq-Well60 provides a nanowell-based method that captures cells in 86,000 sub-nanoliter 

reactions. The underlying principle is the pre-loading of nanowells with barcoded beads before cells 

enter the capture sites through limited dilution. Subsequently, the arrays are sealed for cell lysis, RNA 

molecule capture on beads, before the immobilized molecules are pooled for 3`-end library production. 

The Seq-Well system is portable, and so allows sample processing at the sampling sites, as large 

equipment is not required. The fact that no major investments are required, makes the Seq-Well system 

a flexible and cost-effective alternative. However, while cells can be monitored by microscopy, the 

random distribution of barcoded beads does not allow the user to integrate imaging data. Also, the 

method requires experienced users to obtain reproducible high-quality results. 

While scalable to higher throughputs, IFC and nanowell approaches are intrinsically constrained by the 

number of reaction sites. Droplet-based systems overcome this by encapsulating cells in nanoliter 

microreactor droplets. Here, cell numbers scale linearly with the emulsion volume, and large numbers 

of droplets are produced at high speed, facilitating large-scale scRNAseq experiments. Furthermore, 

droplet size can be adjusted to reduce potential biases during cell capture. Since barcodes are introduced 

into droplets randomly, this approach does not allow the assignment of cell barcodes to images and so 

precludes the visual detection of doublets and the integrative analysis of cell properties (e.g. 

fluorescence signal) with transcriptome profiles. Two droplet-based methods, inDrops61 and Drop-

seq62, were developed in parallel, with related commercial systems allowing straightforward 

implementation. inDrops61,63 encapsulates cells using hydrogel beads bearing polyT-primers with 

defined barcodes, after which the photo-releasable primers are detached from the beads to improve 

molecule capture efficiency and initiate in-drop RT reactions. The barcoded cDNAs are then pooled for 

linear amplification (IVT) and 3’-end sequencing library preparation. The technique has extremely high 

cell-capture efficiency (>75%) due to the synchronized delivery of deformable beads, allowing near-

perfect loading of droplets. Therefore, the system is most suitable for experiments with limited total 

numbers of cells. The inDrops system is licensed to 1CellBio and a variant protocol is commercialized 

as Chromium Single Cell 3' Solution (10x Genomics)64. The Chromium system is straightforward to 

implement and standardize, although library preparation costs are significantly higher than in the 

original system. Unlike inDrops protocols, Drop-seq62 uses beads with random barcodes. Following 

cell lysis and RNA capture, the drops are broken and pooled, covalent binding is performed through 

cDNA synthesis, the cDNA is amplified by PCR, and 3´-end sequencing libraries are produced by 

tagmentation. Drop-seq has lower cell capture efficiency than inDrops methods because beads and cells 

are delivered by double limiting dilution (double Poisson distribution), which results in 2-4% barcoded 

cells. The Drop-seq system is commercially available through Dolomite Bio and a similar system is 

provided by Illumina (ddSEQ).  
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scRNAseq methodologies: Split-pool barcoding-based approaches. Conceptually different from the 

above techniques are methods based on combinatorial barcoding. Here, cells are not processed as 

individual units but isolated in pools. These pools are split and mixed, with each round integrating pool-

specific barcodes. The combination of such pool indices results in unique barcode combinations for 

each cell through their random assignment during consecutive pooling processes. Both split-pooling 

methods, SPLiT-seq65 and sci-RNA-seq12, were shown to reliably produce single-cell transcriptomes 

and to be scalable to hundred-thousands of cells per experiment. SPLiT-seq includes four rounds of 

indexing resulting in >20 million possible barcode combinations. Following initial indexing during 

reverse transcription, two rounds of index ligation and a final PCR indexing step create cell-specific 

barcoded 3`-transcript libraries. During the second ligation round UMIs are incorporated for the 

subsequent correction of amplification biases. Additional rounds of barcoding or switching from 96- to 

384-well microtiter formats could further scale-up cell numbers. The original sci-RNA-seq protocol 

includes a two-step indexing workflow with the first index and UMI introduced during reverse 

transcription and a second index during PCR amplification (following tagmentation). The use of 

indexed tagmentation sequences could further scale-up possible barcode combinations and increase cell 

numbers per experiment. The formaldehyde- or methanol-based fixation of cells, used in SPLiT-seq 

and sci-RNA-seq respectively,  allows sample storage, providing additional flexibility to the 

experimental designs. Both methods allow the processing of nuclei and consequently the analysis of 

more challenging cell types, such as neurons. The split-pool strategy employed in sci-RNA-seq was 

further shown to be applicable in different single-cell epigenomic analysis approaches, including open 

chromatin (sci-ATAC-seq66), chromatin conformation (sci-Hi-C67) or DNA methylation (sci-MET68). 

 

Library preparation and sequencing. To prepare libraries for short-read sequencing applications the 

amplified cDNA (PCR) or RNA (IVT) is fragmented before sequencing adapters are added. 

Fragmentation can be achieved enzymatically (tagmentase, DNase), chemically (Zinc, KOAc and 

MgOAc) or through mechanic forces (ultrasound) (Table 3). 3’- or 5’-based libraries are subsequently 

amplified using primers specific for the transcript end or start, respectively. During this step of the 

protocol, a pool specific index can be introduced that allows the multiplexed sequencing of multiple 

experiments. Full-length methods introduce the cell specific barcodes only after fragmentation, thus 

impeding a pooled processing of cells at earlier stages of the protocol. Apart from STRT-seq, scRNAseq 

libraries require paired-end sequencing, where one read provides information about the transcripts while 

the other reads the single-cell barcodes and UMI sequences. STRT-seq incorporates the cell barcode 

and UMI at the 5’-transcript end, allowing the capturing of cell, molecule and transcript information in 

a single read, since no polyT stretch separates the respective sequences.   High-throughput microfluidic-

based experiments generally involve sequencing to lower depth (<100,000 reads/cell), while higher read 

numbers (~500,000 reads/cell) are optimal for many microtiter-plate formats38. Nevertheless, single-

cell libraries are usually not sequenced to saturation and the phenotyping resolution (detection of more 
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genes, and those expressed at lower levels) can benefit from further increasing the sequencing depth. 

Annotating splice variants from full-length transcriptomes requires deeper sequencing to better resolve 

the expression levels of transcript variants.  

 

Further technical considerations  

 

Cell doublets. An intrinsic problem for most microfluidics-based methods is that two cells may be 

captured per reaction site (nanowell or droplet), both receiving identical barcodes. Doublet rates can be 

experimentally determined in species mixture experiments, but otherwise can only be estimated. They 

occur when cells are positioned randomly in reaction sites by limiting dilution and can be controlled by 

the cell suspension concentration. The relationship between cell loading and doublet rate was 

systematically quantified for the Chromium system64. Up to the maximal recommended loading of 

10,000 cells per droplet-lane, the doublet rates showed a linear relationship (in line with the Poisson 

loading of cells into droplets), with inferred rates ranging from 2% (2500 cells) to 8% (10,000 cells). 

Other microfluidics approaches report similar numbers; Drop-seq 0.36% to 11.3% (12.5 cells/μl to 100 

cells/μl)62, InDrops 4%61, Seq-Well. 1.6%60. The doublet rate decreases at higher dilutions, with a 

resulting increase in reagent costs per cell, as fewer total cells are captured per experiment. This 

handicap can be partially overcome by jointly capturing samples from different individuals, where 

genotype differences allow the user to distinguish between donors and thereby reliably identify 

doublets69. Specifically, single nucleotide polymorphisms identified from the RNA sequencing reads 

are utilized to determine the donor origin of the cells and to discriminate samples that were processed 

in a single batch. However, such workflow is only practicable when the experimental design includes 

different human individuals or model organisms with distinct genetic backgrounds. Currently, there is 

no computational method for credibly identifying doublets, so doublet rates must be minimized by 

experimental design. Doublets can have dramatic consequences for data interpretation, as artefactual 

mixed transcriptomes can easily be mistaken for intermediate cell states in dynamic systems. 

 

Cell capture efficiency. Cell capture efficiency is an important consideration, especially when working 

with primary or rare samples. The number of cells that receive barcodes is directly related to the 

proportion of sample that enters downstream analysis. The capture efficiency of FACS-based methods 

is constrained by the time the device requires to move between wells. To maximize capture rates of 

FACS based methods, cell suspensions can be diluted and sorted at low speed (e.g. 100 cells/second). 

Microfluidics technologies differ markedly in capture efficiency, mainly due to cell and bead loading 

mechanics. The HT-IFC system captures a maximum of 800 out of 6,000 injected cells. In nanowell 

systems that use limiting dilution for cell loading (no sorting), cells enter reaction sites by gravity with 

generally high efficiency. For example, 10,000 cells are added to the surface of a Seq-Well array, and 

around 3,000 cells are captured. For droplet-based systems, the rate at which cells enter the analysis is 
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directly related to the loading efficiency of the beads. Where most droplets contain barcoded beads, cell 

capture is optimal (inDrops). In contrast, if beads and cells are encapsulated by limiting dilution, most 

cells do not enter a bead-containing droplet, resulting in lower capture efficiency (Drop-seq; see further 

discussion above). 

 

Costs. The total cost of scRNAseq experiments is determined by three main components: Equipment, 

reagents and sequencing. For most methods, the cost of scRNAseq library preparation scales linearly 

with cell numbers, except with custom droplet methods. The actual costs per cell vary widely across 

methods and institutes, with microfluidic systems being generally cheaper (<0.30 USD/cell) than early-

indexing plate-based 3’-digital counting methods (~1-2 USD/cell). Late-indexing full-length 

transcriptome profiling is more costly even in small volumes (~8-12 USD/cell). However, costs can be 

reduced using non-commercial tagmentase70 or by minimizing reaction volumes and using automated 

workflows for plate-based formats71. Importantly, microtiter plates can be shipped and stored, thereby 

disconnecting sampling sites from scRNAseq processes such that expensive devices can be centralized 

in core units, optimizing resource management. Custom microfluidics methods further decrease costs 

per cell. Commercialized microfluidic methods are more expensive (0.5-2.0 USD/cell) than custom 

systems (<0.30 USD/cell), although their automated design reduces hands-on time and personnel costs.  

While the cost of library preparation is decreasing rapidly, sequencing costs become a major factor. 

Methods with higher molecule capture efficiency produce more complex sequencing libraries, making 

them informative at lower sequencing depth. Consequently, more efficient scRNAseq methods can 

compensate for higher library preparation costs, by decreasing overall sequencing costs.   

 

3. Data processing 

 

Data processing includes all the steps necessary to convert raw sequencing reads into gene expression 

matrices, following similar workflows to those used for bulk-RNAseq. After generating fastq reads and 

checking their quality (with tools such as FastQC; 

www.bioinformatics.babraham.ac.uk/projects/fastqc/), the next important step is to de-multiplex reads 

using cell barcodes. While only Smart-seq libraries can be directly de-multiplexed using the index reads, 

the 3`-end based methods require a dedicated processing step to identify the single-cell indexes in the 

sequencing reads. De-multiplexed reads are then mapped to reference genomes using alignment tools 

such as TopHat72 or STAR73, the latter showing proven accuracy and splice variant awareness. Recent 

alignment tools were optimized for fast handling of large-scale datasets without losing accuracy. For 

example, Kallisto74 reduces the alignment time by two orders of magnitude through pseudo-alignment, 

compared to aligning individual bases. In a final processing step, mapped reads are quantified to create 

a transcript expression matrix. RSEM75, Cufflinks76 and HTSeq77 can be used for full-length transcript 
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datasets, while special tools are available for counting UMI-tagged data types, such as UMI-tools78, 

which accounts for sequencing errors in UMI sequences. 

In addition to the specific tools available for individual processing steps, single cell data processing 

pipelines have been developed that combine mapping and quantification steps, and include quality 

control measures for reads and cells. A pipeline developed by Ilicic et al. supports various mapping and 

quantification tools, and includes modules for filtering low quality cells79. Scater provides an organized 

workflow for converting raw sequencing reads into a ‘single-cell expression set’ (SCESet) class, a data 

structure that facilitates data handling and analysis80. Other available pipelines give either protocol-

specific solutions (e.g. zUMI81, scPIPE82 and SEQC83 for UMI data) or are technology-specific (e.g. 

Cell Ranger for Chromium systems). The scRNA-tools database (www.scRNA-tools.org) provides a 

comprehensive list of available computational tools for data processing and analysis84. Methods are 

categorized by analysis tasks and researchers can select tools according to the required analysis type.  

 

Normalization. Single-cell RNAseq datasets show high levels of noise and variability related to non- 

biological technical effects, including dropout events due to stochastic RNA loss during sample 

preparation, biased amplification, or incomplete library sequencing. Technical variation also results 

from batch effects on processing units (e.g. plates or arrays), time points, facilities, and other sources. 

Moreover, natural variability complicates analysis because of, for example, variable cell size and RNA 

content, different cell cycle stages, and gender differences. Therefore, dataset normalization becomes 

an important step for meaningful data analysis. This can be guided by adding artificial spike-in RNA, 

which is used to model technical noise, as implemented in BASiCS85. However, it is not clear whether 

artificial RNA sufficiently reflects the behavior of endogenous RNA, and whether cellular RNA 

influences spike-in detection. Recent high-throughput methods distribute cells by limiting dilution, 

making the use of spike-in RNA impracticable due to the high number of otherwise empty reaction 

volumes. Alternative normalization methods originally developed for bulk-RNA sequencing, such as 

log-expression86, trimmed mean M-values87 or upper-quartiles88 can also be used in scRNA-Seq, 

although more specialized normalization methods are being developed that can better handle many 

aspects of this specific type of data. Recent single-cell approaches perform between-sample 

normalization (SCnorm89) or normalize on cell-based factors following pool-based size factor 

deconvolution (SCRAN90). However, to correct for large-scale sources of variation, a recommended 

and standard procedure is to model the data with the correct distribution. Here, confounding factors can 

be incorporated as covariates into the model, and regressed out. While batch effects are usually detected 

by visual inspection of reduced-space representations (e.g. principal components), kBET91 is a batch 

effect test based on k-nearest neighbors. It quantitatively measures batch effects within and between 

datasets without directly correcting the data. This approach concludes that a combination of log 

normalization or SCRAN pooling with ComBat92 or limma93 regression provides the best batch-

corrected dataset while preserving the biological structure. The batch effect problem becomes 
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magnified when integrating datasets from different time points, individuals or scRNAseq methods. In 

this regard, Haghverdi et al. propose an approach based on mutual nearest neighbors (MNNs), where a 

shared subset of populations is sufficient to correct for batch effects across experiments, although 

predefined or equal population compositions are required94. Alternatively, by inferring cell clusters 

from gene expression similarities and co-expression patterns, Biscuit (Bayesian Inference for Single-

cell ClUstering and ImpuTing)83 identifies and corrects for technical variation per cell. Also, the 

commonly used scRNAseq package Seurat provides a solution for integrating datasets based on 

common sources of variation95, with a new feature enabling the identification of shared populations, 

and facilitating comparative analysis across datasets.   

 

Imputation and gene selection. In addition to having a high noise level, scRNAseq datasets are also 

very sparse, further challenging cellular phenotyping and data interpretation. Non-expressed genes and 

technical shortcomings, such as dropout events (not sequenced transcripts), result in many zeros in the 

expression matrix and, thus, an incomplete description of a single cell’s transcriptome. To reduce 

sparsity missing transcript values can be computationally inferred using imputation, for example using 

MAGIC96, which uses diffusion maps to find data structures and restore missing information. 

Alternatively, scImpute97 learns a gene’s dropout probability by fitting a mixture model, and then 

imputes probable dropout events by borrowing information from similar cells (selected based on genes 

that are not severely affected).  

A common strategy for determining heterogeneity in a sample is to analyse highly variable genes across 

datasets. A thorough feature selection step to remove uninformative or noisy genes increases the signal-

to-noise ratio but also reduces the computational complexity. Commonly used strategies for extracting 

variable genes in scRNAseq tools exploit the relationship between the mean transcript abundance and 

a measure of dispersion such as the coefficient of variation98, the dispersion parameter of the negative 

binomial distribution99, or the proportion of total variability85.  

 

4. Data analysis 

 

Some of the major applications of scRNAseq experiments include assessing sample heterogeneity and 

identifying novel cell types and states. This is achieved by determining co-expression patterns and 

clustering cells by similarity. Cells clusters can subsequently be interpreted by annotating gene sets that 

drive clusters (marker genes). A common way to visually inspect cellular subpopulation structures is to 

perform dimensionality reduction (DR) and to project cells into a two or three dimensional space. 

Principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE) are 

commonly used approaches for data representation100,101. Diffusion components102 and uniform 

manifold approximation and projection (UMAP)103 are viable alternatives that overcome some 
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limitations of PCA and t-SNE by preserving the global structures and pseudo-temporal ordering of cells 

as well as being faster104. Even though DR techniques can guide the initial data inspection; more robust 

clustering algorithms are needed to define subpopulations among cells.  

While prior assumptions and canonical population markers allow supervised clustering (e.g. with 

Monocle2105), hypothesis-free unsupervised clustering is preferred in most cases. A commonly used 

unsupervised algorithm is hierarchical clustering, which provides consistent results without a pre-

defined number of clusters. Hierarchical clustering can be performed in an agglomerative (bottom-top) 

or divisive (top-bottom) manner, with consecutive merging or splitting of clusters, respectively. Tools 

such as PAGODA106, SINCERA107 or bigSCale7 implement hierarchical clustering. Another suitable 

unsupervised clustering algorithm is K-means, which estimates K centroids (centre of the clusters) and 

assigns cells to the nearest centroid, re-computes centroids based on the mean of cells in the centroid 

clusters, and then reiterates both steps. SC3, for example, integrates both K-means and hierarchical 

clustering to provide accurate and robust clustering of cells108. Other unsupervised approaches, like 

SNN-Cliq109 and Seurat95, use graph-based clustering, which builds graphs with nodes representing cells 

and edges indicating similar expression, and then partitions the graphs into interconnected ‘quasi-

cliques’ or ‘communities´. Clustering can be performed directly on expression values or further 

processed data types, such as principal components or similarity matrices, the latter showing improved 

yield in cluster separation. Cluster stability is measured using resampling methods (e.g. bootstrapping) 

or by measuring cell similarities within assigned clusters (e.g. silhouette index). To support cluster 

reproducibility, different algorithms can be compared using adjusted rand indexes108. Clusters can be 

represented by color coding cells in a low dimensional space produced by the DR algorithms discussed 

above (e.g. PCA or tSNE). 

Marker genes that discriminate subpopulations can be identified by performing differential gene 

expression analysis between clusters using, for example, model-based approaches such as 

SCDE110, MAST111 or scDD112, which account for data bimodality using a mixture model. Individual 

genes can be evaluated to serve as a binary classifier for cell identity using, for example, ROC or LRT 

tests based on the zero-inflated data95,108. A recent publication comprehensively compared differential 

expression analysis methods for scRNAseq and can guide the selection of appropriate differential 

expression tools113.  

Another important application of scRNA-seq is trajectory inference which estimates dynamic processes 

by ordering cells along a predicted differentiation path (pseudotime) using algorithms such as reversed 

graph embedding (Monocle2114) or minimum spanning tree (TSCAN115). Also, trajectory inference 

methods have been comprehensively benchmarked, testing their accuracy and overall performance116. 

To further facilitate the interpretation of the results, tools such as SCENIC117 provide the opportunity 

to investigate active regulatory networks in subpopulations of cells. The analysis guides the 

identification of active transcription factors, eventually providing insights into the cellular mechanisms 

that drive heterogeneity. For cluster annotation, scmap facilitates comparison of data across 
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experiments by projecting cells from one dataset onto cell types or individual cells from another 

scRNA-seq experiment118. With cell convolution tools, such as bigSCale7, scRNAseq analysis can be 

expanded to millions of cells. Eventually, single cells can be mapped back to the spatial tissue context 

using experimental approaches119,120 or pseudo-spatial ordering of cells9,95,121. 

To make scRNAseq data publically available, data storage and sharing repositories can be utilized. The 

Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds) is commonly used to 

provide access to raw data and further processed formats, such as gene expression quantification 

matrices. Large-scale projects, such as the Human Cell Atlas, set up specific data coordination platforms 

to further ease data query and accessibility. For data analysis, many researcher provide free open access 

to their computational pipelines through public databases, such as GitHub (https://github.com/) or as 

ready-to-use packages available through, for example, Bioconductor (https://www.bioconductor.org/).            

 

Summary 

Although it is challenging to define broadly applicable designs for single-cell RNA sequencing 

experiments, we here provide general guidelines to support the production of high quality datasets and 

their meaningful interpretation. A thoroughly planned and conducted sample preparation is crucial to 

preserve cellular and RNA integrity and the unbiased representation of the sample composition. The 

selection of downstream scRNAseq techniques is driven by the complexity of the underlying sample 

and the desired resolution per cell. While large cell numbers, processed in microfluidic systems, might 

represent better the composition of heterogeneous samples, an in-depth analysis of smaller sample sizes 

could be more appropriate to resolve subtle differences in homogenous mixtures. Budget restraints and 

reduced library complexity generally lead to the shallow sequencing of high cell numbers, whereas cell 

type focused experiments with sensitive methods can benefit from deeper sequencing. Eventually, the 

analysis and interpretation of single-cell transcriptomes is enabled by a wealth of computational 

methods, specifically tailored to answer biological questions hypothesis-free or guided by previous 

knowledge. Despite technical challenges scRNAseq experiments are a powerful tool to fully resolve 

sample heterogeneity and dynamic cellular systems or to identify perturbation effects at high resolution.             

 

 

Future directions of the single-cell field. 

Single-cell transcriptomics technologies are advancing rapidly. Cell numbers that can be analysed are 

increasing to hundreds of thousands of cells per experiment, markedly improving statistical power and 

resolution for detecting rare and transient cell types. However, high-throughput techniques come with 

the expense of decreased molecule capture rates, and future methods need to better balance cell numbers 

with cell resolution. This will be accompanied by decreasing sequencing costs, eventually enabling 

comprehensive, high-resolution snapshots of complex tissues to be achieved. Today, tissue and 

organism cell atlas projects perform sky-dive experimental strategies, initially creating a low-resolution 
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atlas with thousands of cells to estimate sample heterogeneity, and then zoom in on target cell types 

using efficient scRNAseq methods to achieve higher per-cell resolution. In future, high-resolution maps 

will allow users to zoom in on the existing data, circumventing costly and time-consuming sample 

reprocessing. Microfluidics methods have already driven a paradigm shift in experimental designs, and 

conceptually different alternative methods such as combinatorial barcoding12,65 might push the barrier 

back even farther. By not needing to physically separate individual cells, this approach enables cost-

effective parallel processing of cells, which will allow cell numbers to be scaled up even further. 

An additional future avenue of intense investigation will be based on advances in monitoring 

transcriptional profiles in spatial contexts. scRNAseq relies on disconnecting cells from their natural 

environment, but spatial methods, including in situ sequencing122 and single-molecule (smFISH119) or 

multiplexed error-robust (MERFISH120) fluorescence in situ hybridization, profile gene expression 

within the tissue context. Although current methods have low transcriptome resolution or require prior 

marker selection, they were shown to be extremely powerful in resolving tissue complexity9,123. Future 

spatial methods should allow the field to advance from the current combinatory experimental designs124, 

or pseudo-space analysis95,125, to a full tissue expression profile in three dimensions. Eventually, 

phenotype heterogeneity and dynamics in living multicellular systems will be resolved by the fusion of 

unbiased transcriptome profiling in spatial and temporal dimensions and the combined profiling of 

additional layers of molecular information, such as genetic variation126 or gene regulatory marks (e.g. 

DNA methylation127 or open chromatin128), from the very same cell.   
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Box 1. Optimizing reverse transcription for single-cell transcriptome sequencing. 

 
Enzymes. Reverse transcription (RT) is one of the most crucial steps in the library preparation 
workflow. Despite its importance, however, relatively little has been done to improve the efficiency of 
the underlying enzymes. Reverse transcriptases are based on Moloney murine leukemia virus (MMLV)-
derived enzymes, which originally had low processivity and high error rates due to their retroviral 
origins. Different point mutations have been introduced to improve processivity, resulting in enzymes 
that can reverse transcribe even very long RNAs (up to 12-14 kb). SuperScript II is a commonly used 
enzyme that became popular in the single-cell field due to its template-switching properties, exploited 
by methods such as Smart-seq2129 and STRT-seq49,59. Most importantly, SuperScript II carries point 
mutations that inactivate its RNAse H domain, impairing competitive RNA degradation during cDNA 
synthesis. Alternative RT enzymes have been reported, with similar or superior performances, such as 
Maxima H (used in SCRB-seq50,51) or SMARTscribe in the SMARter v4 kit (Takara Bio). Protocols 
that do not require template switching and generate second strands by other means, such as polyA-
tailing or random priming130,131, can use SuperScript III, which carries different point mutations in the 
RNA polymerase, and displays increased thermal stability. 
Additives. In an attempt to overcome the limitations of MMLV-based RT enzymes, several additives 
have been tested over the years. The challenge of generating full-length cDNA libraries has been a 
constant issue in molecular biology, pre-dating the advent of single-cell RNA-sequencing. Carninci and 
collaborators showed that the sugar trehalose had a thermo-stabilizing and thermo-protective effect on 
RT enzymes132. Conducting the RT reaction at a higher temperature enhances the unfolding of 
secondary RNA structures that could hinder enzyme processivity. This finding was later confirmed, and 
extended to the addition of betaine, alone or in combination with trehalose, to improve thermo-
protection and related cDNA yield133,134. Smart-seq2129 and STRT-seq-2i59 use betaine in combination 
with magnesium chloride, where the latter, at concentrations higher than 1 mM, has been suggested to 
play a synergic destabilizing effect in the presence of betaine135. However, the extra magnesium chloride 
could also reduce the chelating function of 1,4-dithiothreitol (DTT), which is commonly used in RT 
reactions to guarantee higher cDNA yields and longer transcripts. In the very first published single-cell 
sequencing method136, Tang and collaborators used the T4 gene 32 protein (T4g32p), a single-stranded 
binding protein that increases the yield and processivity during RT.. 
Template-switching oligonucleotides. The template-switching reaction relies on 2–5 untemplated 
cytosine nucleotides, which are added to newly synthesized cDNA (but not to fragmented or un-capped 
RNAs) when the enzyme reaches the 5′-end of the RNA. The presence of a template-switching 
oligonucleotide (TSO), carrying three complementary guanosines at its 3´-end, enables the enzyme to 
switch template and to add the complementary sequence of the TSO to the cDNA (including PCR 
adapter for subsequent amplification)). It has been suggested that the reduced RNA capture efficiency 
of single-cell RNAseq protocols might be due to the unstable binding of TSO to the untemplated 
nucleotides. The Smart-seq2 protocol addressed this issue by modifying the last nucleotide of the TSO 
with a locked nucleic acid. Furthermore, the importance of each nucleotide in the TSO has been 
extensively evaluated to define its optimal composition137.  
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Table 1: Glossary  

  

TERM DEFINITION 

Algorithm A process or set of rules to be followed in computational calculations or other problem-solving operations. 

Barcode  A stretch of sequence used to uniquely label DNA/RNA molecules, cells or sequencing libraries (to allow multiplexing).  

Batch effect A technical sources of variation added during sample handling.  

Benchmark Systematically comparison of different techniques (experimental or computational) for their performance in a given scenario. 

Binary classifier A classification function that predicts the assignment of an elements to a set of groups.  

Bulk RNA sequencing The sequencing of RNA isolated from pools of cells.  

Cell barcode A cell specific unique sequence tag that is added to RNA transcripts during library preparation.  

Cell capture Positioning of single cells into reaction volumes (e.g. droplets or wells) for downstream processing.  

Cluster annotation Assigning a functions or identity to a group of cells based on the expression of marker genes.   

Clustering 
Clustering is the task of grouping cells in a way that cells in the same group (cluster) are more similar to each other than  
to cells of another group. 

Combinatorial barcoding The use of combinations of cell barcodes with repeated assignment of barcodes to cells during multiple indexing rounds.  

Deconvolution A process of resolving a complex mixtures (e.g. tissue) into its constituent elements (e.g. underlying cell type composition).  

De-multiplexing The process of separating the elements of interest in a mixed or multiplexed sample. 

Digital counting The counting of RNA molecules using unique molecular identifier (UMI) sequences.   

Doublets  Two cells that are processed together in a reaction volume (e.g. well or droplet) and receive the same single-cell barcode.  

Dropout events Non-detected transcripts in the final dataset although the gene is expressed in the cell, leading to a false zero values in the expression matrix.  

Fastq reads A sequence of the four nucleotides ACGT obtained after sequencing in a specific format that represents the chain of nucleotides. 

Gene expression matrix A data matrix containing information about the level of gene expression per cell.  

Imputation The process of replacing missing data with inferred values. 

Index-sorting The isolation of single cells by FACS and the retrospective assignment of fluorescence signals during scRNAseq data analysis. 

Library DNA molecules that contain specifc sequences (primers) that enable the initiation high-throughput sequencing reactions.  

Locked nuclic acids (LNA) Modified RNA nucleotides with a bridge connecting the 2' oxygen and 4' carbon to increase the hybridization properties of oligonucleotides.  

Microtiter plates Also microplates or microwell plates, a flat plate with multiple wells used as individual reaction sites.  

Pipeline An analysis procedure where inputs go through a number of processing steps chained together to produce an output. 

Poisson distribution A discrete probability distribution that expresses the probability for the number of events in specified intervals such as distance, area or volume. 

Pooling Combining molecules or cells for their joint processing.  

Promoter A DNA sequence that initiates transcription of the downstream sequence. 
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Pseudotime An inferred timeline of the progress cells make through a dynamic process such as cell differentiation.  

Spike-in RNA A pool of RNA transcripts of known sequence composition and quantity used to calibrate experiments.  

Tagmentation Reaction that involves the transposase-based cleaving of DNA and the tagging of the double-stranded DNA with universal overhangs.  

Template swithching oligo (TSO) DNA oligo sequence that carries three riboguanosines (rGrGrG) at its 3' end and binds to the cytosine extension of the cDNA molecules after reverse transcription.  

Trajectory inference Computational reconstruction of an underlying cellular developmental/differentiation path.   

Unique molecular identifiers 
(UMI) 

Random sequences attached to transcripts used as molecular tags to detect and quantify unique RNA molecules.  

Zero-inflated data Data with an excess of zero counts. To model zero-inflated data Poisson distribution is used. 
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Table 2: Tissue-specific enzymatic treatments to prepare single-cell suspensions (from human and mouse samples).  
 

Tissue Digestion enzyme 
Time  
(min) 

Temperature  
(C°) Final concentration  Ref. 

Liver Collagenase IV 10 37 0.16mg/ml  138 

  Liberase Blendzyme 3 5-8 37 40ug/ml 9 

  Collagenase, Collagenase D and Pronase, Trypsin 20, 20,10 37 2.5mg/ml, 10mg/ml and 10mg/ml, 0.05% 139 

  Collagenase IV 30 37 0.05% 140

Lung Dispase and Elastase 45 37 0.33U/ml and 3U/ml 141 

  Collagenase and Dispase 45 37 0,2% solution 142 

  Dispase, Elastase and Trypsin 60, 30, 15 4C and 37C 2mg/ml, 5U/ml plus 0.125%,  143 

Skin Trypsin 120 32 1X 144 

  Liberase TL 15 37 2mg/ml 145

Spleen Collagenase D 45 37 2mg/ml  146 

GI tract Dispase 20 37 0.4mg/ml 147 

  Trypsin 30 37 2mg/ml  148 

  TrypLE Express  1 37 1X 10 

  Collagenase 40 37 1mg/ml 149

  Collagenase I 60 37  2.5 mg/ml  150 

  Collagenase IV 30 37 2mg/ml 151 

Pancreas Collagenase type CLS IV 30 37 1mg/ml 152 

  Collagenase P 30 37 0.8 mM 153 

  TrypLE Express 1 37 1X 154

  Accutase and TrypLE Express  10 and 5-20 37 1X 155  

  Accutase 8-10 37 1X 156 

  Trypsin 30 37 1X 157 

Kidney Liberase TL 15 37 2mg/ml 145 

Retina Papain 45 37 4U/ml 62, 158

  Accutase  5 37 1X 159 
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Table 3: Key features of microtiter-plate- and microfluidics-based single-cell RNA sequencing methods.  

 
 

Method 
Capture 
format Cell loading 

Single-cell 
indexing 

Molecule 
identifier 

Additives 
in RT 

cDNA 
amplification Fragmentation 

Transcript 
coverage Sequencing Ref.

Smart-seq Plate FACS Tagmentation N/A N/A PCR Tagmentation Full-length Paired-end 48 
Smart-seq2 Plate FACS Tagmentation N/A Betaine PCR Tagmentation Full-length Paired-end 129 
STRT-seq Plate FACS TSO UMI N/A PCR DNaseI 5`-end Single-end  49 
STRT-seq-2i Nanowell FACS/Poisson TSO UMI Betaine PCR Tagmentation 5`-end Single-end 59

SCRB-seq Plate FACS OligoT primer UMI N/A PCR Tagmentation 3`-end Paired-end 50

mcSCRB-seq Plate FACS OligoT primer UMI PEG PCR Tagmentation 3´-end Paired-end 51 
Quartz-seq Plate FACS OligoT primer N/A N/A PCR Ultrasound  Full-length Paired-end 52 
Quartz-seq2 Plate FACS OligoT primer UMI N/A PCR Ultrasound  3´-end Paired-end 53 
CEL-seq Plate FACS OligoT primer N/A N/A IVT KOAc, MgOAc 3´-end Paired-end 32

CEL-seq2 Plate FACS OligoT primer UMI N/A IVT Random priming 3´-end Paired-end 55

MARS-seq Plate FACS OligoT primer UMI N/A IVT Zinc 3´-end Paired-end 54 
Seq-Well Nanowell Poisson OligoT beads UMI Ficoll PCR Tagmentation 3´-end Paired-end 60 
inDrops Droplets Poisson OligoT beads UMI IGEPAL IVT KOAc, MgOAc 3´-end Paired-end 61 
Drop-seq Droplets Double Poisson OligoT beads UMI Ficoll PCR Tagmentation 3´-end Paired-end 62

 
 
 
 
 
 
 
 
 
 
 
 
 



30 
 

Figure 1 
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Figure 1. The single-cell RNA sequencing process. The successful design of single-cell transcriptomics experiments includes four major phases: 1) During 
sample preparation cells are physically separated into a single-cell solution from which specific cell types can be enriched or excluded (optional). Following 
their capture in wells or droplets single cells are lysed and the RNA is released for subsequent processing. 2) To convert RNA into sequencing ready libraries, 
polyA-tailed RNA molecules are captured on polyT oligonucleotides that can contain unique molecule identifier (UMI) sequences and single-cell specific 
barcodes (5` and 3’-biased methods). To enable the subsequent amplification of the RNA by PCR or IVT, adapters or T7 polymerase promoter sequences are 
included in the oligonucleotides, respectively. Following reverse transcription into cDNA and second strand synthesis (optional), the transcriptome is amplified 
(PCR or IVT). In order to be converted into sequencing libraries, the amplicons are fragmented by enzymatic (e.g. tagmentation) or mechanic (e.g. ultrasound) 
forces. Sequencing adapters are attached during a final amplification step. Full-length sequencing can be carried out, or 5’ or 3’ transcript ends can be selected 
for sequencing using specific amplification primers (optional). For most applications, paired-end sequencing is required. 3) The sequencing reads are de-
multiplexed based on cell-specific barcodes and mapped to the respective reference genome. UMI sequences are used for the digital counting of RNA molecules 
and for correction of amplification biases. The resulting gene expression quantification matrix can subsequently be normalized, missing values imputed, before 
extracting informative genes for the analysis. 4) Dimensional reduction representations guide the estimation of sample heterogeneity and the data interpretation. 
Data analysis can then be tailored to the underlying dataset, enabling cells to be clustered into potential cell types and states, or ordered along a predicted 
trajectory in pseudotime. Eventually, the spatial cellular organization can be reconstructed through the interrogation of marker genes (experimentally) or through 
marker-guided computational reconstruction (inference).     

 


