
Articles
https://doi.org/10.1038/s41587-020-0503-6

1UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA. 2Howard Hughes Medical Institute, University of California, Santa Cruz, CA, USA. 3Genome 
Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA. 4Baylor College 
of Medicine, Human Genome Sequencing Center, Houston, TX, USA. 5Max Planck Institute for Informatics, Saarbrücken, Germany. 6Oxford Nanopore 
Technologies, Oxford, UK. 7National Institute of Standards and Technology, Gaithersburg, MD, USA. 8Circulomics Inc., Baltimore, MD, USA. 9Department of 
Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. 10Chan Zuckerberg Initiative, Redwood City, CA, USA. 11These authors 
contributed equally: Kishwar Shafin, Trevor Pesout, Ryan Lorig-Roach, Marina Haukness, Hugh E. Olsen. ✉e-mail: paolo@chanzuckerberg.com;  
miten@soe.ucsc.edu; bpaten@ucsc.edu

Reference-based methods such as GATK1 can infer human vari-
ations from short-read sequences, but the results only cover 
~90% of the reference human genome assembly2,3. These 

methods are accurate with respect to single-nucleotide variants and 
short insertions and deletions (indels) in this mappable portion of 
the reference genome4. However, it is difficult to use short reads for 
de novo genome assembly5, to discover structural variations (SVs)6,7 
(including large indels and base-level resolved copy number varia-
tions), or to resolve phasing relationships without exploiting trans-
mission information or haplotype panels8.

Third generation sequencing technologies, including 
linked-reads9–11 and long-read technologies12,13, overcome the fun-
damental limitations of short-read sequencing for genome infer-
ence. In addition to increasingly being used in reference guided 
methods2,14–16, long-read sequences can generate highly contiguous 
de novo genome assemblies17.

Nanopore sequencing, as commercialized by Oxford Nanopore 
Technologies (ONT), is particularly useful for de  novo genome 
assembly because it can produce high yields of very long 100+ kilo-
base (kb) reads18. Very long reads hold the promise of facilitating 
contiguous, unbroken assembly of the most challenging regions of 

the human genome, including centromeric satellites, acrocentric 
short arms, ribosomal DNA arrays and recent segmental duplica-
tions19–21. The de  novo assembly of a nanopore sequencing based 
human genome has been reported18. This earlier effort needed  
53 ONT MinION flow cells and the assembly required more than 
150,000 CPU hours and weeks of wall-clock time, quantities that are 
unfeasible for high throughput human genome sequencing efforts.

To enable easy, cheap and fast de  novo assembly of human 
genomes we developed a toolkit for nanopore data assembly and 
polishing that is orders of magnitude faster than state-of-the-art 
methods. We use a combination of nanopore and proximity-ligation 
(HiC) sequencing9 and our toolkit, and we report improvements 
in human genome sequencing coupled with reduced time, labor  
and cost.

Results
Eleven human genomes sequenced in 9 d. We selected for 
sequencing 11, low-passage (six passages), human cell lines of the 
offspring of parent-child trios from the 1,000 Genomes Project22 
and genome-in-a-bottle (GIAB)23 sample collections. Samples were 
selected to maximize captured allelic diversity (see Methods).
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We carried out PromethION nanopore sequencing and HiC 
Illumina sequencing for the 11 genomes. We used three flow cells 
per genome, with each flow cell receiving a nuclease flush every 
20–24 h. This flush removed long DNA fragments that could cause 
the pores to become blocked over time. Each flow cell received a 
fresh library of the same sample after the nuclease flush. A total of 
two nuclease flushes were performed per flow cell, and each flow 
cell received a total of three sequencing libraries. We used Guppy 
v.2.3.5 with the high accuracy flipflop model for basecalling (see 
Methods).

Nanopore sequencing of all 11 genomes took 9 d and produced 
2.3 terabases (Tb) of sequence. We ran up to 15 flow cells in par-
allel during these sequencing runs. Results are shown in Fig. 1 
and Supplementary Tables 1–3. Nanopore sequencing yielded an 
average of 69 gigabases (Gb) per flow cell, with the total through-
put per individual genome ranging between 48× (158 Gb) and 
85× (280 Gb) coverage per genome (Fig. 1a). The read N50 values 
for the sequencing runs ranged between 28 and 51 kb (Fig. 1b).  
(An N50 value is a weighted median; it is the length of the 
sequence in a set for which all sequences of that length or greater 
sum to 50% of the set’s total size.) We aligned nanopore reads 
to the human reference genome (GRCh38) and calculated their 
alignment identity to assess sequence quality (see Methods). We 
observed that the median and modal alignment identity was 90 
and 93%, respectively (Fig. 1c). The sequencing data per individual 
genome included an average of 55× coverage arising from >10-kb 
reads and 6.5× coverage from >100-kb reads (Fig. 1d). This was 
in large part due to size selection that yielded an enrichment of 
reads longer than 10 kb. To test the generality of our sequencing 
methodology for other samples, we sequenced high-molecular 
weight DNA isolated from a human saliva sample using identical 
sample preparation. The library was run on a MinION (roughly 
one-sixth the throughput of a ProMethION flow cell) and yielded 
11 Gb of data at a read N50 of 28 kb (Supplementary Table 4), 
extrapolating both are within the lower range achieved with 
cell-line derived DNA.

Shasta assembler for long sequence reads. Shasta was designed 
to be orders of magnitude faster and cheaper at assembling a 
human-scale genome from nanopore reads than the Canu assem-
bler used in our earlier work18. During most Shasta assembly 
phases, reads are stored in a homopolymer-compressed form using 
run-length encoding (RLE)24–26. In this form, identical consecu-
tive bases are collapsed, and the base and repeat count are stored. 
For example, GATTTACCA would be represented as (GATACA, 
113121). This representation is insensitive to errors in the length of 
homopolymer runs, thereby addressing the dominant error mode 
for Oxford Nanopore reads12. As a result, assembly noise due to 
read errors is decreased, and notably higher identity alignments are 
facilitated (Fig. 1e). A marker representation of reads is also used, 
in which each read is represented as the sequence of occurrences 
of a predetermined, fixed subset of short k-mers (marker represen-
tation) in its run-length representation. A modified MinHash27,28 
scheme is used to find candidate pairs of overlapping reads, using 
as MinHash features consecutive occurrences of m markers (default 
m = 4). Optimal alignments in marker representation are computed 
for all candidate pairs. The computation of alignments in marker 
representation is very efficient, particularly as various banded heu-
ristics are used. A marker graph is created in which each vertex rep-
resents a marker found to be aligned in a set of several reads. The 
marker graph is used to assemble sequence after undergoing a series 
of simplification steps. The assembler runs on a single machine with 
a large amount of memory (typically 1–2 Tb for a human assem-
bly). All data structures are kept in memory, and no disk I/O takes 
place except for initial loading of the reads and final output of  
assembly results.

Benchmarking Shasta. We compared Shasta to three contempo-
rary assemblers: Wtdbg2 (ref. 29), Flye30 and Canu31. We ran all four 
assemblers on available read data from two diploid human samples, 
HG00733 and HG002, and one haploid human sample, CHM13. 
HG00733 and HG002 were part of our collection of 11 samples, and 
data for CHM13 came from the T2T consortium32.

Canu consistently produced the most contiguous assemblies, 
with contig NG50 values of 40.6, 32.3 and 79.5 Mb, for samples 
HG00733, HG002 and CHM13, respectively (Fig. 2a). (NG50 is 
similar to N50, but for 50% of the estimated genome size.) Flye was 
the second most contiguous, with contig NG50 values of 25.2, 25.9 
and 35.3 Mb, for the same samples. Shasta was next with contig 
NG50 values of 21.1, 20.2 and 41.1 Mb. Wtdbg2 produced the least 
contiguous assemblies, with contig NG50 values of 15.3, 13.7 and 
14.0 Mb.

Conversely, aligning the samples to GRCh38 and evaluat-
ing with QUAST33, Shasta had between 4.2 and 6.5× fewer 
disagreements (locations where the assembly contains a break-
point with respect to the reference assembly) per assembly 
than the other assemblers (Supplementary Table 5). Breaking 
the assemblies at these disagreements and unaligned regions 
with respect to GRCh38, we observe much smaller absolute 
variation in contiguity (Fig. 2b and Supplementary Table 5). 
However, a substantial fraction of the identified disagreements 
likely reflect true SVs with respect to GRCh38. To address 
this, we discounted disagreements within chromosome Y,  
centromeres, acrocentric chromosome arms, QH-regions and 
known recent segmental duplications (all of which are enriched in 
SVs34,35); in the case of HG002, we further excluded a set of known 
SVs36. We still observe between 1.2× and 2× fewer disagreements 
in Shasta relative to Canu and Wtdbg2, and comparable results 
against Flye (Fig. 2c and Supplementary Table 6). To account for 
differences in the fraction of the genomes assembled, we ana-
lyzed disagreements contained within the intersection of all the 
assemblies (that is, in regions where all assemblers produced a 
unique assembled sequence). This produced results highly con-
sistent with the previous analysis and suggests Shasta and Flye 
have the lowest and comparable rates of misassembly (Methods, 
see Supplementary Table 7). Finally, we used QUAST to calcu-
late disagreements between the T2T Consortium’s chromosome X 
assembly, a highly curated, validated assembly32 and the subset of 
each CHM13 assembly mapping to it; Shasta has two to 17 times 
fewer disagreements than the other assemblers while assem-
bling almost the same fraction of the assembly (Supplementary  
Table 8).

Canu consistently assembled the largest genomes (average 
2.91 Gb), followed by Flye (average 2.83 Gb), Wtdbg2 (average 
2.81 Gb) and Shasta (average 2.80 Gb). Due to their similarity, we 
would expect the most of these assembled sequences to map to 
another human genome. Discounting unmapped sequence, the dif-
ferences are smaller: Canu produced an average of 2.86 Gb of mapped 
sequence per assembly, followed by Shasta (average 2.79 Gb), 
Flye (average 2.78 Gb) and Wtdbg2 (average 2.76 Gb) (Fig. 2d,  
see Methods). This analysis supports the notion that Shasta is cur-
rently relatively conservative versus its peers, producing the highest 
ratio of directly mapped assembly per sample.

For HG00733 and CHM13 we examined a library of bacte-
rial artificial chromosome (BAC) assemblies (Methods). The BACs 
were largely targeted at known segmental duplications (473 of 520 
BACs lie within 10 kb of a known duplication). Examining the sub-
set of BACs for CHM13 and HG00733 that map to unique regions 
of GRCh38 (see Methods), we find Shasta contiguously assembles all 
47 BACs, with Flye performing similarly (Supplementary Table 9).  
In the full set, we observe that Canu (411) and Flye (282) contiguously 
assemble a larger subset of the BACs than Shasta (132) and Wtdbg2 
(108), confirming the notion that Shasta is relatively conservative in 
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Fig. 1 | Nanopore sequencing data. a, Throughput in gigabases from each of three flow cells for 11 samples, with total throughput at top. Each point is 
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these duplicated regions (Supplementary Table 10). Examining the 
fraction of contiguously assembled BACs of all BACs represented in 
each assembly we can measure an aspect of assembly correctness. In 
this regard Shasta (97%) produces a much higher percentage of correct  

BACs in duplicated regions versus its peers (Canu 92%, Flye 87%, 
Wtdbg2 88%). In the intersected set of BACs attempted by all assem-
blers (Supplementary Table 11), Shasta, 100%; Flye, 100%; Canu, 
98.50% and Wtdbg2, 90.80% all produce comparable results.
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Shasta produced the most base-level accurate assemblies (average  
balanced error rate 0.98% on diploid and 0.54% on haploid), fol-
lowed by Wtbdg2 (1.18% on diploid and 0.69% on haploid), Canu 
(1.40% on diploid and 0.71% on haploid) and Flye (1.64% on diploid 
and 2.21% on haploid) (Fig. 2e, see Methods and Supplementary 
Table 12). We also calculated the base-level accuracy in regions cov-
ered by all the assemblies and observe results consistent with the 
whole-genome assessment (Supplementary Table 13).

Shasta, Wtdbg2 and Flye were run on a commercial cloud, allow-
ing us to reasonably compare their cost and runtime (Fig. 2e, see 
Methods). Shasta took an average of 5.25 h to complete each assem-
bly at an average cost of US$70 per sample. In contrast, Wtdbg2 
took 7.5× longer and cost 3.7× as much, and Flye took 11.9× longer 
and cost 9.9× as much. Due to the anticipated cost and complexity 
of porting it to Amazon Web Services (AWS), the Canu assemblies 
were run on a large, institutional compute cluster, consuming up 
to US$19,000 (estimated) of compute and took around 4–5 d per 
assembly (Methods, see Supplementary Tables 14 and 15).

To assess the use of using Shasta for SV characterization we cre-
ated a workflow to extract putative heterozygous SVs from Shasta 
assembly graphs (Methods). Extracting SVs from an assembly 
graph for HG002, the length distribution of indels shows the char-
acteristic spikes for known retrotransposon lengths (Supplementary 
Fig. 1). Comparing these SVs to the high-confidence GIAB SV 
set we find good concordance, with a combined F1 score of 0.68 
(Supplementary Table 16).

Contiguously assembling major histocompatibility complex 
(MHC) haplotypes. The MHC region is difficult to resolve using 
short reads due to its repetitive and highly polymorphic nature37, 
and recent efforts to apply long-read sequencing to this problem 
have shown promise18,38. We analyzed the assemblies of CHM13 and 
HG00733 to see if they spanned the MHC region. For the haploid 
assemblies of CHM13 we find MHC is entirely spanned by a single 
contig in all four assemblers’ output, and most closely resembles the 
GL000251.2 haplogroup among those provided in GRCh38 (Fig. 3a, 
Supplementary Fig. 2 and Supplementary Table 17). In the diploid 
assembly of HG00733 two contigs span most of the MHC for Shasta 
and Flye, while Canu and Wtdbg2 span the region with one contig 
(Fig. 3b and Supplementary Fig. 3). However, we note that all these 
chimeric diploid assemblies lead to sequences that do not closely 
resemble any haplogroup (Methods).

To attempt to resolve haplotypes of HG00733 we used 
trio-binning39 to partition the reads for HG00733 into two sets based 
on likely maternal or paternal lineage and assembled the haplotypes 
(Methods). For all assemblers and each haplotype assembly, the 
global contiguity worsened substantially (as the available read data 
coverage was approximately halved and, further, not all reads could 
be partitioned), but the resulting disagreement count decreased 
(Supplementary Table 18). When using haploid trio-binned assem-
blies, the MHC was spanned by a single contig for the maternal hap-
lotype (Fig. 3c, Supplementary Fig. 4 and Supplementary Table 19),  
with high identity to GRCh38 and having the greatest contiguity 
and identity with the GL000255.1 haplotype. For the paternal hap-
lotype, low coverage led to discontinuities (Fig. 3d) breaking the 
region into three contigs.

Deep neural network-based polishing for long-read assemblies. 
We developed a deep neural network-based consensus sequence 
polishing pipeline designed to improve the base-level quality of the 
initial assembly. The pipeline consists of two modules: MarginPolish 
and the homopolymer encoded long-read error-corrector for 
Nanopore (HELEN). MarginPolish uses a banded form of the for-
ward–backward algorithm on a pairwise hidden Markov model 
(pair-HMM) to generate pairwise alignment statistics from the 
RLE alignment of each read to the assembly. From these statistics, 

MarginPolish generates a weighted RLE partial order alignment 
(POA)40 graph that represents potential alternative local assem-
blies. MarginPolish iteratively refines the assembly using this RLE 
POA, and then outputs the final summary graph for consumption 
by HELEN. HELEN uses a multi-task recurrent neural network 
(RNN)41 that takes the weights of the MarginPolish RLE POA graph 
to predict a nucleotide base and run length for each genomic posi-
tion. The RNN takes advantage of contextual genomic features and 
associative coupling of the POA weights to the correct base and run 
length to produce a consensus sequence with higher accuracy.

To demonstrate the effectiveness of MarginPolish and HELEN, 
we compared them with the state-of-the-art nanopore assembly 
polishing workflow: four iterations of Racon polishing42 followed 
by Medaka. MarginPolish is analogous in function to Racon, both 
using pair-HMM-based methods for alignment and POA graphs 
for initial refinement. Similarly, HELEN is analogous to Medaka, in 
that both use a deep neural network and both work from summary 
statistics of reads aligned to the assembly.

Figure 4a and Supplementary Tables 20–22 detail error rates for 
the four methods performed on the HG00733 and CHM13 Shasta 
assemblies (see Methods) using Pomoxis. For the diploid HG00733 
sample MarginPolish and HELEN achieve a balanced error rate 
of 0.388% (Phred quality score QV = 24.12), compared to 0.455% 
(QV = 23.42) by Racon and Medaka. For both polishing pipelines, 
a notable fraction of these errors are likely due to true heterozygous 
variations. For the haploid CHM13 we restrict comparison to the 
highly curated X chromosome sequence provided by the T2T con-
sortium32. We achieve a balanced error rate of 0.064% (QV = 31.92), 
compared to Racon and Medaka’s 0.110% (QV = 29.59).

For all assemblies, errors were dominated by indel errors; for 
example, substitution errors are 3.16 and 2.9 times fewer than indels 
in the polished HG000733 and CHM13 assemblies, respectively. 
Many of these errors relate to homopolymer length confusion; Fig. 4b  
analyzes the homopolymer error rates for various steps of the pol-
ishing workflow for HG00733. Each panel shows a heatmap with the 
true length of the homopolymer run on the y axis and the predicted 
run length on the x axis, with the color describing the likelihood 
of predicting each run length given the true length. Note that the 
dispersion of the diagonal steadily decreases. The vertical streaks at 
high run lengths in the MarginPolish and HELEN confusion matrix 
are the result of infrequent numerical and encoding artifacts (see 
Methods and Supplementary Fig. 5).

Figure 4c and Supplementary Table 23 show the overall error rate 
after running MarginPolish and HELEN on HG00733 assemblies 
generated by different assembly tools, demonstrating that they can 
be usefully employed to polish assemblies generated by other tools.

To investigate the benefit of using short reads for further pol-
ishing, we polished chromosome X of the CHM13 Shasta assembly 
after MarginPolish and HELEN using 10X Chromium reads with 
the Pilon polisher43. This led to a roughly twofold reduction in base 
errors, increasing the QV from roughly 32 (after polishing with 
MarginPolish and HELEN) to around 36 (Supplementary Table 24). 
Notably, attempting to use Pilon polishing on the raw Shasta assem-
bly resulted in much poorer results (QV = 24).

Figure 4d and Supplementary Table 25 describe average run-
times and costs for the methods (see Methods). MarginPolish and 
HELEN cost a combined US$107 and took 29 h of wall-clock time 
on average, per sample. In comparison Racon and Medaka cost 
US$621 and took 142 wall-clock hours on average, per sample. To 
assess single-region performance we additionally ran the two pol-
ishing workflows on a single contig (roughly 1% of the assembly 
size), MarginPolish/HELEN was three times faster than Racon 
(1×)/Medaka (Supplementary Table 26).

Long-read assemblies contain nearly all human coding genes. 
To evaluate the accuracy and completeness of an assembled 
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transcriptome we ran the Comparative Annotation Toolkit44, which 
can annotate a genome assembly using the human GENCODE45 
reference human gene set (Table 1, Methods and Supplementary 
Tables 27–30).

For the HG00733 and CHM13 samples we found that Shasta 
assemblies polished with MarginPolish and HELEN contained 
nearly all human protein coding genes, having, respectively, an 
identified ortholog for 99.23% (152 missing) and 99.11% (175 miss-
ing) of these genes. Using the restrictive definition that a coding 
gene is complete in the assembly only if it is assembled across its full 
length, contains no frameshifts and retains the original intron–exon 
structure, we found that 68.07% and 74.20% of genes, respectively, 
were complete in the HG00733 and CHM13 assemblies. Polishing 

the Shasta assemblies alternatively with the Racon–Medaka pipeline 
achieved similar but uniformly less complete results.

Comparing the MarginPolish and HELEN polished assemblies 
for HG00733 generated with Flye, Canu and Wtdbg2 to the similarly 
polished Shasta assembly we found that Canu had the fewest miss-
ing genes (just 51), but that Flye, followed by Shasta, had the most 
complete genes. Wtdbg2 was clearly an outlier, with notably larger 
numbers of missing genes (506). For comparison we additionally 
ran BUSCO46 using the eukaryote set of orthologs on each assem-
bly, a smaller set of 303 expected single-copy genes (Supplementary 
Tables 31 and 32). We find comparable performance between the 
assemblies, with small differences largely recapitulating the pattern 
observed by the larger CAT analysis.
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Comparison of Shasta and PacBio HiFi assemblies. We compared 
the CHM13 Shasta assembly polished using MarginPolish and HELEN 
with the recently released Canu assembly of CHM13 using PacBio 
HiFi reads47. HiFi reads are based on circular consensus sequenc-
ing technology that delivers substantially lower error rates. The HiFi 
assembly has a lower NG50 (29.0 versus 41.0 megabase (Mb)) than 
the Shasta assembly (Supplementary Fig. 6). Consistent with our other 
comparisons to Canu, the Shasta assembly also contains a much lower 

disagreement count relative to GRCh38 (1073) than the Canu-based 
HiFi assembly (8,469), a difference that remains after looking only 
at disagreements within the intersection of the assemblies (380 ver-
sus 594). The assemblies have an almost equal NGAx (~20.0 Mb), 
but the Shasta assembly covers a smaller fraction of GRCh38 (95.28 
versus 97.03%) (Supplementary Fig. 7 and Supplementary Table 33). 
Predictably, the HiFi assembly has a higher QV than the polished 
Shasta assembly (QV = 41 versus QV = 32).
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Scaffolding to near chromosome scale. To achieve chromosome 
length sequences, we scaffolded all of the polished Shasta assem-
blies with HiC proximity-ligation data using HiRise48 (see Methods 
and Fig. 5a). On average, 891 joins were made per assembly. This 
increased the scaffold NG50 values to near chromosome scale, 
with a median of 129.96 Mb, as shown in Fig. 5a, with additional 
assembly metrics in Supplementary Table 36. Proximity-ligation 
data can also be used to detect misjoins in assemblies. In all 
11 Shasta assemblies, no breaks to existing contigs were made 
while running HiRise to detect potential misjoins. Aligning 
HG00733 to GRCh38, we find no notable rearrangements and all  
chromosomes are spanned by one or a few contigs (Fig. 5b), with 
the exception of chrY, which is absent because HG00733 is female. 
Similar results were observed for HG002 (Supplementary Fig. 8).

Discussion
With sequencing efficiency for long reads improving, computa-
tional considerations are paramount in determining overall time, 
cost and quality. Simply put, large genome de novo assembly will 
not become ubiquitous if the requirements are weeks of assembly 
time on large computational clusters. We present three new meth-
ods that provide a pipeline for the rapid assembly of long nanopore 
reads. Shasta can produce a draft human assembly in around 6 h 
and US$70 using widely available commercial cloud nodes. This 
cost and turnaround time is much more amenable to rapid proto-
typing and parameter exploration than even the fastest competing 

method (Wtdbg2), which was on average 7.5 times slower and 3.7 
times more expensive.

The combination of the Shasta assembler and nanopore 
long-read sequences produced using the PromethION sequencer 
realizes substantial improvements in throughput; we completed all 
2.3 Tb of nanopore data collection in 9 d, running up to 15 flow cells 
simultaneously.

In terms of assembly, we obtained an average NG50 of 18.5 Mb 
for the 11 genomes, roughly three times higher than for the first 
nanopore-sequenced human genome, and comparable with the best 
achieved by alternative technologies13,49. We found the addition of 
HiC sequencing for scaffolding necessary to achieve chromosome 
scale assemblies. However, our results are consistent with previous 
modeling based on the size and distribution of large repeats in the 
human genome, which predicts that an assembly based on 30 times 
coverage of such reads of >100 kb would approach the continuity of 
complete human chromosomes18,32.

Relative to alternate long-read and linked-read sequencing, the 
read identity of nanopore reads is lower, however, improving over 
time12,18. We observe modal read identity of 92.5%, resulting in bet-
ter than QV = 30 base quality for haploid polished assembly from 
nanopore reads alone. The accurate resolution of highly repetitive 
and recently duplicated sequence will depend on long-read pol-
ishing, because short reads are generally not uniquely mappable. 
Further polishing using complementary data types, including 
PacBio HiFi reads49 and 10X Chromium50, will likely prove useful in 
achieving QV 40+ assemblies.

Shasta produces a notably more conservative assembly than 
competing tools, trading greater correctness for contiguity and 
total produced sequence. For example, the ratio of total length 
to aligned length is relatively constant for all other assemblers, 
where approximately 1.6% of sequence produced does not align 
across the three evaluated samples. In contrast, on average just 
0.38% of Shasta’s sequence does not align to GRCh38, represent-
ing a more than four times reduction in unaligned sequence. 
Additionally, we note substantially lower disagreement counts, 
resulting in much smaller differences between the raw NGx  
and corrected NGAx values. Shasta also produces substantially 
more base-level accurate assemblies than the other competing 
tools. MarginPolish and HELEN provide a consistent improve-
ment of base quality over all tested assemblers, with more 
accurate results than the current state-of-the-art long-read  
polishing workflow.

Table 1 | CAT transcriptome analysis of human protein coding 
genes for HG00733 and CHM13

Sample Assembler Polisher Genes 
found 
(%)

Missing 
genes

Complete 
genes (%)

HG00733 Canu HELEN 99.741 51 67.038

Flye HELEN 99.405 117 71.768

Wtdbg2 HELEN 97.429 506 66.143

Shasta HELEN 99.228 152 68.069

Shasta Medaka 99.141 169 66.27

CHM13 Shasta HELEN 99.111 175 74.202

Shasta Medaka 99.035 190 73.836
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We assembled and compared haploid, trio-binned and dip-
loid samples. Trio-binned samples show great promise for hap-
lotype assembly, for example contiguously assembling an MHC 
haplogroup, but the halving of effective coverage resulted in ulti-
mately less contiguous human assemblies with higher base-error 
rates than the related, chimeric diploid assembly. This can poten-
tially be rectified by merging the haplotype assemblies to produce 
a pseudo-haplotype or increasing sequencing coverage. Indeed, the 
improvements in contiguity and base accuracy in CHM13 over the 
diploid samples illustrate what can be achieved with higher cover-
age of a haploid sample. We believe that one of the most promis-
ing directions for the assembly of diploid samples is the integration 
of phasing into the assembly algorithm itself, as pioneered by oth-
ers17,51,52. We anticipate that the new tools we have described here 
are suited for this next step: the Shasta framework is well placed for 
producing phased assemblies over structural variants, MarginPolish 
is built off of infrastructure designed to phase long reads2 and the 
HELEN model could be improved to include haplotagged features 
for the identification of heterozygous sites.

Connected together, the tools we present enabled a polished 
assembly to be produced in around 24 h and for roughly US$180, 
against the fastest comparable combination of Wtdbg2, Racon and 
Medaka that costs 5.3 times more and is 4.3 times slower while 
producing measurably worse results in terms of disagreements, 
contiguity and base-level accuracy. Substantial further parallelism 
of polishing, the main time drain in our current pipeline, is easily 
possible.

We are working toward the goal of having a half-day turnaround 
of our complete computational pipeline. With real-time basecalling, 
a DNA-to-de novo assembly could conceivably be achieved in less 
than 96 h. Such speed would enable screening of human genomes 
for abnormalities in difficult-to-sequence regions.
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Methods
Sample selection. The goal of sample selection was to select a set of individuals 
that collectively captured the maximum amount of weighted allelic diversity53. To 
do this, we created a list of all low-passage lymphoblastoid cell lines that are part 
of a trio available from the 1,000 Genomes Project collection54 (we selected trios to 
allow future addition of pedigree information, and low-passage line to minimize 
acquired variation). In some cases, we considered the union of parental alleles in 
the trios due to not having genotypes for the offspring. Let a weighted allele be a 
variant allele and its frequency in the 1,000 Genomes Project Phase 3 confidence 
variant set (VCF). We selected the first sample from our list that contained the 
largest sum of frequencies of weighted alleles, reasoning that this sample should 
have the largest expected fraction of variant alleles in common with any other 
randomly chosen sample. We then removed the variant alleles from this first 
sample from the set of variant alleles in consideration and repeated the process 
to pick the second sample, repeating the process recursively until we had selected 
seven samples. This set greedily, heuristically optimizes the maximum sum of 
weighted allele frequencies in our chosen sample subset. We also added the three 
Ashkenazim Trio samples and the Puerto Rican individual (HG00733). These four 
samples were added for the purposes of comparison with other studies that are 
using them23.

Cell culture. Lymphoblastoid cultures for each individual were obtained from 
the Coriell Institute Cell Repository (coriell.org) and were cultured in RPMI 
1640 supplemented with 15% fetal bovine serum (Life Technologies). The cells 
underwent a total of six passages (p3 + 3). After expansion, cells were collected by 
pelleting at 300g for 5 min. Cells were resuspended in 10 ml of PBS and a cell count 
was taken using a BiRad TC20 cell counter. Cells were aliquoted into 50 ml of 
conical tubes containing 50 million cells, pelleted as above and washed with 10 ml 
of PBS before a final pelleting after which the PBS was removed and the samples 
were flash frozen on dry ice and stored at −80 °C until ready for further processing.

DNA extraction and size selection. We extracted high-molecular weight DNA 
using the Qiagen Puregene kit. We followed the standard protocol with some 
modifications. Briefly, we lysed the cells by adding 3 ml of Cell Lysis Solution per 
10 million cells, followed by incubation at 37 °C for up to 1 h. We performed mild 
shaking intermediately by hand and avoided vortexing. Once clear, we split the 
lysate into 3-ml aliquots and added 1 ml of protein precipitation solution to each 
of the tubes. This was followed by pulse vortexing three times for 5 s each time. 
We next spun this at 2,000g for 10 min. We added the supernatant from each tube 
to a new tube containing 3 ml of isopropanol, followed by 50× inversion. The 
high-molecular weight DNA precipitated and formed a dense thread-like jelly. We 
used a disposable inoculation loop to extract the DNA precipitate. We then dipped 
the DNA precipitate, while it was on the loop, into ice-cold 70% ethanol. After this, 
the DNA precipitate was added to a new tube containing 50–250 µl 1× TE buffer. 
The tubes were heated at 50 °C for 2 h and then left at room temperature overnight 
to allow resuspension of the DNA. The DNA was then quantified using Qubit and 
NanoDrop.

We used the Circulomics Short-Read Eliminator kit to deplete short fragments 
from the DNA preparation. We size selected 10 µg of DNA using the Circulomics 
recommended protocol for each round of size selection.

Nanopore sequencing. We used the SQK-LSK109 kit and its recommended 
protocol for making sequencing libraries. We used 1 µg of input DNA per library. 
We prepared libraries at a 3× scale since we performed a nuclease flush on every 
flow cell, followed by the addition of a fresh library.

We used the standard PromethION scripts for sequencing. At around 24 h, 
we performed a nuclease flush using the ONT recommended protocol. We then 
reprimed the flow cell, and added a fresh library corresponding to the same 
sample. After the first nuclease flush, we restarted the run setting the voltage to 
−190 mV. We repeated the nuclease flush after another around 24 h (that is, around 
48 h into sequencing), reprimed the flow cell, added a fresh library and restarted 
the run setting the run voltage to −200 mV.

We performed basecalling using Guppy v.2.3.5 on the PromethION tower using 
the graphics processing units (GPUs). We used the MinION DNA flipflop model 
(dna_r9.4.1_450bps_flipflop.cfg), as recommended by ONT.

Chromatin crosslinking and extraction from human cell lines. We thawed the 
frozen cell pellets and washed them twice with cold PBS before resuspension in the 
same buffer. We transferred aliquots containing five million cells by volume from 
these suspensions to separate microcentrifuge tubes before chromatin crosslinking 
by addition of paraformaldehyde (EMS catalog no. 15714) to a final concentration 
of 1%. We briefly vortexed the samples and allowed them to incubate at room 
temperature for 15 min. We pelleted the crosslinked cells and washed them twice 
with cold PBS before thoroughly resuspending in lysis buffer (50 mM Tris-HCl, 
50 mM NaCl, 1 mM EDTA, 1% SDS) to extract crosslinked chromatin.

The HiC method. We bound the crosslinked chromatin samples to SPRI beads, 
washed three times with SPRI wash buffer (10 mM Tris-HCl, 50 mM NaCl, 0.05% 
Tween-20) and digested by DpnII (20 U, NEB catalog no. R0543S) for 1 h at 37 °C 

in an agitating thermal mixer. We washed the bead-bound samples again before 
incorporation of Biotin-11-dCTP (ChemCyte catalog no. CC-6002–1) by DNA 
Polymerase I, Klenow Fragment (10 U, NEB catalog no. M0210L) for 30 min at 
25 °C with shaking. Following another wash, we carried out blunt-end ligation 
by T4 DNA Ligase (4,000 U, NEB Catalog No. M0202T) with shaking overnight 
at 16 °C. We reversed the chromatin crosslinks, digested the proteins, eluted the 
samples by incubation in crosslink reversal buffer (5 mM CaCl2, 50 mM Tris-HCl, 
8% SDS) with Proteinase K (30 µg, Qiagen catalog no. 19133) for 15 min at 55 °C 
followed by 45 min at 68 °C.

Sonication and Illumina library generation with biotin enrichment. After 
SPRI bead purification of the crosslink-reversed samples, we transferred DNA 
from each to Covaris microTUBE AFA Fiber Snap-Cap tubes (Covaris catalog no. 
520045) and sonicated to an average length of 400 ± 85 base pairs using a Covaris 
ME220 Focused-Ultrasonicator. Temperature was held stably at 6 °C and treatment 
lasted 65 s per sample with a peak power of 50 W, 10% duty factor and 200 cycles 
per burst. The average fragment length and distribution of sheared DNA was 
determined by capillary electrophoresis using an Agilent FragmentAnalyzer 5200 
and HS NGS Fragment Kit (Agilent catalog no. DNF-474–0500). We ran sheared 
DNA samples twice through the NEBNext Ultra II DNA Library Prep Kit for 
Illumina (catalog no. E7645S) End Preparation and Adapter Ligation steps with 
custom Y adapters to produce library preparation replicates. We purified ligation 
products via SPRI beads before Biotin enrichment using Dynabeads MyOne 
Streptavidin C1 beads (ThermoFisher catalog no. 65002).

We performed indexing PCR on streptavidin beads using KAPA HiFi 
HotStart ReadyMix (catalog no. KK2602) and PCR products were isolated by 
SPRI bead purification. We quantified the libraries by Qubit 4 fluorometer and 
FragmentAnalyzer 5200 HS NGS Fragment Kit (Agilent catalog no. DNF-474-
0500) before pooling for sequencing on an Illumina HiSeq X at Fulgent Genetics.

Analysis methods. Read alignment identities. To generate the identity violin plots 
(Fig. 1c,e) we aligned all the reads for each sample and flow cell to GRCh38 using 
minimap2 (ref. 24) with the map-ont preset. Using a custom script get_summary_
stats.py in the repository https://github.com/rlorigro/nanopore_assembly_and_
polishing_assessment, we parsed the alignment for each read and enumerated the 
number of matched (N=), mismatched (NX), inserted (NI) and deleted (ND) bases. 
From this, we calculated alignment identity as N=/(N= + NX + NI + ND). These 
identities were aggregated over samples and plotted using the seaborn library 
with the script plot_summary_stats.py in the same repository. This method was 
used to generate Fig. 1c,e. For Fig. 1e, we selected reads from HG00733 flowcell1 
aligned to GRCh38 chr1. The ‘Standard’ identities are used from the original 
reads/alignments. To generate identity data for the ‘RLE’ portion, we extracted 
the reads above, run-length encoded the reads and chr1 reference, and followed 
the alignment and identity calculation process described before. Sequences 
were run-length encoded using a simple script — https://github.com/rlorigro/
runlength_analysis/blob/master/runlength_encode_fasta.py — and aligned with 
minimap2 using the map-ont preset and –k 19.

Base-level error-rate analysis with Pomoxis. We analyzed the base-level error rates 
of the assemblies using the assess_assembly tool of the Pomoxis toolkit (https://
github.com/nanoporetech/pomoxis). The assess_assembly tool is tailored to 
compute the error rates in a given assembly compared to a truth assembly. It 
reports an identity error rate, insertion error rate, deletion error rate and an overall 
error rate. The identity error rate indicates the number of erroneous substitutions, 
the insertion error rate is the number of incorrect insertions and the deletion error 
rate is the number of deleted bases averaged over the total aligned length of the 
assembly to the truth. The overall error rate is the sum of the identity, insertion and 
deletion error rates. For the purpose of simplification, we used the indel error rate, 
which is the sum of insertion and deletion error rates.

The assess_assembly script takes an input assembly and a reference assembly 
to compare against. The assessment tool chunks the reference assembly to 1-kb 
regions and aligns it back to the input assembly to get a trimmed reference. Next, 
the input is aligned to the trimmed reference sequence with the same alignment 
parameters to get an input assembly to the reference assembly alignment. The 
total aligned length is the sum of the lengths of the trimmed reference segments 
where the input assembly has an alignment. The total aligned length is used as the 
denominator while averaging each of the error categories to limit the assessment 
in only correctly assembled regions. Then the tool uses stats_from_bam, which 
counts the number of mismatch bases, insert bases and delete bases at each of 
the aligned segments, and reports the error rate by averaging them over the total 
aligned length.

Truth assemblies for base-level error-rate analysis. We used HG002, HG00733 and 
CHM13 for base-level error-rate assessment of the assembler and the polisher. 
These three assemblies have high-quality assemblies publicly available, which 
are used as the ground truth for comparison. Two of the samples, HG002 and 
HG00733, are diploid samples; hence, we picked one of the two possible haplotypes 
as the truth. The reported error rate of HG002 and HG00733 include some errors 
arising due to the zygosity of the samples. The complete hydatidiform mole sample 
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CHM13 is a haploid human genome that is used to assess the applicability of the 
tools on haploid samples. We have gathered and uploaded all the files we used 
for assessment in one place at https://console.cloud.google.com/storage/browser/
kishwar-helen/truth_assemblies/.

To generate the HG002 truth assembly, we gathered the publicly available GIAB 
high-VCF against GRCh38 reference sequence. Then we used bedtools to create 
an assembly (FASTA) file from the GRCh38 reference and the high-confidence 
variant set. We got two files using this process for each of the haplotypes, and we 
picked one randomly as the truth. All the diploid HG002 assembly is compared 
against this one chosen assembly. GIAB also provides a bed file annotating 
high-confidence region where the called variants are highly precise and sensitive. 
We used this bed file with assess_assembly to ensure that we compare the 
assemblies only in the high-confidence regions.

The HG00733 truth is from the publicly available phased PacBio high-quality 
assembly of this sample55. We picked phase0 as the truth assembly and acquired 
it from the National Center for Biotechnology Information under accession 
GCA_003634895.1. We note that the assembly is phased but not haplotyped, such 
that portions of phase0 will include sequences from both parental haplotypes and 
is not suitable for trio-binned analyses. Furthermore, not all regions were fully 
phased; regions with variants that are represented as some combination of both 
haplotypes will result in lower QV and a less accurate truth.

For CHM13, we used the v.0.6 release of CHM13 assembly by the T2T 
consortium32. The reported quality of this truth assembly in QV value is 39. One of 
the attributes of this assembly is chromosome X. As reported by the T2T assembly 
authors, chromosome X of CHM13 is the most complete (end-to-end) and 
high-quality assembly of any human chromosome. We obtained the chromosome 
X assembly, which is the highest-quality truth assembly (QV ≥ 40) we have.

QUAST/BUSCO. To quantify contiguity, we primarily depended on the tool 
QUAST33. QUAST identifies misassemblies as main rearrangement events in 
the assembly relative to the reference. We use the phrase ‘disagreement’ in our 
analysis, as we find ‘misassembly’ inappropriate considering potentially true 
structural variation. For our assemblies, we quantified all contiguity stats against 
GRCh38, using autosomes plus chromosomes X and Y only. We report the total 
disagreements given that their relevant ‘size’ descriptor was greater than 1 kb, as 
is the default behavior in QUAST. QUAST provides other contiguity statistics in 
addition to disagreement count, notably total length and total aligned length as 
reported in Fig. 2d. To determine total aligned length (and unaligned length), 
QUAST performs collinear chaining on each assembled contig to find the best 
set of nonoverlapping alignments spanning the contig. This process contributes 
to QUAST’s disagreement determination. We consider an unaligned sequence 
to be the portions of the assembled contigs that are not part of this best set of 
nonoverlapping alignments. All statistics are recorded in Supplementary Table 5. 
For all QUAST analyses, we used the flags min-identity 80 and fragmented.

QUAST also produces an NGAx plot (similar to an NGx plot) that shows 
the aligned segment size distribution of the assembly after accounting for 
disagreements and unalignable regions. The intermediate segment lengths that 
would allow NGAx plots to be reproduced across multiple samples on the same 
axis (as is shown in Fig. 2b) are not stored, so we created a GitHub fork of QUAST 
to store this data during execution at https://github.com/rlorigro/quast. Finally, the 
assemblies and the output of QUAST were parsed to generate figures with an NGx 
visualization script, ngx_plot.py, found at http://github.com/rlorigro/nanopore_
assembly_and_polishing_assessment/.

For NGx and NGAx plots, a total genome size of 3.23 Gb was used to calculate 
cumulative coverages.

BUSCO46 is a tool that quantifies the number of benchmarking universal 
single-copy orthologs present in an assembly. We ran BUSCO via the option within 
QUAST, comparing against the eukaryota set of orthologs from OrthoDB v.9.

Disagreement assessments. To analyze the QUAST-reported disagreements for 
different regions of the genome, we gathered the known segmental duplication 
regions8, centromeric regions for GRCh38 and known regions in GRCh38 
with structural variation for HG002 from GIAB36. We used a Python script 
quast_sv_extractor.py that compares each reported disagreement from QUAST 
to the segmental duplication, SV and centromeric regions and discounts any 
disagreement that overlaps with these regions. The quast_sv_extractor.py script can 
be found at https://github.com/kishwarshafin/helen/tree/master/helen/modules/
python/helper.

The segmental duplication regions of GRCh38 defined in the ucsc.collapsed.
sorted.segdups file can be downloaded from https://github.com/mvollger/
segDupPlots/.

The defined centromeric regions of GRCh38 for all chromosomes are used 
from the available summary at https://www.ncbi.nlm.nih.gov/grc/human.

For GIAB HG002, known SVs for GRCh38 are available in NIST_SVs_
Integration_v0.6/ under ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/analysis/. We used the Tier1+2 bed file available at the GIAB  
ftp site.

We further exclude SV enriched regions like centromeres, secondary 
constriction regions, acrocentric arms, large tandem repeat arrays, segmental 

duplications and the Y chromosome plus 10-kb pairs on either side of them. The 
file is available at https://github.com/kishwarshafin/helen/blob/master/masked_
regions/GRCh38_masked_regions.bed.

To analyze disagreements within the intersection of the assembled sequences 
we performed the following analysis. For each assembly we used minimap2 and 
samtools to create regions of unique alignment to GRCh38. For minimap2 we used 
the options --secondary=no -a --eqx -Y -x asm20 -m 10000 -z 10000,50 -r 50000 
--end-bonus=100 -O 5,56 -E 4,1 -B 5. We fed these alignments into samtools view 
with options -F 260 -u- and then samtools sort with option -m. We then scanned 
100 basepair windows of GRCh38 to find windows where all assemblies for the 
given sample were aligned with a one-to-one mapping to GRCh38. We then report 
the sum of disagreements across these windows. The script for this analysis can be 
found at https://github.com/mvollger/consensus_regions.

Trio-binning. We performed trio-binning on two samples, HG002 and HG00733 
(ref. 39). For HG00733, we obtained the parental read sample accessions (HG00731, 
HG00732) from the 1,000 Genome Database. Then we counted k-mers with meryl 
to create maternal and paternal k-mer sets. Based on manual examination of the 
k-mer count histograms to determine an appropriate threshold, we excluded 
k-mers occurring fewer than six times for maternal set and five times for paternal 
set. We subtracted the paternal set from the maternal set to get k-mers unique to 
the maternal sample and similarly derived unique paternal k-mer set. Then for 
each read, we counted the number of occurrences of unique maternal and paternal 
k-mers and classified the read based on the highest occurrence count. During 
classification, we avoided normalization by k-mer set size. This resulted in 35.2× 
maternal, 37.3× paternal and 5.6× unclassified for HG00733. For HG002, we used 
the Illumina data for the parental samples (HG003, HG004) from GIAB project23. 
We counted k-mers using meryl and derived maternal paternal sets using the same 
protocol. We filtered k-mers that occur fewer than 25 times in both maternal and 
paternal sets. The classification resulted in 24× maternal, 23× paternal and 3.5× 
unknown. The commands and data source are detailed in the Supplementary 
Information.

Transcript analysis with comparative annotation toolkit (CAT). We ran the CAT44 to 
annotate the polished assemblies to analyze how well Shasta assembles transcripts 
and genes. Each assembly was individually aligned to the GRCh38 reference 
assembly using Cactus56 to create the input alignment to CAT. The GENCODE45 
V30 annotation was used as the input gene set. CAT was run in the transMap mode 
only, without Augustus refinement, since the goal was only to evaluate the quality 
of the projected transcripts. All transcripts on chromosome Y were excluded from 
the analysis since some samples lacked a Y chromosome.

Run-length confusion matrix. To generate run-length confusion matrices from 
reads and assemblies, we run-length encoded the assembly/read sequences and 
reference sequences using a purpose-built Python script, measure_runlength_
distribution_from_fasta.py. The script requires a reference and sequence file and 
can be found in the GitHub repository https://github.com/rlorigro/runlength_
analysis/. The run-length encoded nucleotides were aligned to the run-length 
encoded reference nucleotides with minimap2. As run-length encoded sequences 
cannot have identical adjacent nucleotides, the number of unique k-mers is 
diminished with respect to standard sequences. As minimap2 uses empirically 
determined sizes for seed k-mers, we used a k-mer size of 19 to approximately 
match the frequency of the default size (15) used by the presets for standard 
sequences. For alignment of reads and assemblies we used the map-ont and asm20 
presets, respectively.

By iterating through the alignments, each match position in the cigar string 
(mismatched nucleotides are discarded) was used to find a pair of lengths (x, 
y) such that x is a predicted length and y is the true (reference) length. For each 
pair, we updated a matrix that contains the frequency of every possible pairing of 
prediction versus truth, from length 1 to 50 bp. Finally, this matrix is normalized 
by dividing each element by the sum of the observations for its true run length and 
plotted as a heatmap. Each value represents the probability of predicting a length 
for a given true length.

Runtime and cost analysis. Our runtime analysis was generated with multiple 
methods detailing the amount of time the processes took to complete. These 
methods include the Unix command time and a home-grown resource tracking 
script, which can be found in the https://github.com/rlorigro/TaskManager 
repository. We note that the assembly and polishing methods have different 
resource requirements, and do not all fully use available CPUs, GPUs and memory 
over the program’s execution. As such, we report runtimes using wall-clock time 
and the number of CPUs the application was configured to use, but do not convert 
to CPU hours. Costs reported in the figures are the product of the runtime and 
AWS instance price. Because portions of some applications do not fully use CPUs, 
cost could potentially be reduced by running on a smaller instance that would be 
fully used, and runtime could be reduced by running on a larger instance that can 
be fully used for some portion of execution. We particularly note the long runtime 
of Medaka and found that for most of the total runtime, only a single CPU was 
used. Last, we note that data transfer times are not reported in runtimes. Some 
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of the data required or generated exceeds hundreds of gigabytes, which could be 
notable in relation to the runtime of the process. Notably, the images generated by 
MarginPolish and consumed by HELEN were often greater than 500 GB in total.

All recorded runtimes are reported in the supplement. For Shasta, times were 
recorded to the tenth of the hour. All other runtimes were recorded to the minute. 
All runtimes reported in figures were run on the AWS cloud platform.

Shasta runtime reported in Fig. 2f was determined by averaging across all 
12 samples. Wtdbg2 runtime was determined by summing runtimes for wtdbg2 
and wtpoa-cns and averaging across the HG00733, HG002 and CHM13 runs. 
Flye runtime was determined by averaging across the HG00733, HG002 and 
CHM13 runs, which were performed on multiple instance types (x1.16xlarge 
and x1.32xlarge). We calculated the total cost and runtime for each run and 
averaged these amounts; no attempt to convert these to a single instance type 
was performed. Precise Canu runtimes are not reported, as they were run on the 
National Institutes of Health (NIH) Biowulf cluster. Each run was restricted to 
nodes with 28 cores (56 hyperthreads) (2×2680v4 or 2×2695v3 Intel CPUs) and 
248 GB of RAM or 16 cores (32 hyperthreads) (2×2650v2 Intel CPUs) and 121 GB 
of RAM. Full details of the cluster are available at https://hpc.nih.gov. The runs 
took between 219,000 and 223,000 CPU hours (4–5 wall-clock days). No single 
job used more than 80 GB of RAM/12 CPUs. We find the r5.4xlarge (US$1.008 
per hour) to be the cheapest AWS instance type possible considering this resource 
usage, which puts estimated cost between US$18,000 and US$19,000 per genome.

For MarginPolish, we recorded all runtimes, but used various thread counts 
that did not always fully use the instance’s CPUs. The runtime reported in the 
figure was generated by averaging across eight of the 12 samples, selecting runs 
that used 70 CPUs (of the 72 available on the instance). The samples this was 
true for were GM24385, HG03492, HG01109, HG02055, HG02080, HG01243, 
HG03098 and CHM13. Runtimes for read alignments used by MarginPolish were 
not recorded. Because MarginPolish requires an aligned BAM, we found it unfair 
to not report this time in the figure as it is a required step in the workflows for 
MarginPolish, Racon and Medaka. As a proxy for the unrecorded read alignment 
time used to generate BAMs for MarginPolish, we added the average alignment 
time recorded while aligning reads in preparation for Medaka runs. We note that 
the alignment for MarginPolish was done by piping output from minimap2 directly 
into samtools sort, and piping this into samtools view to filter for primary and 
supplementary reads. Alignment for Medaka was done using mini_align, which is 
a wrapper for minimap2 bundled in Medaka that simultaneously sorts output.

Reported HELEN runs were performed on GCP except for HG03098, but 
on instances that match the AWS instance type p2.8xlarge in both CPU count 
and GPU (NVIDIA Tesla P100). As such, the differences in runtime between the 
platforms should be negligible, and we have calculated cost based on the AWS 
instance price for consistency. The reported runtime is the sum of time taken by 
call_consensus.py and stitch.py. Unannotated runs were performed on UCSC 
hardware. Racon runtimes reflect the sum of four series of read alignment and 
polishing. The time reported in the figure is the average of the runtime of this 
process run on the Shasta assembly for HG00733, HG002 and CHM13.

Medaka runtime was determined by averaging across the HG00733, HG002 
and CHM13 runs after running Racon four times on the Shasta assembly. We 
again note that this application in particular did not fully use the CPUs for most 
of the execution, and in the case of HG00733 appeared to hang and was restarted. 
The plot includes the average runtime from read alignment using minialign; this 
is separated in the tables in the Supplementary Information. We ran Medaka on 
an x1.16xlarge instance, which had more memory than was necessary. When 
determining cost, we chose to price the run based on the cheapest AWS instance 
type that we could have used accounting for configured CPU count and peak 
memory usage (c5n.18xlarge). This instance could have supported eight more 
concurrent threads, but as the application did not fully use the CPUs, we find this 
to be a fair representation.

Assembly of MHC. Each of the eight GRCh38 MHC haplotypes were aligned using 
minimap2 (with preset asm20) to whole-genome assemblies to identify spanning 
contigs. These contigs were then extracted from the genomic assembly and used for 
alignment visualization. For dot plots, Nucmer 4.057 was used to align each assembler’s 
spanning contigs to the standard chr6:28000000-34000000 MHC region, which 
includes 500-Mb flanks. Output from this alignment was parsed with Dot58, which 
has a web-based graphical user interface for visualization. All defaults were used in 
both generating the input files and drawing the figures. Coverage plots were generated 
from reads aligned to chr6, using a script, find_coverage.py, located at http://github.
com/rlorigro/nanopore_assembly_and_polishing_assessment/.

The best matching alt haplotype (to Shasta, Canu and Flye) was chosen 
as a reference haplotype for quantitative analysis. Haplotypes with the fewest 
supplementary alignments across assemblers were top candidates for QUAST 
analysis. Candidates with comparable alignments were differentiated by identity. 
The highest contiguity/identity MHC haplotype was then analyzed with QUAST 
using -min-identity 80. For all MHC analyses regarding Flye, the unpolished 
output was used.

BAC analysis. At a high level, the BAC analysis was performed by aligning BACs 
to each assembly, quantifying their resolution and calculating identity statistics on 
those that were fully resolved.

We obtained 341 BACs for CHM13 (refs. 59,60) and 179 for HG00733 (ref. 8)  
(complete BAC clones of VMRC62), which had been selected primarily by 
targeting complex or highly duplicated regions. We performed the following 
analysis on the full set of BACs (for CHM13 and HG00733), and a subset selected 
to fall within unique regions of the genome. To determine this subset, we selected 
all BACs that are greater than 10 kb away from any segmental duplication, resulting 
in 16 of HG00733 and 31 of CHM13. This subset represents simple regions of the 
genome that we would expect all assemblers to resolve.

For the analysis, BACs were aligned to each assembly with the command 
minimap2 -secondary=no -t 16 -ax asm20 assembly.fasta bac.fasta>assembly.sam 
and converted to a PAF-like format that describes aligned regions of the  
BACs and assemblies. Using this, we calculated two metrics describing how 
resolved each BAC was: closed is defined as having 99.5% of the BAC aligned  
to a single locus in the assembly; attempted is defined as having a set of alignments 
covering ≥95% of the BAC to a single assembly contig where all alignments  
are at least 1 kb away from the contig end. If such a set exists, it counts as 
attempted. We further calculated median and mean identities (using the alignment 
identity metric described above) of the closed BACs. These definitions were 
created such that a contig that is counted as attempted but not closed likely reflects 
a disagreement. The code for this can be found at https://github.com/skoren/
bacValidation.

Short-read polishing. Chromosome X of the CHM13 assembly (assembled first 
with Shasta, then polished with MarginPolish and HELEN) was obtained by 
aligning the assembly to GRCh38 (using minimap2 with the –x asm20 flag). The 
10X Chromium reads were downloaded from the Nanopore Whole Genome 
Sequencing Consortium (https://github.com/nanopore-wgs-consortium/CHM13/).

The 10X reads were from a NovaSeq eitinstrument at a coverage of 
approximately 50×. The reads corresponding to chromosome X were extracted by 
aligning the entire read set to the whole CHM13 assembly using the 10X Genomics 
Long Ranger Align pipeline (v.2.2), then extracting those corresponding to the 
corresponding chromosome X contigs with samtools. Pilon43 was run iteratively 
for a total of three rounds, in each round aligning the reads to the current assembly 
with Long Ranger and then running Pilon with default parameters.

Structural variant assessment. To create an assembly graph in GFA format, 
Shasta v.0.1.0 was run using the HG002 sequence data with -MarkerGraph.
simplifyMaxLength 10 to reduce bubble removal and -MarkerGraph.
highCoverageThreshold 10 to reduce the removal of edges normally removed by 
the transitive reduction step.

To detect structural variation inside the assembly graphs produced by Shasta, 
we extracted unitigs from the graph and aligned them back to the linear reference. 
Unitigs are walks through the assembly graph that do not traverse any node end 
that includes a bifurcation. We first processed the Shasta assembly graphs with 
gimbricate (https://github.com/ekg/gimbricate). We used gimbricate to recompute 
overlaps in nonRLE space and to remove nodes in the graph only supported by a 
single sequencing read.

To remove overlaps from the graph edges, we then ‘bluntified’ resulting GFAs 
with vg find -F (https://github.com/vgteam/vg). We then applied odgi unitig 
(https://github.com/vgteam/odgi) to extract unitigs from the graph, with the 
condition that the starting node in the unitig generation must be at least 100 bp 
long. To ensure that the unitigs could be mapped back to the linear reference, 
we appended a random walk of 25 kb after the natural end of each unitig, with 
the expectation that even should unitigs would yield around 50 kb of mappable 
sequence. Finally, we mapped the unitigs to GRCh38 with minimap2 with a 
bandwidth of 25 kb (-r25000) and called variants in the alignments using paftools.
js from the minimap2 distribution. We implemented the process in a single script 
that produces variant calls from the unitig set of a given graph: https://github.com/
ekg/shastaGFA/blob/master/shastaGFAtoVCF_unitig_paftools.sh.

The extracted variants were compared to the structural variants from the 
GIAB benchmark in HG002 (v.0.6, ref. 36). Precision, recall and F1 scores were 
computed on variants not overlapping simple repeats and within the benchmark’s 
high-confidence regions. Deletions in the assembly and the GIAB benchmark 
were matched if they had at least 50% reciprocal overlap. Insertions were matched 
if located at less than 100 bp from each other and similar in size (50% reciprocal 
similarity).

Shasta. The following describes Shasta v.0.1.0 (https://github.com/chanzuckerberg/
shasta/releases/tag/0.1.0), which was used throughout our analysis. All runs 
were done on an AWS x1.32xlarge instance (1,952 GB memory, 128 virtual 
processors). The runs used the Shasta recommended options for best performance 
(-memoryMode filesystem -memoryBacking 2M). Rather than using the 
distributed version of the release, the source code was rebuilt locally for best 
performance as recommended by Shasta documentation.

RLE of input reads. Shasta represents input reads using RLE. The sequence of each 
input read is represented as a sequence of bases, each with a repeat count that says 
how many times each of the bases is repeated. Such a representation has previously 
been used in biological sequence analysis24–26.
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For example, the read
CGATTTAAGTTA
is represented as follows using RLE:
CGATAGTA
11132121
Using RLE makes the assembly process less sensitive to errors in the length 

of homopolymer runs, which are the most common type of errors in Oxford 
Nanopore reads. For example, consider these two reads:

CGATTTAAGTTA
CGATTAAGGGTTA
Using their raw representation, these reads can be aligned like this:
CGATTTAAG––TTA
CGATT–AAGGGTTA
Aligning the second read to the first required a deletion and two insertions.  

But in RLE, the two reads become:
CGATAGTA
11132121
CGATAGTA
11122321
The sequence portions are now identical and can be aligned trivially and 

exactly, without any insertions or deletions:
CGATAGTA
CGATAGTA
The differences between the two reads only appear in the repeat counts:
11132121
11122321
The Shasta assembler uses 1 byte to represent repeat counts, and as a result it 

only represents repeat counts between 1 and 255. If a read contains more than 255 
consecutive bases, it is discarded on input. In the data we have analyzed so far, such 
reads are extremely rare.

Some properties of base sequences in RLE. 
•	 In the sequence portion of the RLE, consecutive bases are always distinct.  

If they were not, the second one would be removed from the RLE sequence, 
while increasing the repeat count for the first one.

•	 With ordinary base sequences, the number of distinct k-mers of length k is 4k. 
But with run-length base sequences, the number of distinct k-mers of length k 
is 4 × 3k−1. This is a consequence of the previous bullet.

•	 The run-length sequence is generally shorter than the raw sequence and cannot 
be longer. For a long random sequence, the number of bases in the run-length 
representation is three-quarters of the number of bases in the raw representation.

Markers. Even with RLE, errors in input reads are still frequent. To further reduce 
sensitivity to errors, and also to speed up some of the computational steps in the 
assembly process, the Shasta assembler also uses a read representation based on 
markers. Markers are occurrences in reads of a predetermined subset of short 
k-mers. By default, Shasta uses for this purpose k-mers with k = 10 in RLE, 
corresponding to an average approximately 13 bases in raw read representation.

Just for the purposes of illustration, consider a description using markers of 
length 3 in RLE. There is a total 4 × 32 = 36 distinct such markers. We arbitrarily 
choose the following fixed subset of the 36, and we assign an identity to each of the 
k-mers in the subset as follows:

TGC 0
GCA 1
GAC 2
CGC 3
Consider now the following portion of a read in run-length representation 

(here, the repeat counts are irrelevant and so they are omitted):

CGACACGTATGCGCACGCTGCGCTCTGCAGC

  GAC        TGC      CGC        TGC

                CGC      TGC        GCA

                  GCA        CGC

Occurrences of the k-mers defined in the example above are shown and define 
the markers in this read. Note that markers can overlap. Using the marker identities 
defined in the list, we can summarize the sequence of this read portion as follows:

2 0 3 1 3 0 3 0 1
This is the marker representation of this read portion. It just includes the 

sequence of markers occurring in the read, not their positions. Note that the 
marker representation loses information, as it is not possible to reconstruct the 
complete initial sequence from the marker representation. This also means that the 
marker representation is insensitive to errors in the sequence portions that do not 
belong to any markers.

The Shasta assembler uses a random choice of the k-mers to be used as 
markers. The length of the markers k is controlled by assembly parameter Kmers.k 
with a default value of ten. Each k-mer is randomly chosen to be used as a marker 
with probability determined by assembly parameter --Kmers.probability with a 
default value of 0.1. With these default values, the total number of distinct markers 
is approximately 0.1 × 4 × 39 ≅ 7,900.

The only constraint used in selecting k-mers to be used as markers is that if 
a k-mer is a marker, its reverse complement should also be a marker. This makes 
it easy to construct the marker representation of the reverse complement of a 
read from the marker representation of the original read. It also ensures strand 
symmetry in some of the computational steps.

It is possible that the random selection of markers is not optimal, and that it 
may be best to select the markers based on their frequency in the input reads or 
other criteria. These possibilities have not yet been investigated. Extended Data 
Fig. 1 shows the run-length representation of a portion of a read and its markers, as 
displayed by the Shasta http server.

Marker alignments. The marker representation of a read is a sequence in an 
alphabet consisting of the marker identities. This sequence is much shorter than 
the original sequence of the read but uses a much larger alphabet. For example, 
with default Shasta assembly parameters, the marker representation is ten times 
shorter than the run-length encoded read sequence, or about 13 times shorter than 
the raw read sequence. Its alphabet has around 8,000 symbols, many more than the 
four symbols that the original read sequence uses.

Because the marker representation of a read is a sequence, we can compute an 
alignment of two reads directly in marker representation. Computing an alignment 
in this way has two important advantages:
•	 The shorter sequences and larger alphabet make the alignment much faster to 

compute.
•	 The alignment is insensitive to read errors in the portions that are not covered 

by any marker.
For these reasons, the marker representation is orders of magnitude more 

efficient than the raw base representation when computing read alignments. 
Extended Data Fig. 2 shows an example alignment matrix.

Computing optimal alignments in marker representation. To compute the 
(likely) optimal alignment (example highlighted in green in Extended Data 
Fig. 2), the Shasta assembler uses a simple alignment algorithm on the marker 
representations of the two reads to be aligned. It effectively constructs an optimal 
path in the alignment matrix, but using some ‘banding’ heuristics to speed up the 
computation:
•	 The maximum number of markers that an alignment can skip on either read 

is limited to a maximum, under control of assembly parameter Align.maxSkip 
(default value 30 markers, corresponding to around 400 bases when all other 
Shasta parameters are at their default). This reflects the fact that Oxford 
Nanopore reads can often have long stretches in error. In the alignment matrix 
shown in Extended Data Fig. 2, there is a skip of about 20 markers (two 
light-gray squares) following the first ten aligned markers (green dots) on the 
top left.

•	 The maximum number of markers that an alignment can skip at the begin-
ning or end of a read is limited to a maximum, under control of assembly 
parameter Align.maxTrim (default value 30 markers, corresponding to around 
400 bases when all other Shasta parameters are at their default). This reflects 
the fact that Oxford Nanopore reads often have an initial or final portion that 
is not usable. These first two heuristics are equivalent to computing a reduced 
band of the alignment matrix.

•	 To avoid alignment artifacts, marker k-mers that are too frequent in either of 
the two reads being aligned are not used in the alignment computation. For 
this purpose, the Shasta assembler uses a criterion based on absolute number 
of occurrences of marker k-mers in the two reads, although a relative criterion 
(occurrences per kilobase) may be more appropriate. The current absolute 
frequency threshold is under control of assembly parameter Align.maxMark-
erFrequency (default ten occurrences).

Using these techniques and with the default assembly parameters, the time 
to compute an optimal alignment is 10−3–10−2 s in the Shasta implementation as 
of release v.0.1.0 (April 2019). A typical human assembly needs to compute 108 
read alignments that results in a total compute time ~105–106 s or ~103–104 s of 
elapsed time (1–3 h) on a machine with 128 virtual processors. This is one of the 
most computationally expensive portions of a Shasta assembly. Some additional 
optimizations are possible in the code that implement this computation and may 
be implemented in future releases.

Finding overlapping reads. Even though computing read alignments in marker 
representation is fast, it still is not feasible to compute alignments among all 
possible pairs of reads. For a human size genome with ∼106−107 reads, the number 
of pairs to consider would be ∼1012−1014, and even at 10−3 s per alignment the 
compute time would be ∼109−1011 s or ∼107−109 s elapsed time (∼102−104 d) when 
using 128 virtual processors.
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Therefore, some means of narrowing down substantially the number of pairs 
to be considered is essential. The Shasta assembler uses for this purpose a slightly 
modified MinHash27,28 scheme based on the marker representation of reads.

In overview, the MinHash algorithm takes as input a set of items each 
characterized by a set of features. Its goal is to find pairs of the input items that 
have a high Jaccard similarity index: that is, pairs of items that have many features 
in common. The algorithm proceeds by iterations. At each iteration, a new hash 
table is created and a hash function that operates on the feature set is selected. For 
each item, the hash function of each of its features is evaluated, and the minimum 
hash function value found is used to select the hash table bucket that each item is 
stored in. It can be proved that the probability of two items ending up in the same 
bucket equals the Jaccard similarity index of the two items: that is, items in the 
same bucket are more likely to be highly similar than items in different buckets61. 
The algorithm then adds to the pairs of potentially similar items all pairs of items 
that are in the same bucket.

When all iterations are complete, the probability that a pair of items was found 
at least once is an increasing function of the Jaccard similarity of the two items. In 
other words, the pairs found are enriched for pairs that have high similarity. One 
can now consider all the pairs found (hopefully a much smaller set than all possible 
pairs) and compute the Jaccard similarity index for each, then keep only the pairs 
for which the index is sufficiently high. The algorithm does not guarantee that all 
pairs with high similarity will be found, only that the probability of finding all pairs 
is an increasing function of their similarity.

The algorithm is used by Shasta with items being oriented reads (a read 
in either original or reverse complemented orientation) and features being 
consecutive occurrences of m markers in the marker representation of the 
oriented read. For example, consider an oriented read with the following marker 
representation: 18,45,71,3,15,6,21

If m is selected as equal to four (the Shasta default, controlled by assembly 
parameter MinHash.m), the oriented read is assigned the following features:

(18,45,71,3)
(45,71,3,15)
(71,3,15,6)
(3,15,6,21)
From this picture of an alignment matrix in marker representation, we see 

that streaks of four or more common consecutive markers are relatively common. 
We have to keep in mind that, with Shasta default parameters, four consecutive 
markers span an average 40 bases in RLE or about 52 bases in the original raw base 
representation. At a typical error rate around 10%, such a portion of a read would 
contain on average five errors. Yet, the marker representation in run-length space 
is sufficiently robust that these common ‘features’ are relatively common despite 
the high error rate. This indicates that we can expect the MinHash algorithm to be 
effective in finding pairs of overlapping reads.

However, the MinHash algorithm has a feature that is undesirable for our 
purposes: namely, that the algorithm is good at finding read pairs with high  
Jaccard similarity index. For two sets X and Y, the Jaccard similarity index is 
defined as the ratio

J ¼ X \ Y
X ∪Y

Because the read length distribution of Oxford Nanopore reads is very wide, 
it is very common to have pairs of reads with very different lengths. Consider 
now two reads with lengths nx and ny, with nx < ny, that overlap exactly over the 
entire length nx. The Jaccard similarity is in this case given by nx/ny < 1. This 
means that, if one of the reads in a pair is much shorter than the other one, their 
Jaccard similarity will be low even in the best case of exact overlap. As a result, the 
unmodified MinHash algorithm will not do a good job at finding overlapping pairs 
of reads with very different lengths.

For this reason, the Shasta assembler uses a small modification to the MinHash 
algorithm: instead of just using the minimum hash for each oriented read for 
each iteration, it keeps all hashes below a given threshold (this is not the same as 
keeping a fixed number of the lowest hashes for each read). Each oriented read 
can be stored in multiple buckets, one for each low hash encountered. The average 
number of low hashes on a read is proportional to its length, and, therefore, this 
change has the effect of eliminating the bias against pairs in which one read is 
much shorter than the other. The probability of finding a given pair is no longer 
driver by the Jaccard similarity. The modified algorithm is referred to as LowHash 
in the Shasta source code. Note that it is effectively equivalent to an indexing 
approach in which we index all features with low hash.

The LowHash algorithm is controlled by the following assembly parameters:
•	 MinHash.m (default 4): the number of consecutive markers that define a 

feature
•	 MinHash.hashFraction (default 0.01): the fraction of hash values that count 

as ‘low’
•	 MinHash.minHashIterationCount (default 10): the number of iterations
•	 MinHash.maxBucketSize (default 10): the maximum number of items for a 

bucket to be considered. Buckets with more than this number of items are 
ignored. The goal of this parameter is to mitigate the effect of common repeats, 
which can result in buckets containing large numbers of unrelated oriented reads

•	 MinHash.minFrequency (default 2): the number of times a pair of oriented 
reads has to be found to be considered and stored as a possible pair of overlap-
ping reads

Initial assembly steps. Initial steps of a Shasta assembly proceed as follows. 
If the assembly is setup for best performance (--memoryMode filesystem 
--memoryBacking 2M if using the Shasta executable), all data structures are stored 
in memory and no disk activity takes place except for initial loading of the input 
reads, storing of assembly results and storing a small number of small files with 
useful summary information.

	(1)	 Input reads are read from FASTA files and converted to run-length  
representation.

	(2)	 k-mers to be used as markers are randomly selected.
	(3)	 Occurrences of those marker k-mers in all oriented reads are found.
	(4)	 The LowHash algorithm finds candidate pairs of overlapping oriented reads.
	(5)	 A marker alignment is computed for each candidate pair of oriented reads. If 

the marker alignment contains a minimum number of aligned markers, the 
pair is stored as an aligned pair. The minimum number of aligned markers is 
controlled by assembly parameter Align.minAlignedMarkerCount.

Read graph. Using the methods covered so far, an assembly has created a list of 
pairs of oriented reads, each pair having a plausible marker alignment. How to 
use this type of information for assembly is a classical problem with a standard 
solution62, the string graph.

It may be possible to adapt the prescriptions in the Myers paper to our situation 
in which a marker representation is used. However, we have not attempted this 
here, leaving it for future work.

Instead, the approach currently used in the Shasta assembler is very 
simple and can likely be improved. In the current simple approach, the Shasta 
assembler creates an undirected graph, the Read Graph, in which each vertex 
represents an oriented read (that is, a read in either original orientation or reverse 
complemented) and an undirected edge between two vertices is created if we have 
found an alignment between the corresponding oriented reads.

However, the read graph as constructed in this way suffers from high 
connectivity in repeat regions. Therefore, the Shasta assembler only keeps a 
k-nearest-neighbor subset of the edges. That is, for each vertex (oriented read) 
we only keep the k edges with the best alignments (greatest number of aligned 
markers). The number of edges kept for each vertex is controlled by assembly 
parameter ReadGraph.maxAlignmentCount, with a default value of six. Note 
that, despite the k-nearest-neighbor subset, it remains possible for a vertex to have 
degrees more than k.

Note that each read contributes two vertices to the read graph, one in its 
original orientation, and one in reverse complemented orientation. Therefore, the 
read graph contains two strands; each strand at full coverage. This makes it easy to 
investigate and potentially detect erroneous strand jumps that would be much less 
obvious if using approaches with one vertex per read

An example of one strand is shown in Extended Data Fig. 3a. Even though the 
graph is undirected, edges that correspond to overlap alignments are drawn with 
an arrow that points from the prefix oriented read to the suffix one, to represent 
the direction of overlap. Edges that correspond to containment alignments 
(an alignment that covers one of the two reads entirely) are drawn in red and 
without an arrow. Vertices are drawn with area proportional to the length of the 
corresponding reads.

The linear structure of the read graph successfully reflects the linear 
arrangement of the input reads and their origin on the genome being assembled. 
However, deviations from the linear structure can occur in the presence of long 
repeats (Extended Data Fig. 3b), typically for high similarity segment duplications.

The current Shasta implementation does not attempt to remove the obviously 
incorrect connections. This results in unnecessary breaks in assembly contiguity. 
Despite this, Shasta assembly contiguity is adequate and comparable to what other, 
less performant long-read assemblers achieve. It is hoped that future Shasta releases 
will do a better job at handling these situations.

Marker graph. Consider a read whose marker representation is as follows:
a b c d e
We can represent this read as a directed graph that the describes the sequence 

in which its markers appear. This is not very useful but illustrates the simplest 
form of a marker graph as used in the Shasta assembler. The marker graph is a 
directed graph in which each vertex represents a marker and each edge represents 
the transition between consecutive markers. We can associate sequence with each 
vertex and edge of the marker graph:
•	 Each vertex is associated with the sequence of the corresponding marker.
•	 If the markers of the source and target vertex of an edge do not overlap, the 

edge is associated with the sequence intervening between the two markers.
•	 If the markers of the source and target vertex of an edge do overlap, the edge is 

associated with the overlapping portion of the marker sequences.
Consider now a second read with the following marker representation, which 

differs from the previous one just by replacing marker c with x:
a b x d e
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The marker graph for the two reads is Extended Data Fig. 4a. In the optimal 
alignment of the two reads, markers a, b, d and e are aligned. We can redraw the 
marker graph grouping together vertices that correspond to aligned markers as in 
Extended Data Fig. 4b. Finally, we can merge aligned vertices to obtain a marker 
graph describing the two aligned reads, shown in Extended Data Fig. 4c.

Here, by construction, each vertex still has a unique sequence associated 
with it: the common sequence of the markers that were merged (however, the 
corresponding repeat counts can be different for each contributing read). An 
edge, on the other hand, can have different sequences associated with it; one 
corresponding to each of the contributing reads. In this example, edges a → b 
and d → e have two contributing reads, which can each have a distinct sequence 
between the two markers. We call coverage of a vertex or edge the number of 
reads ‘contributing’ to it. In this example, vertices a, b, d and e have coverage 2 and 
vertices c and x have coverage 1. Edges a → b and d → e have coverage 2, and the 
remaining edges have coverage 1.

The construction of the marker graph was illustrated here for two reads, but 
the Shasta assembler constructs a global marker graph that takes into account all 
oriented reads:

	(1)	 The process starts with a distinct vertex for each marker of each oriented 
read. Note that at this stage the marker graph is large (∼2 × 1010 vertices for a 
human assembly using default. assembly parameters).

	(2)	 For each marker alignment corresponding to an edge of the read graph, we 
merge vertices corresponding to aligned markers.

	(3)	 Of the resulting merged vertices, we remove those whose coverage in too low 
or two high, indicating that the contributing reads or some of the alignments 
involved are probably in error. This is controlled by assembly parameters 
MarkerGraph.minCoverage (default 10) and MarkerGraph.maxCoverage  
(default 100), which specify the minimum and maximum coverage for a 
vertex to be kept.

	(4)	 Edges are created. An edge v0 → v1 is created if there is at least a read con-
tributing to both v0 and v1 and for which all markers intervening between v0 
and v1 belong to vertices that were removed.

Note that this does not mean that all vertices with the same marker sequence 
are merged: two vertices are only merged if they have the same marker sequence, 
and if there are at least two reads for which the corresponding markers are aligned.

Given the large number of initial vertices involved, this computation is not 
trivial. To allow efficient computation in parallel on many threads a lock-free 
implementation of the disjoint data set data structure63, is used for merging 
vertices. Some code changes were necessary to permit large numbers of vertices, as 
the initial implementation by Wenzel Jakob only allowed for 32-bit vertex identities 
(https://github.com/wjakob/dset).

Assembly graph. The Shasta assembly process also uses a compact representation 
of the marker graph, called the assembly graph, in which each linear sequence of 
edges is replaced by a single edge (Extended Data Fig. 5).

The length of an edge of the assembly graph is defined as the number of marker 
graph edges that it corresponds to. For each edge of the assembly graph, an average 
coverage is also computed, by averaging the coverage of the marker graph edges it 
corresponds to.

Using the marker graph to assemble sequence. The marker graph is a partial 
description of the multiple sequence alignment between reads and can be used 
to assemble consensus sequence. One simple way to do that is to only keep the 
‘dominant’ path in the graph, and then traverse that path from vertex to edge to 
vertex, assembling a run-length encoded sequence as follows:

	(1)	 On a vertex, all reads have the same sequence, by construction: the marker 
sequence associated with the vertex. There is trivial consensus among all the 
reads contributing to a vertex, and the marker sequence can be used directly 
as the contribution of the vertex to assembled sequence.

	(2)	 For edges, there are two possible situations plus a hybrid case:

(a)	 If the adjacent markers overlap, in most cases all contributing reads have 
the same number of overlapping bases between the two markers, and we 
are again in a situation of trivial consensus, where all reads contribute the 
same sequence, which also agrees with the sequence of adjacent vertices. 
In cases where not all reads are in agreement on the number of overlap-
ping bases, only reads with the most frequent number of overlapping 
bases are taken into account.

(b)	 If the adjacent markers do not overlap, then each read can have a different 
sequence between the two markers. In this situation, we compute a multi-
ple sequence alignment of the sequences and a consensus using the spoa 
library40 (https://github.com/rvaser/spoa). The multiple sequence align-
ment is computed constrained at both ends, because all reads contributing 
to the edge have, by construction, identical markers at both sides.

(c)	 A hybrid situation occasionally arises, in which some reads have the two 
markers overlapping, and some do not. In this case we count reads of the 
two kinds and discard the reads of the minority kind, then revert to one of 
the two cases 2(a) or 2(b) above.

This is the process used for sequence assembly by the current Shasta 
implementation. It requires a process to select and define dominant paths, which 
is described in the section ‘Selecting assembly paths in Shasta’. It is algorithmically 
simple, but its main shortcoming is that it does not use for assembly reads that 
contribute to the abundant side branches. This means that coverage is lost, and 
therefore the accuracy of fassembled sequence is not as good as it could be if 
all available coverage was used. Means to eliminate this shortcoming and use 
information from the side branches of the marker graph could be a subject of 
future work on the Shasta assembler.

This process described works with a run-length encoded sequence and 
therefore assembles a run-length encoded sequence. The final step to create raw 
assembled sequence is to compute the most likely repeat count for each sequence 
position in RLD. After some experimentation, this is currently done by choosing as 
the most likely repeat count the one that appears the most frequently in the reads 
that contributed to each assembled position.

A simple Bayesian model for repeat counts resulted in a modest improvement 
in the quality of assembled sequence. But the model appears to sensitive to 
calibration errors, and therefore it is not used by default in Shasta assemblies. 
However, it is used by MarginPolish, as described in the MarginPolish section.

Selecting assembly paths in Shasta. The sequence assembly procedure described in 
the previous section can be used to assemble sequence for any path in the marker 
graph. This section describes the selection of paths for assembly in the current 
Shasta implementation. This is done by a series of steps that ‘remove’ edges (but 
not vertices) from the marker graph until the marker graph consists mainly of 
linear sections that can be used as the assembly paths. For speed, edges are not 
actually removed but just marked as removed using a set of flag bits allocated for 
this purpose in each edge. However, the description that follows will use the loose 
term ‘remove’ to indicate that an edge was flagged as removed.

This process consists of the following three steps, described in more detail in 
the following sections:

	(1)	 Approximate transitive reduction of the marker graph
	(2)	 Pruning of short side branches (leaves)
	(3)	 Removal of bubbles and superbubbles

The last step, removal of bubbles and superbubbles, is consistent with Shasta’s 
current assembly goal, which is to compute a mostly monoploid assembly, at least 
on short scales.

Approximate transitive reduction of the marker graph. The goal of this step is to 
eliminate the side branches in the marker graph, which are the result of errors. 
Despite the fact that the number of side branches is substantially reduced thanks 
to the use of RLE, side branches are still abundant. This step uses an approximate 
transitive reduction of the marker graph that only considers reachability up to a 
maximum distance, controlled by assembly parameter MarkerGraph.maxDistance 
(default 30 marker graph edges). Using a maximum distance makes sure that the 
process remains computationally affordable, and also has the advantage of not 
removing long-range edges in the marker graph, which could be substantial.

In detail, the process works as follows. In this description, the edge being 
considered for removal is the edge v0 v1 with source vertex v0 and target vertex v1. 
The first two steps are not really part of the transitive reduction but are performed 
by the same code for convenience.

	(1)	 All edges with coverage less than or equal to MarkerGraph.lowCoverage-
Threshold are unconditionally removed. The default value for this assembly 
parameter is 0, so this step does nothing when using default parameters.

	(2)	 All edges with coverage 1 and for which the only supporting read has a large 
marker skip are unconditionally removed. The marker skips of an edge, for a 
given read, is defined as the distance (in markers) between the v0 marker for 
that read and the v1 marker for the same read. Most marker skips are small, 
and a large skip is indicative of an artifact. Keeping those edges could result in 
assembly errors. The marker skip threshold is controlled by assembly param-
eter MarkerGraph.edgeMarkerSkipThreshold (default 100 markers).

	(3)	 Edges with coverage greater than MarkerGraph.lowCoverageThreshold 
(default 0) and less than MarkerGraph.highCoverageThreshold (default 256), 
and that were not previously removed, are processed in order of increas-
ing coverage. Note that with the default values of these parameters all edges 
are processed, because edge coverage is stored using 1 byte and therefore 
can never be more than 255 (it is saturated at 255). For each edge v0 v1, a 
breadth-first search (BFS) in the alternative path from v0 to v1 exists, edge v0 
v1 is removed. Note that the BFS does not use edges that have already been 
removed, and so the process is guaranteed not to affect reachability. Process-
ing edges in order of increasing coverage makes sure that low coverage edges 
the most likely to be removed.

The transitive reduction step is intrinsically sequential and so it is currently 
performed in sequential code for simplicity. It could be parallelized in principle, 
but that would require sophisticated locking of marker graph edges to make sure 
independent threads do not step on each other, possibly reducing reachability. 
However, even with sequential code, this step is not computationally expensive, 
taking typically only a small fraction of total assembly time.
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When the transitive reduction step is complete, the marker graph consists 
mostly of linear sections composed of vertices with an in-degree and out-degree of 
one, with occasional side branches and bubbles or superbubbles, which are handled 
in the next two phases described in the following.

Pruning of short side branches (leaves). At this stage, a few iterations of pruning are 
done by simply removing, at each iteration, edge v0 v1 if v0 has in-degree 0 (that is, 
is a backward-pointing leaf) or v1 has out-degree 0 (that is, is a forward-pointing 
leaf). The net effect is that all side branches of length (number of edges) at most 
equal to the number of iterations are removed. This leaves the leaf vertex isolated, 
which causes no problems. The number of iterations is controlled by assembly 
parameter MarkerGraph.pruneIterationCount (default 6).

Removal of bubbles and superbubbles. The marker graph now consists of mostly 
linear section with occasional bubbles or superbubbles64. Most of the bubbles and 
superbubbles are caused by errors, but some of those are due to heterozygous loci 
in the genome being assembled. Bubbles and superbubbles of the latter type could 
be used for separating haplotypes (phasing), a possibility that will be addressed in 
future Shasta releases. However, the goal of the current Shasta implementation is 
to create a monoploid assembly at all scales but the very long ones. Accordingly, 
bubbles and superbubbles at short scales are treated as errors, and the goal of 
the bubble/superbubble removal step is to keep the most significant path in each 
bubble or superbubble. The Extended Data Fig. 6 shows typical examples of a 
bubble and superbubble in the marker graph.

The bubble/superbubble removal process is iterative. Early iterations work  
on short scales, and late iterations work on longer scales. Each iteration uses a 
length threshold that controls the maximum number of marker graph edges  
for features to be considered for removal. The value of the threshold for each 
iteration is specified using assembly parameter MarkerGraph.simplifyMaxLength, 
which consists of a comma-separated string of integer numbers, each specifying 
the threshold for one iteration in the process. The default values are 10, 100 and 
1,000, which means that three iterations of this process are performed. The first 
iteration uses a threshold of ten marker graph edges, and the second and third 
iterations use length thresholds of 100 and 1,000 marker graph edges, respectively. 
The last and largest of the threshold values used determines the size of the  
smallest bubble or superbubble that will survive the process. The default 1,000 
markers are equivalent to roughly 13 kb. To suppress more bubble/superbubbles, 
increase the threshold for the last iteration. To see more bubbles/superbubbles, 
decrease the length threshold for the last iteration or remove the last iteration 
entirely.

The goal of the increasing threshold values is to work on small features at 
first, and on larger features in the later iterations. The choice of MarkerGraph.
simplifyMaxLength could be application dependent. The default value is a 
reasonable compromise useful if one desires a mostly monoploid assembly with 
just some large heterozygous features.

Each iteration consists of two steps. The first removes bubbles and the second 
removes superbubbles. Only bubbles/superbubbles consisting of features shorter 
than the threshold for the current iteration are considered:

	(1)	 Bubble removal
(a)�	 An assembly graph corresponding to the current marker graph is created.
(b)	� Bubbles are located in which the length of all branches (number of marker 

graph edges) is no more than the length threshold at the current iteration. 
In the assembly graph, a bubble appears as a set of parallel edges (edges 
with the same source and target).

(c)	� In each bubble, only the assembly graph edge with the highest average 
coverage is kept. Marker graph edges corresponding to all other assembly 
graph edges in the bubble are flagged as removed.

	(2)	 Superbubble removal

(a)	� An assembly graph corresponding to the current marker graph is created.
(b)	� Connected components of the assembly graph are computed, but only  

considering edges below the current length threshold. This way, each 
connected component corresponds to a ‘cluster’ of ‘short’ assembly graph 
edges.

(c)	� For each cluster, entries in the cluster are located. These are vertices that 
have in-edges from a vertex outside the cluster. Similarly, out-edges are 
located (vertices that have out-edges outside the cluster).

(d)	� For each entry/exit pair, the shortest path is computed. However, in this 
case the ‘length’ of an assembly graph edge is defined as the inverse of its 
average coverage: that is, the inverse of average coverage for all the con-
tributing marker graph edges.

(e)	� Edges on each shortest path are marked as edges to be kept.
(f)	 All other edges internal to the cluster are removed.

When all iterations of bubble/superbubble removal are complete, the assembler 
creates a final version of the assembly graph. Each edge of the assembly graph 
corresponds to a path in the marker graph, for which sequence can be assembled 
using the method described. Note, however, that the marker graph and the 
assembly graph have been constructed to contain both strands. Special care is taken 

during all transformation steps to make sure that the marker graph (and therefore 
the assembly graph) remain symmetric with respect to strand swaps. Therefore, 
most assembly graph edges come in reverse complemented pairs, of which we 
assemble only one. However, it is possible but rare for an assembly graph to be its 
own reverse complement.

Assembly parameters selection. The sequence of computational steps outlined before 
depends on a number of assembly parameters, such as, for example, the length 
and fraction of k-mers used as markers, the parameters controlling the LowHash 
iteration and so on. In Shasta, all of these parameters are exposed as command line 
options and none of them are hardcoded or hidden. Our error analysis shows that 
the set of assembly parameters we used (the default values for Shasta v.0.1.0) gave 
satisfactory assembly results for our data. However, we do not claim that the same 
choices would generalize to other situations. Additional work will be needed to 
find parameter sets that work for lower or higher coverage, for genomes of different 
sizes and characteristics or for different types of long read.

High performance computing techniques used by Shasta. The Shasta assembler is 
designed to run on a single machine with an amount of memory sufficient to hold 
all of its data structures (1–2 Tb for a human assembly, depending on coverage). 
All data structures are memory mapped and can be set up to remain available 
after assembly completes. Note that using such a large memory machine does not 
substantially increase the cost per CPU cycle. For example, on AWS the cost per 
virtual processor hour for large memory instances is no more than twice the cost 
for laptop-sized instances.

There are various advantages to running assemblies in this way:
•	 Running on a single machine simplifies the logistics of running an assembly 

versus, for example, running on a cluster of smaller machines with shared 
storage.

•	 No disk input/output takes place during assembly, except for loading the reads 
in memory and writing out assembly results plus a few small files containing 
summary information. This eliminates performance bottlenecks commonly 
caused by disk I/O.

•	 Having all data structures in memory makes it easier and more efficient to 
exploit parallelism, even at very low granularity.

•	 Algorithm development is easier, as all data are immediately accessible without 
the need to read files from disk. For example, it is possible to easily rerun a 
specific portion of an assembly for experimentation and debugging without 
any wait time for data structures to be read from disk.

•	 When the assembler data structures are set up to remain in memory after the 
assembler completes, it is possible to use the Python API or the Shasta http 
server to inspect and analyze an assembly and its data structures (for example, 
display a portion of the read graph, marker graph or assembly graph).

•	 For optimal performance, assembler data structures can be mapped to Linux 
2 MB pages (‘huge pages’). This makes it faster for the operating system to 
allocate and manage the memory, and improves translation lookaside buffer 
efficiency. Using huge pages mapped on the hugetlbfs filesystem (Shasta 
executable options --memoryMode filesystem --memoryBacking 2M) can 
result in a notable speedup (20–30%) for large assemblies. However, it requires 
root privilege via sudo.

To optimize performance in this setting, the Shasta assembler uses various 
techniques:
•	 In most parallel steps, the division of work among threads is not set up in 

advance but decided dynamically (‘dynamic load balancing’). As a thread fin-
ishes a piece of work assigned to it, it grabs another chunk of work to do. The 
process of assigning work items to threads is lock-free (that is, it uses atomic 
memory primitives rather than mutexes or other synchronization methods 
provided by the operating system).

•	 Most large memory allocations are done via mmap and can optionally be 
mapped to Linux 2 MB pages backed by the Linux hugetlbfs. This memory 
is persistent until the next reboot and is resident (nonpageable). As a result, 
assembler data structures can be kept in memory and reaccessed repeatedly 
at very low cost. This facilitates algorithm development (for example, it allows 
repeatedly testing a single assembly phase without having to rerun the entire 
assembly each time or having to wait for data to load) and postprocessing 
(inspecting assembly data structures after the assembly is complete). The 
Shasta http server and Python API take advantage of this capability.

•	 The Shasta code includes a C++ class for conveniently handling these large 
memory-mapped regions as C++ containers with familiar semantics (class 
shasta::MemoryMapped::Vector).

•	 In situations where a large number of small vectors are required, a two-pass 
process is used (class shasta::MemoryMapped::VectorOfVectors). In the first 
pass, one computes the length of each of the vectors. A single large area  
is then allocated to hold all of the vectors contiguously, together with another 
area to hold indexes pointing to the beginning of each of the short vectors.  
In a second pass, the vectors are then filled. Both passes can be performed  
in parallel and are entirely lock free. This process eliminates memory  
allocation overhead that would be incurred if each of the vectors were to  
be allocated individually.
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Thanks to these techniques, Shasta achieves close to 100% CPU use during its 
parallel phases, even when using large numbers of threads. However, a number of 
sequential phases remain, which typically result in average CPU use during a large 
assembly around 70%. Some of these sequential phases can be parallelized, which 
would result in increased average CPU use and improved assembly performance.

MarginPolish. Throughout, we used MarginPolish v.1.0.0 from https://github.
com/ucsc-nanopore-cgl/MarginPolish.

MarginPolish is an assembly refinement tool designed to sum over 
(marginalize) read to assembly alignment uncertainty. It takes as input a genome 
assembly and set of aligned reads in BAM format. It outputs a refined version of 
the input genome assembly after attempting to correct base-level errors in terms of 
substitutions and indels (insertions and deletions). It can also output a summary 
representation of the assembly and read alignments as a weighted POA graph, 
which is used by the HELEN neural network-based polisher described next.

It was designed and is optimized to work with noisy long ONT reads, although 
parameterization for other, similar read types is easily possible. It does not yet 
consider signal-level information from ONT reads. It is also currently a haploid 
polisher; in that it does not attempt to recognize or represent heterozygous 
polymorphisms or phasing relationships. For haploid genome assemblies 
of a diploid genome, it will therefore fail to capture half of all heterozygous 
polymorphisms.

Algorithm overview. MarginPolish works as follows:

	(1)	 Reads and the input assembly are converted to their RLE (see Shasta the 
description for the steps and rationale).

	(2)	 A restricted, weighted POA40 graph is constructed representing the RLE input 
assembly and potential edits to it in terms of substitutions and indels.

	(3)	 Within identified regions of the POA containing likely assembly errors:
(a)	� A set of alternative sequences representing combinations of edits are enu-

merated by locally traversing the POA within the region.
(b)	� The likelihood of the existing and each alternative sequence is evaluated 

given the aligned reads.
(c)	� If an alternative sequence with higher likelihood than the current refer-

ence exists, then the assembly at the location is updated with this higher 
likelihood sequence.

	(4)	 Optionally, the program loops back to step 2 to repeat the refinement process 
(by default it loops back once).

	(5)	 The modified run-length encoded assembly is expanded by estimating the 
repeat count of each base given the reads using a simple Bayesian model. The 
resulting final, polished assembly is output. In addition, a representation of 
the weighted POA can be output.

Innovations. Compared to existing tools, MarginPolish is most similar to Racon42 in 
that they are comparable in speed, both principally use small-parameter HMM-like 
models and both do not currently use signal information. Compared to Racon, 
MarginPolish has some key innovations that we have found to improve polishing 
accuracy:

•	 MarginPolish, as with our earlier tool in the Margin series2, uses the forward–
backward and forward algorithms for pair-HMMs to sum over all possible 
pairwise alignments between pairs of sequences instead of the single most 
probable alignment (Viterbi). Considering all alignments allows more infor-
mation to be extracted per read.

•	 The POA graph is constructed from a set of weights computed from the 
posterior alignment probabilities of each read to the initial assembled refer-
ence sequence (see below), the result is that MarginPolish POA construction 
does not have a read-order dependence. This is similar to that described by 
HGAP3 (ref. 65). Most earlier algorithms for constructing POA graphs have 
a well-known explicit read-order dependence that can result in undesirable 
topologies40.

•	 MarginPolish works in a run-length encoded space, which results in consider-
ably less alignment uncertainty and correspondingly improved performance.

•	 MarginPolish, similarly to Nanopolish66, evaluates the likelihood of each 
alternative sequence introduced into the assembly. This improves performance 
relative to a faster but less accurate algorithm that traces back a consensus 
sequence through the POA graph.

•	 MarginPolish uses a simple chunking scheme to break up the polishing of the 
assembly into overlapping pieces. This results in low memory usage per core 
and simple parallelism.

In the following, steps 2, 3 and 5 of the MarginPolish algorithm are described 
in detail. In addition, the parallelization scheme is described.

POA graph construction. To create the POA, we start with the existing assembled 
sequence s = s1, s2,… sn, and for each read r = r1, r2,…, rm in the set of reads R use the 
forward–backward algorithm with a standard three-state, affine-gap pair-HMM 
to derive posterior alignment probabilities using the implementation described in 
ref. 56. The parameters for this model are specified in the polish.hmm subtree of 

the JSON formatted parameters file, including polish.hmm.transitions and polish.
hmm.emissions. Current defaults were tuned via expectation maximization12 
of R9.4 ONT reads aligned to a bacterial reference; we have observed that the 
parameters for this HMM seem robust to small changes in basecaller versions. 
The result of running the forward–backward algorithm is three sets of posterior 
probabilities:
	(1)	 First, match probabilities: the set of posterior match probabilities, each the 

probability Pðri}sjÞ
I

 that a read base ri is aligned to a base sj in s.
	(2)	 Second, insertion probabilities: the set of posterior insertion probabilities, 

each the probability Pðri}� jÞ
I

 that a read base ri is inserted between two 
bases sj and sj+1 in s, or, if j = 0, inserted before the start of s, or, if j = n, after 
the end of s.

	(3)	 Third, deletion probabilities, the set of posterior deletion probabilities, each 
the probability Pð�i}sjÞ

I
 that a base sj in s is deleted between two read bases ri 

and ri+1. (Note that because a read is generally an incomplete observation of s, 
we consider the probability that a base in s is deleted before the first position 
or after the last position of a read as 0.)

As most probabilities in these three sets are very small and yet to store and 
compute all the probabilities would require evaluating comparatively large forward 
and backward alignment matrices, we restrict the set of probabilities heuristically 
as follows:
•	 We use a banded forward–backward algorithm, as originally described in 

ref. 67. To do this we use the original alignment of the read to s as in the input 
BAM file. Given that s is generally much longer than each read this allows 
computation of each forward–backward invocation in time linearly pro-
portional to the length of each read, at the cost of restricting the probability 
computation to a subportion of the overall matrix, albeit one that contains 
most of the probability mass.

•	 We only store posterior probabilities above a threshold (polish.pairwiseAlign-
mentParameters.threshold, by default 0.01), treating smaller probabilities as 
equivalent as zero.

The result is that these three sets of probabilities are a very sparse subset of the 
complete sets.

To estimate the posterior probability of a multi-base insertion of a read 
substring ri, ri+1,… rk at a given location j in s involves repeated summation 
over terms in the forward and backward matrices. Instead, to approximate this 
probability we heuristically use

P ri; riþ1; ¼ rk}� jð Þ ¼ argmin
l 2 i; k½  Pðrl}� jÞ

the minimum probability of any base in the multi-base insertion being individually 
inserted at the location in s as a proxy, a probability that is an upper bound on the 
actual probability.

Similarly, we estimate the posterior probability of a deletion involving more 
than one contiguous base s at a given location in a read using analogous logic. As 
we store a sparse subset of the single-base insertion and deletion probabilities and 
given these probability approximations, it is easy to calculate all the multi-base 
indel probabilities with value greater than t by linear traversal of the single-based 
insertion and deletion probabilities after sorting them, respectively, by their read 
and s coordinates. The result of such calculation is expanded sets of insertion and 
deletion probabilities that include multi-base probabilities.

To build the POA we start from s, which we call the backbone. The backbone is 
a graph where each base sj in s corresponds to a node, there are special source and 
sink nodes (which do not have a base label), and the directed edges connect the 
nodes for successive bases sj, sj+1 in s, from the source node to the node for s1, and, 
similarly, from the node for sn to the sink node.

Each nonsource/sink node in the backbone has a separate weight for each 
possible base x ∈ {A, C, G, T}. This weight (w) is

w j; xð Þ ¼
X

r2R

X

i

1x rið ÞPðri}sjÞ

where 1x(ri) is an indicator function that is 1 if ri = x and otherwise 0, corresponds 
to the sum of match probabilities of read elements of base x being aligned to sj. 
This weight has a probabilistic interpretation: it is the total number of expected 
observations of the base x in the reads aligned to sj, summing over all possible 
pairwise alignments of the reads to s. It can be fractional because of the inherent 
uncertainty of these alignments; for example, we may predict only a 50% 
probability of observing such a base in a read.

We add deletion edges that connect nodes in the backbone. Indexing the nodes 
in the backbone from 0 (the source) to the source n + 1 (the sink), a deletion edge 
between positions j and k in the backbone corresponds to the deletion of bases 
j, j + 1,…, k1 in s. Each deletion edge has a weight equal to the sum of deletion 
probabilities for deletion events that delete the corresponding base(s) in s, 
summing over all possible deletion locations in all reads. Deletions with no weight 
are not included. Again, this weight has a probabilistic interpretation: it is the 
expected number of times we see the deletion in the reads, and again it may  
be fractional.
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We represent insertions as nodes labeled with an insertion sequence. Each 
insertion node has a single incoming edge from a backbone node, and a single 
outgoing edge to the next backbone node in the backbone sequence. Each insertion 
is labeled with a weight equal to the sum of probabilities of events that insert the 
given insertion sequence between the corresponding bases in s. The resulting POA 
is a restricted form of a weighted, directed acyclic graph (Extended Data Fig. 7a 
shows an example)

Frequently, either an insertion or deletion can be made between different 
successive bases in s resulting in the same edited sequence. To ensure that such 
equivalent events are not represented multiple times in the POA, and to ensure 
we sum their weights correctly, we ‘left shift’ indels to their maximum extent. 
When shifting an indel results in multiple equivalent deletion edges or insertions, 
we remove the duplicate elements, updating the weight of the residual element to 
include the sum of the weights of the removed elements. For example, the insertion 
of ‘AT’ in Extended Data Fig. 7 is shifted left to its maximal extent and could 
include the merger of an equivalent ‘AT’ insertion starting two backbone nodes to 
the right.

Local haplotype proposal. After constructing the POA we use it to sample 
alternative assemblies. We first prune the POA to mark indels and base 
substitutions with weight below a threshold, which are generally the result of 
sequencing errors (Extended Data Fig. 7b). Currently, this threshold (polish.
candidateVariantWeight=0.18, established empirically) is normalized as a fraction 
of the estimated coverage at the site, which is calculated in a running window 
around each node in the backbone of 100 bases. Consequently, if fewer than 
18% of the reads are expected to include the change then the edit is pruned from 
consideration.

To further avoid a combinatorial explosion, we sample alternative assemblies 
locally. We identify subgraphs of s containing indels and substitutions to s then 
in each subgraph, defined by a start and end backbone vertex, we enumerate all 
possible paths between the start and end vertex and all plausible base substitutions 
from the backbone sequence. The rationale for heuristically doing this locally 
is that two subgraphs separated by one or more anchor backbone sites with no 
plausible edits are conditionally independent of each other given the corresponding 
interstitial anchoring substring of s and the substrings of the reads aligning to 
it. Currently, any backbone site more than polish.columnAnchorTrim=5 nodes 
(equivalent to bases) in the backbone from a node overlapping a plausible edit 
(either substitution or indel) is considered an anchor. This heuristic allows for 
some exploration of alignment uncertainty around a potential edit. Given the set of 
anchors computation proceeds by identifying successive pairs of anchors separated 
by subgraphs containing the potential edits, with the two anchors considered the 
source and sink vertex.

A simple Bayesian model for run-length decoding. RLE allows for separate modeling 
of length and nucleotide error profiles. In particular, length predictions are 
notoriously error prone in nanopore basecalling. Since homopolymers produce 
continuous signals, and DNA translocates at a variable rate through the pore, the 
basecaller often fails to infer the true number of bases given a single sample. For 
this reason, a Bayesian model is used for error correction in the length domain, 
given a distribution of repeated samples at a locus.

To model the error profile, a suitable reference sequence is selected as the truth 
set. Reads and reference are run-length encoded and aligned by their nucleotides. 
The alignment is used to generate a mapping of observed lengths to their true 
length (y, x) where y = true and x = observed for each position in the alignment. 
Observations from alignment are tracked using a matrix of predefined size 
(ymax = 50, xmax = 50) in which each coordinate contains the corresponding count 
for (y, x). Finally, the matrix is normalized along one axis to generate a probability 
distribution of P(X|yj) for j in [1, ymax]. This process is performed for each of the 
four bases.

With enough observations, the model can be used to find the most probable 
true run length given a vector of observed lengths X. This is done using a simple 
log likelihood calculation over the observations xi for all possible true lengths yi in 
Y, assuming the length observations to be independent and identically distributed. 
The length yj corresponding to the greatest likelihood P(X|yj, Base) is chosen as the 
consensus length for each alignment position (Extended Data Fig. 8).

Training. To generate a model, we ran MarginPolish with reads from a 
specific basecaller version aligned to a reference (GRCh38) and specified the 
-outputRepeatCounts flag. This option produces a tab-separated value for each 
chunk describing all the observed repeat counts aligned to each backbone node in 
the POA. These files are consumed by a script in the https://github.com/rlorigro/
runlength_analysis repository, which generates a run-length encoded consensus 
sequence, aligns to the reference and performs the described process to produce 
the model.

The allParams.np.human.guppy-ff-235.json model used for most of the 
analysis was generated from HG00733 reads basecalled with Guppy Flipflop v.2.3.5 
aligned to GRCh38, with chromosomes 1, 2, 3, 4, 5, 6 and 12 selected. The model 
allParams.np.human.guppy-ff-233.json was generated from Guppy Flipflop v.2.3.3 
data and chromosomes 1–10 were used. This model was also used for the CHM13 
analysis, as the run-length error profile is very similar between v.2.3.3 and v.2.3.1.

Parallelization and computational considerations. To parallelize MarginPolish we 
break the assembly up into chunks of size polish.chunkSize=1000 bases, with 
an overlap of polish.chunkBoundary=50 bases. We then run the MarginPolish 
algorithm on each chunk independently and in parallel, stitching together the 
resulting chunks after finding an optimal pairwise alignment (using the default 
HMM described earlier) of the overlaps that we use to remove the duplication.

Memory usage scales with thread count, read depth, and chunk size. For this 
reason, we downsample reads in a chunk to polish.maxDepth=50× coverage by 
counting total nucleotides in the chunk Nc and discarding reads with likelihood 
1 − (chunkSize + 2 × chunkBoundary) × maxDepth/Nc. With these parameters, 
we find that 2 GB of memory per thread is sufficient to run MarginPolish on 
genome-scale assemblies. Across 13 whole-genome runs, we averaged roughly 
350 CPU hours per Gb of assembled sequence.

HELEN. HELEN is a deep neural network-based haploid consensus sequence 
polisher. HELEN uses a multi-task RNN41 that takes the weights of the POA 
graph of MarginPolish to predict a base and a run length for each genomic 
position. MarginPolish constructs the POA graph by performing multiple possible 
alignments of a single read that makes the weights associative to the correct 
underlying base and a run length. The RNN used in HELEN takes advantage of 
the transitive relationship of the genomic sequence and associative coupling of the 
POA weights to the correct base and run length to produce a consensus sequence 
with higher accuracy.

The error correction with HELEN is done in three steps. First, we generate 
tensor-like images of genomic segments with MarginPolish that encodes POA 
graph weights for each genomic position. Then we use a trained RNN model to 
produce predicted bases and run lengths for each of the generated images. Finally, 
we stitch the chunked sequences to get a contiguous polished sequence.

Image generation. MarginPolish produces an image-like summary of the final 
POA state for use by HELEN. At a high level, the image summarizes the weighted 
alignment likelihoods of all reads divided into nucleotide, orientation and  
run length.

The positions of the POA nodes are recorded using three coordinates: the 
position in the backbone sequence of the POA, the position in the insert sequences 
between backbone nodes and the index of the run-length block. All backbone 
positions have an insert coordinate of 0. Each backbone and insert coordinate 
include one or more run-length coordinate.

When encoding a run length we divide all read observations into blocks from 
0 to 10 inclusive (this length is configurable). For cases where no observations 
exceed the maximum run length, a single run-length image can describe the 
POA node. When an observed run length exceeds the length of the block, the run 
length is encoded as that block’s maximum (10) and the remaining run length is 
encoded in successive blocks. For a run length that terminates in a block, its weight 
is contributed to the run-length 0 column in all successive blocks. This means 
that the records for all run-length blocks of a given backbone and insert position 
have the same total weight. As an example, consider three read positions aligned 
to a node with run lengths of 8, 10 and 12. These require two run-length blocks to 
describe: the first block includes one 8 and two 10s, and the second includes two 
0s and one 2.

The information described at each position (backbone, insert and run length) 
is encoded in 92 features: each nucleotide {A, C, T, G} and run length {0, 1,.., 10},  
plus a gap weight (for deletions in read alignments). The weights for each of 
these 45 observations are separated into forward and reverse strand for a total of 
90 features. The weights for each of these features are normalized over the total 
weight for the record and accompanied by an additional data point describing 
the total weight of the record. This normalization column for the record is an 
approximation of the read depth aligned to that node. Insert nodes are annotated 
with a binary feature (for a final total of 92); weights for an insert node’s alignments 
are normalized over total weight at the backbone node it is rooted at (not the 
weight of the insert node itself) and gap alignment weights are not applied to them.

Labeling nodes for training require a truth sequence aligned to the assembly 
reference. This provides a genome-scale location for the true sequence and allows 
its length to help in the resolution of segmental duplications or repetitive regions. 
When a region of the assembly is analyzed with MarginPolish, the truth sequences 
aligned to that region are extracted. If there is not a single truth sequence that 
roughly matches the length of the consensus for this region, we treat it as an 
uncertain region and no training images are produced. Having identified a suitable 
truth sequence, it is aligned to the final consensus sequence in nonrun-length 
space with Smith–Waterman. Both sequences and the alignment are then 
run-length encoded, and true labels are matched with locations in the images. 
All data between the first and last matched nodes are used in the final training 
images (leading and trailing inserts or deletes are discarded). For our training, we 
aligned the truth sequences with minimap2 using the asm20 preset and filtered the 
alignments to include only primary and supplementary alignments (no secondary 
alignments).

Extended Data Fig. 9 shows a graphical representation of the images. On the 
y axis, we display true nucleotide labels (with the dash representing no alignment 
or gap) and true run length. On the x axis, the features used as input to HELEN 
are displayed: first, the normalization column (the total weight at the backbone 
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position); second, the insert column (the binary feature encoding whether the 
image is for a backbone or insert node); 48 columns describing the weights 
associated with read observations (stratified by nucleotide, run length, strand) and 
two columns describing weights for gaps in read alignments (stratified by strand). 
In this example, we have reduced the maximum run length per block from ten to 
five for demonstration purposes.

We selected these two images to highlight three features of the model: the way 
multiple run-length blocks are used to encode observations for a single node, and 
the relevant features around a true gap and a true insert that enable HELEN to 
correct these errors.

To illustrate multiple run-length blocks, we highlight two locations on the 
image Extended Data Fig. 9a(i). The first are the nodes labeled (A,5) and (A,3). 
This is the labeling for a true (A,8) sequence separated into two blocks. See that 
the bulk of the weight is on the (A,5) features on the first block, with most of that 
distributed across the (A,1–3) features on the second. Second, observe the nodes 
on Extended Data Fig. 9a(i) labeled (T,4) and (T,0). Here, we show the true labeling 
of a (T,4) sequence where there are some read observations extending into a second 
run-length block.

To show a feature of a true gap, note on Extended Data Fig. 9a(i) the noninsert 
nodes labeled (−,0). We know that MarginPolish predicted a single cytosine 
nucleotide (as it is a backbone node and the (C,1) nodes have the bulk of the 
weight. Here, HELEN is able to use the low overall weight (the lighter region in 
the normalization column) at this location as evidence of fewer supporting read 
alignments and can correct the call.

The position labeled (G,2) on Extended Data Fig. 9a(i) details a true insertion. 
It is not detected by MarginPolish (as all insert nodes are not included in the final 
consensus sequence). Read support is present for the insert, less than the backbone 
nodes in this image but more than the other insert nodes. HELEN can identify this 
sequence and correct it.

Finally, we note that the length of the run-length blocks results in streaks at 
multiples of this length (10) for long homopolymers. The root of this effect lies in 
the basecaller producing similar prediction distributions for these cases (that is, 
the run-length predictions made by the basecaller for a true run length of 25 are 
similar to the run-length predictions made for a true run length of 35, see Fig. 4b 
Guppy v.2.3.3). This gives the model little information to differentiate on, and the 
issue is exacerbated by the low occurrence of long run lengths in the training data. 
Because the model divides run-length observations into chunks of size 10, it tends 
to call the first chunks correctly (having length 10) but has very low signal for the 
last chunk and most often predicts 0.

The model. We use a sequence transduction model for consensus polishing. The 
model structure consists of two single layer gated recurrent neural units (GRU) for 
encoding and decoding on top of two linear transformation layers (Extended Data 
Fig. 10). The two linear transformation layers independently predict a base and a 
run length for each position in the input sequence. Each unit of the GRU can be 
described using the four functions it calculates:

rt ¼ Sigmoid Wirxt þWhrht�1ð Þ
ut ¼ SigmoidðWiuxt þWhuht�1Þ
nt ¼ tanhðWinxt þ rt*ðWhnht�1ÞÞ
ht ¼ ð1� utÞ*nt þ ut*ht�1

For each genomic position t, we calculate the current state ht from the new 
state nt and the update value ut applied to the output state of previous genomic 
position ht−1. The update function ut decides how much past information to 
propagate to the next genomic position. It multiplies the input xt with the weight 
vector Wiu and multiplies the hidden state of the previous genomic position ht�1

I
. 

The weight vectors decide how much from the previous state to propagate to the 
next state. The reset function rt decides how much information to dissolve from 
the previous state. Using a different weight vector, the rt function decides how 
much information to dissolve from the past. The new memory state nt is calculated 
by multiplying the input xt with the weight vector Win and applying a Hadamard 
multiplication * between the reset function value and a weighted state of the 
previous hidden state ht�1

I
. The new state captures the associative relationship 

between the input weights and true prediction. In this setup, we can see that rt 
and ut can decide to hold memory from distant locations while nt captures the 
associative nature of the weights to the prediction, helping the model to decide 
how to propagate genomic information in the sequence. The output of each 
genomic position ht can be then fed to the next genomic position as a reference 
to the previously decoded genomic position. The final two layers apply linear 
transformation functions:

Bt ¼ ht*W
T

Rt ¼ ht*W
T

The two linear transformation functions independently calculate a base 
prediction Bt and a run-length prediction Rt from the hidden state output of 
that genomic position ht. The model operates in hard parameter sharing mode 

where the model learns to perform two tasks using the same set of underlying 
parameters from the GRU layers. The ability of the model to reduce the error 
rate of the assemblies from multiple samples with multiple assemblers shows the 
generalizability and robustness we achieve with this method.

Sliding window mechanism. One of the challenges of this setup is the sequence 
length. From the functions of recurrent units, we see that each state is updated 
based on the previous state and associated weight. Due to the noisy nature of the 
data, if the sequence length is too long, the back-propagation becomes difficult 
over noisy regions. On the other hand, a small sequence length would make 
the program very slow. We balance the runtime and accuracy by using a sliding 
window approach.

During the sliding window, we chunk the sequence of thousand bases to 
multiple overlapping windows of length 100. Starting from the leftmost window, 
we perform prediction on sequence pileups of the window and transmit the hidden 
state of the current window to the next window and slide the window by 50 bases 
to the right. For each window, we collect all the predicted values and add it to a 
global sequence inference counter that can keep track of predicted probabilities of 
base and run length at each position. Last, we aggregate the probabilities from the 
global inference counter to generate a sequence. This setup allows us to use the 
minibatch feature of the popular neural network libraries allowing inference on a 
batch of inputs instead of performing inference one at a time.

Training the model. HELEN is trained with a gradient descent method. We use an 
adaptive moment estimation (Adam) method to compute gradients for each of the 
parameters in the model based on a target loss function. Adam uses both decaying 
squared gradients and the decaying average of gradients, making it suitable to use 
with RNNs. Adam performs gradient optimization by adapting the parameters to 
set in a way that minimizes the value of the loss function.

We perform optimization through back-propagation per window of the input 
sequence. From the equations of the linear transformation function, we see that we 
get two vectors B ¼ ½B1;B2;B3; :::; Bn

I
 and R ¼ ½R1;R2;R3; :::;Rn

I
 containing base 

and run-length predictions for each window of size n. From the labeled data we get 
two more such vectors TB ¼ ½TB1;TB2;TB3; :::;TBn

I
 and .. containing the true base 

and true run-length encoded values of each position in the window. From these 
losses, the function of the loss L is calculated:

LB B;TBð Þ ¼ �B TB½  þ log
P
j
exp B j½ ð Þ

 !

LR R;TRð Þ ¼ weight TR½  �R TR½  þ log
P
j
exp R j½ ð Þ

 ! !

L ¼ LB þ LR

LB calculates the base prediction loss and LR calculates the run-length encoded 
prediction loss. The run-length encoded class distribution is heavily biased 
toward lower run-length values, so, we apply class-wise weights depending on the 
observation of per class to make the learning process balanced between classes. 
The optimizer then updates the parameters or weights of GRU layers and linear 
layers in a way that minimizes the value of the loss function. We can see that 
the loss function is a summation of the two independent loss functions but the 
underlying weights from the RNN belongs to the same set of elements in the 
model. In this setting, the model optimizes to learn both tasks simultaneously by 
updating the same set of weights.

Sequence stitching. To parallelize the polishing pipeline, MarginPolish chunks 
the genome into smaller segments while generating images. Each image segment 
encodes 1,000 nucleotide bases, and two adjacent chunks have 50 nucleotide bases 
of overlap between them. During the inference step, we save all run-length and 
base predictions of the images, including their start and end genomic positions.

For stitching, we load all the image predictions and sort them based on the 
genomic start position of the image chunk and stitch them in parallel processes. 
For example, if there are n predictions from n images of a contig and we have t 
available threads, we divide n prediction chunks into t buckets each containing 
approximately nt  predicted sequences. Then we start t processes in parallel where 
each process stitches all the sequences assigned to it and returns a longer sequence. 
For stitching two adjacent sequences, we take the overlapping sequences between 
the two sequences and perform a pairwise Smith–Waterman alignment. From 
the alignment, we pick an anchor position where both sequences agree the most 
and create one sequence. After all the processes finish stitching the buckets, we 
get t longer sequences generated by each process. Finally, we iteratively stitch the t 
sequences using the same process and get one contiguous sequence for the contig.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequence data including raw signal files (FAST5) and basecalls (FASTQ) are 
available as an AWS Open Data set for download from https://github.com/
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human-pangenomics/hpgp-data. Nanopore sequence data and polished assemblies 
are additionally archived and available from the European Nucleotide Archive under 
accession code PRJEB37264. Source data for Figs. 1–5 are presented with the paper.

Code availability
Shasta (https://github.com/chanzuckerberg/shasta), MarginPolish (https://github.
com/UCSC-nanopore-cgl/marginPolish) and HELEN (https://github.com/
kishwarshafin/helen) are publicly available. They have open-source MIT licenses 
that fully support the open source initiative.
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Extended Data Fig. 1 | Read Markers. Markers aligned to a run length encoded read.
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Extended Data Fig. 2 | Marker Alignment. A marker alignment represented as a dot-plot. Elements that are identical between the two sequences are 
displayed in green or red - the ones in green are the ones that are part of the optimal alignment computed by the Shasta assembler. Because of the much 
larger alphabet, matrix elements that are identical between the sequences but are not part of the optimal alignment are infrequent. Each alignment matrix 
element here corresponds on average to a 13 13 block in the alignment matrix in raw base sequence.
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Extended Data Fig. 3 | Read Graph. An example of a portion of the read graph (A) as displayed by the Shasta http server, and (B) showing obviously 
incorrect connections.
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Extended Data Fig. 4 | Marker Graph. An illustration of marker graph construction for two sequences.
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Extended Data Fig. 5 | Assembly Graph. (A) A marker graph with linear sequence of edges colored. (B) The corresponding assembly graph. Colors were 
chosen to indicate the correspondence to marker graph edges.
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Extended Data Fig. 6 | Bubbles. (A) A simple bubble. (B) A superbubble.
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Extended Data Fig. 7 | POA Example. (A) An example POA, assuming approximately 30x read coverage. The backbone is shown in red. Each non-source/
sink node has a vector of weights, one for each possible base. Deletion edges are shown in teal, they also each have a weight. Finally insertion nodes are 
shown in brown, each also has a weight. (B) A pruned POA, removing deletions and insertions that have less than a threshold weight and highlighting 
plausible bases in bold. There are six plausible nucleotide sequences represented by paths through the POA and selections of plausible base labels: 
G;AT;A;T;A;C:A, G;AT;A;T;A;C:G, G;A;T;A;C:A, G;A;T;A;C:G, G;A;C:A, G;A;C:G. To avoid the combinatorial explosion of such enumeration we identify 
subgraphs (C) and locally enumerate the possible subsequences in these regions independently (dotted rectangles identify subgraphs selected). In each 
subgraph there is a source and sink node that does not overlap any proposed edit.
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Extended Data Fig. 8 | RLE Inference Distributions. Visual representation of run length inference. This diagram shows how a consensus run length is 
inferred for a set of aligned lengths (X) that pertain to a single position. The lengths are factored and then iterated over, and log likelihood is calculated for 
every possible true length up to a predefined limit. Note that in this example, the most frequent observation (4bp) is not the most likely true length (5bp) 
given the model.
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Extended Data Fig. 9 | MarginPolish HELEN Image Generation. A graphical representation of images from two labeled regions selected to demonstrate: 
the encoding of a single POA node into two run-length blocks (i), a true deletion (i), and a true insert (ii). (a) shows the alignment in raw and run-length 
space, (b) shows the features as they are exported to HELEN. The y-axis shows truth labels for nucleotides and run-lengths, the x-axis describes features 
in the images, and colors show associated weights.
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Extended Data Fig. 10 | HELEN Model. The sequence-to-sequence model implemented in Helen.
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Sample size No sample size calculation was performed. Cells were grown in batches and aliquoted into 50 million sized pellets. We chose 50M sized cell 
pellets to ensure we could isolate sufficient DNA for the experimental protocols. The 50M size was selected based on prior literature (Jain et 
al. NBT 2018). 

Data exclusions No data were excluded from the analyses.

Replication We performed three replicate experiments for data generation. The replicates were consistent in data quality, as demonstrated in Figure 1.

Randomization No randomization was performed by group; however, this was not relevant to our study as data from groups was pooled and analyzed 
together. 

Blinding Investigators were not blind to group allocation during experiments, as all data from groups was pooled together. 
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Coriell Institute. Cell lines: HG002, HG003, HG004, HG02055, HG02080, HG03492, HG00733, HG03098, HG01243, HG02723, 
HG01109

Authentication The cell lines used were not authenticated.

Mycoplasma contamination The cell lines used were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

The cell lines used are not in the register of commonly misidentified lines.
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