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There is evidence to suggest that increasing the level of saturation (number of sp3-hybridized carbon 

atoms) in small molecules increases the chance of success in the transition from discovery, through 

clinical studies, to drugs1. Due to their favorable physical properties, alkylamines have become 

ubiquitous features amongst pharmaceutical agents, small-molecule biological probes and pre-clinical 

candidates2. Despite their importance, amine synthesis is still dominated by two methods: N-alkylation 

and carbonyl reductive amination3. The increasing demand for such saturated polar molecules in drug-

discovery, however, has continued to drive development of practical catalytic methods to synthesize 

complex saturated alkylamines4-7. In particular, processes that transform diverse, accessible feedstocks 

into structurally diverse sp3-rich architectures provides a strategic advantage in complex alkylamine 

synthesis. Here, we report a multicomponent reductive photocatalytic technology that combines 

readily-available dialkylamines, carbonyls and alkenes to build architecturally complex and 

functionally diverse tertiary alkylamines in a single step. This olefin-hydroaminoalkylation process 

involves a visible-light-mediated reduction of in-situ generated iminium ions, selectively furnishing 

previously inaccessible alkyl-substituted a-amino radicals, which engage alkenes and lead to C(sp3)–

C(sp3) bond formation. The operationally straightforward reaction exhibits broad functional group 

tolerance, facilitates the synthesis of drug-like amines not readily accessible by other methods and is 

amenable to late-stage functionalization applications, making it of interest in pharmaceutical research 

and other areas.   

 

The physiological properties of tertiary aliphatic amines and their ability to interfere with natural 

neurotransmission pathways have rendered them highly effective pharmaceutical agents8, in areas ranging 



from treatment of neurodegenerative disorders (such as Alzheimer’s disease)9 to metabolic syndromes (such 

as obesity)10 (Fig 1A). Traditionally, efforts for the synthesis of these molecules require multiple steps and 

tedious purifications, severely hampering efforts in drug-discovery. Therefore, the development of 

straightforward methods that enable the construction of complex tertiary amines from simple starting materials 

would have far-reaching implications in both the synthetic and medicinal chemistry community. While the 

abundance, diversity and predictable reactivity of sp2-hybridized feedstocks has led to the emergence of new 

transition-metal catalyzed amine syntheses, namely the Buchwald-Hartwig amination11 and olefin-

hydroamination12-14, strategies for more complex alkylamines are more limited13-15. We reasoned that an 

operationally-simple and mechanistically-distinct catalytic process involving available dialkylamines, olefins, 

and aliphatic carbonyl feedstocks would expand the capacity of olefin-hydroaminoalkylation-based strategies 

for the synthesis of tertiary alkylamines. 

 



 

Fig 1. (a). Importance of tertiary amines. (b). Multicomponent photocatalytic olefin-hydroaminoalkylation to 
tertiary alkylamines via the selective formation of alkyl-substituted a-amino radicals. (c). Existing catalytic 
photoredox methods for the generation of a-amino radicals.  
 

We proposed that an electrophilic iminium ion, formed through the well-established union of secondary 

alkylamines and alkyl-substituted carbonyls, could be susceptible to a catalytic single electron reduction 

process (Fig 1B). The resulting a-amino radical could then engage a third reaction component, such as an 

alkene, in a subsequent C(sp3)–C(sp3) cross-coupling process. However, few methods report the generation 

of ‘all-alkyl’ a-amino radicals from pre-formed iminium ions, and each suffers from issues of practical 

application16, 17. Moreover, their subsequent addition to alkenes has been limited to specific intramolecular 

examples. To overcome these problems, we envisioned, firstly, that a visible-light-activated photocatalyst 

could mediate single-electron transfer (SET) to an in-situ generated alkyl-substituted iminium ion, generating 
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the desired a-amino radical under mild reaction conditions (Fig 1B). Secondly, we considered that a polarity-

matched hydrogen atom transfer (HAT) from a suitable reagent could facilitate the cross-coupling to the 

alkene by intercepting the resulting alkyl-substituted radical. An important feature of this proposed catalytic 

activation pathway is the regiospecific positioning of the newly formed a-amino radical, made possible by 

the SET to the iminium ion, regardless of the groups surrounding the reactive center. Selective formation of 

an ‘all-alkyl’ a-amino radical would not be possible via the related photocatalytic approaches without the use 

of pre-functionalized starting materials or inherently selective substrates (Fig 1C)18-20.  

 

We were mindful of several factors that could impede the development of the photocatalytic olefin-

hydroaminoalkylation process. In contrast to protonated imines and iminium ions conjugated with multiple 

aromatic substituents (E1/2
red = –0.8 to –1.2 V vs. SCE in acetonitrile)21, which have been shown to partake in 

a limited range of reductive coupling reactions22, 23, the reduction potential of an ‘all-alkyl’-iminium ion could 

be up to –2.0 V21 and would require a highly reducing photocatalyst that may be incompatible with resident 

functionality. Moreover, alkyl-iminium ions are known to exist in (often unfavorable) equilibrium with the 

corresponding enamines, which can also undergo SET reactions to form radical species, presenting competing 

pathways24. Finally, the addition of a-amino radicals to simple alkenes is known to be low-yielding due to 

oligomerization of the resulting radical25. We hereby report a comprehensive strategy for the modular and 

efficient construction of complex tertiary alkylamines via photocatalytic olefin-hydroaminoalkylation.  

 

The initial evaluation of the proposed amine synthesis focused on a reaction between butyraldehyde 1a, 

dibenzylamine 2a, butyl acrylate 3a and Hantzsch ester 4a catalyzed by Ir(ppy)3, under the action of visible-

light (Fig 2A). Optimized reaction conditions were readily established (for a detailed account of the 

optimization study: see supplementary materials, S7), using 1mol% Ir(ppy)3 and a 40 W blue-LED for 2 hours 

at room temperature. Under these conditions, near-equimolar quantities of aldehyde, amine and alkene with 

1.5 equivalents of Hantzsch ester in a 0.1 M solution of dichloromethane containing molecular sieves and 

20mol% of propionic acid formed desired amine 5a, which was isolated in 84% yield after chromatography 

(Fig 2B). We were delighted by the remarkable selectivity displayed in this reaction; only trace quantities of 



the reductive amination side product were observed, which presumably resulted from HAT to the a-amino 

radical from 4a26. 

 

Fig 2. (a). Optimized conditions for photocatalytic olefin-hydroaminoalklyation. (b). Scope of photocatalytic 
olefin-hydroaminoalklyation. aamine/aldehyde/acceptor (1:1.1:1.1) and 4a (1.5 equiv.). 
bamine/aldehyde/acceptor (1:2:2) and 4a (1.5 equiv.). cconducted using methoxyethyl-Hantzsch ester (1.5 
equiv.). dconducted using paraformaldehyde (5 equiv.), preheated for 1 hour. e4 mmol scale. ppy = 2-
phenylpyridinato; Boc = t-butyloxycarbonyl; TIPS = triisopropylsilyl; Cbz = benzyloxycarbonyl.  
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With the optimized conditions, we found that a variety of linear aldehydes reacted efficiently to give amines 

5a-5f, including those bearing electron-rich heteroarenes (5e, 5f), in good yields (Fig 2B). Aldehydes 

displaying a-branching produced the expected amines 5g-5l in good yield; notable examples included 

saturated heterocycles and strained ring features commonly found in pharmaceutical agents. The a-amino 

radical formed from formaldehyde and dibenzylamine was effective in the reaction, producing g-aminobutyric 

acid derivative 5m; unfortunately, benzaldehyde-derived iminium ions failed to deliver the desired cross-

coupling products. Next, we found that benzylamine derivatives containing a multitude of functionalized aryl 

and heteroaryl groups were amenable to the reaction and gave good yields of the corresponding amines (5n-

5u). Amines displaying linear and branched alkyl-substituents, as well as ester, hydroxyl and nitrile 

functionality, worked well to give amines 5v-5aa. The photocatalytic process was effective with a range of 

electron-deficient alkenes. A reaction with benzyl acrylate 3c could be adapted to a gram-scale process, 

delivering 1.4 g of product 5ac in 84% yield. Notably, acrylonitrile (giving 5ae) proved a suitable coupling 

partner, despite being prone to oligomerization in radical reactions. Substituents at either the a- or b-positions 

on the alkene (5ag-5ak) could be accommodated despite the lower electrophilicity and greater steric demand 

of these acceptors, with a diastereoselectivity of 2.3:1 observed in the reaction of methacrylate to form 5al. 

Vinyl pyridine derivatives also proved to be viable acceptors (giving 5am-5ap) allowing facile access to 

chlorphenamine derivative 5am. By employing a chiral dehydroalanine derivative, the a-amino radical 

addition to this acceptor led to enantioenriched non-proteogenic amino acid derivative 5aq in good yield. We 

also found that perfluorinated alkenes, dienes, and electron-deficient alkynes functioned well as acceptors 

(giving 5ar-5at); the reaction with methyl propiolate delivered (E)-allylic amine 5at in 66% yield as a single 

geometric isomer.  



 

Fig 3. (a) Proposed mechanism for the photocatalytic olefin-hydroaminoalkylation. (b). Deuterium-labelling 

studies. (c). Evidence for iminium ion redox-relay mechanism. 

 

Our mechanistic proposal for the photocatalytic olefin-hydroaminoalkylation is shown in Fig 3A. The reaction 

begins with visible-light excitation of Ir(ppy)3 to the long-lived photoexcited *Ir(III) species (t = 1.9 µs)27. 

While this species may be sufficiently reducing [Ir(IV)/*Ir(III), E1/2
red = –1.73 V vs. SCE in acetonitrile]27 to 

undergo SET to alkyl-iminium ion Int-I, we recognized that *Ir(III)ppy3 is efficiently quenched by Hantzsch 

ester 4a [*Ir(III)/Ir(II), E1/2
red = +0.31 V vs. SCE in acetonitrile]27 leading to [Ir(II)ppy3]– and the 

corresponding Hantzsch ester-radical cation 4a’. Importantly, [Ir(II)ppy3]– is sufficiently reducing 

[Ir(III)/Ir(II), E1/2
red = –2.19 V vs. SCE in acetonitrile]27 to undergo SET with the full range of alkyl-iminium 

ions21, leading to a-amino radical Int-II. We identified enamine Int-III as the predominant species in the 1H 

NMR of the reaction mixture, which we believe is an off-cycle precursor to the iminium ion Int-I; the acid 
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maintains a low concentration of iminium Int-I by protonation of the enamine. The a-amino radical Int-II now 

engages the polarity-matched acrylate 3a, creating a carbon-carbon bond and a-ester radical Int-IV. Given the 

propensity for mono-substituted a-ester radical Int-IV to undergo oligomerization25, we anticipated that an 

intramolecular 1,5-HAT to the benzylic position may act as a kinetic trap to form stabilized radical Int-V28. 

Finally, we expected that the Hantzsch ester or its radical cation 4a/4a’ would participate in a HAT reaction 

with Int-V, to form amine 5a. A reaction using deuterium-labelled Hantzsch ester d2-4a (Fig 3B) confirmed 

our hypothesis; deuterium was incorporated exclusively at the benzylic position of amine d1-5a, showing that 

1,5-HAT occurred prior to interception with 4a/4a’. This theory was further corroborated using labelled 

dibenzylamine d4-2a, wherein a deuterium was transferred to the position adjacent to the ester in amine d4-5a. 

We also found that an aldehyde bearing a b-nucleophilic group (1n) underwent cyclization onto the benzylic 

position to form 6, as a side reaction in the formation of 5au (Fig 3C). This result suggests that the a-

aminobenzyl radical (Int-V) can undergo oxidation [E1/2
red

 = –0.9 V vs. SCE in acetonitrile]29 to iminium Int-

VI, which is accessible to a range of oxidants, such as *Ir(III)27. Notably, selective reduction of 

benzaldiminium ion Int-VI, over the initially formed iminium Int-I, can be accounted for by its inability to 

form a stable enamine intermediate compared to the interconversion between Int-I and Int-III. The reduction 

of Int-VI could proceed by a 2-electron process with 4a or photocatalytic SET and HAT. Interestingly, a 

pathway whereby iminium Int-I is translated into a new iminium species Int-VI represents an overall 

mechanism that can be described as a redox-relay of iminium ions, which, to the best of our knowledge, has 

not been previously reported.  

 

In this context, benzylamines not only overcome the inherent challenges posed by the addition of a-amino 

radicals to electron-deficient alkenes, but also act as a protecting group for primary and secondary 

alkylamines. Nonetheless, we reasoned that use of an alkene which would produce a less-electrophilic radical 

should favor direct reaction with the Hantzsch ester-radical cation 4a’, obviating the need for the 1,5-HAT 

process, and hence permitting the use of a variety of dialkylamines. To test this, 1,1-diphenylethylene was 



combined with aldehyde 1a and 4-phenyl piperidine under the standard conditions. Pleasingly, 

 

Fig 4. (a). Scope of non-benzylic amines for photocatalytic olefin-hydroaminoalkylation (b). The synthesis 
of alkyl substituted a-tertiary amines from dialkyl ketones. (c). Late-stage photocatalytic olefin-
hydroaminoalkylation with pharmaceutical agents. aconducted using amine/aldehyde/acceptor (1:2:2), and 4a 
(1.5 equiv.). bconducted using acceptor (1.5 equiv.). cconducted using methoxyethyl-Hantzsch ester (1.5 
equiv.). dusing amine hydrochloride and Et3N (1 equiv.). econducted using paraformaldehyde (5 equiv.), 
preheated for 1 hour. fconducted using enamine (1 equiv.) and acceptor (2 equiv.). 
 

the desired tertiary amine 7a was formed in 51% yield (Fig 4A). Other amine heterocycles were also 

compatible with this alkene acceptor, giving the amine products (7b-7k) in good yield; 1,1-diarylpropylamines 

are key motifs commonly found in H1-antihistamines30. Among these examples, a number of amines found in 

pharmaceuticals formed the corresponding complex tertiary amines (7c-7h), demonstrating the potential to 
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forge ‘drug-like’ molecules in a single step from readily available materials. The use of non-benzylic amines 

was not restricted to reactions with 1,1-diarylethenes; the union of tetramethylpiperidine, formaldehyde and a 

dehydroalanine acceptor proceeded smoothly to form amine 7l as a single diastereomer.  

 

We envisioned that the use of dialkylketones would be an important extension to the photocatalytic process, 

since these reactions would give rise to a-tertiary amine products31. Conscious that the formation of 

ketiminium ions often require more forcing conditions, we reasoned that protonation of a pre-formed enamine 

9 would provide a more accessible source of alkyl-ketiminium ions, since alkyl-enamines can be readily 

prepared on gram scale in one step (Fig 4B). Under the standard conditions, a range of alkyl enamines 

underwent smooth cross-coupling with alkene acceptors to form a-tertiary amines (10a-10e). The olefin-

hydroaminoalkylation method was able to generate complex a-tertiary alkylamines scaffolds, in a single step, 

which would be difficult to assemble via classical methods. 

 

Given that dialkylamine motifs are present in a range of small molecule drugs and pre-clinical candidates, 

late-stage functionalization of such molecules would be a powerful demonstration of the utility of this process. 

To confirm this strategy, we selected four pharmaceutical agents and subjected them to the photocatalytic 

reaction (Fig 4C). Each of these architecturally complex amines underwent smooth olefin-

hydroaminoalkylation with a variety of aldehydes to furnish the tertiary amine products (11-14). In particular, 

the combination of desloratidine with formaldehyde and a chiral dehydroalanine acceptor forms a single 

diastereomer of the tertiary amine derivative (12), constituting a potentially useful linker-strategy through 

which further functionalization of drug scaffolds could be realized. 

 

We expect that the operational simplicity, efficacy and broad scope of this highly selective multicomponent 

photocatalytic amine synthesis will find widespread use among organic chemistry end users in both academia 

and industry. Moreover, we believe that the convenience with which this method generates underexplored 

alkyl-substituted a-amino radicals will inspire further advances in the synthesis of complex tertiary amine 

scaffolds. 
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