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Abstract

Most infections with Mycobacterium tuberculosis (Mtb) manifest as a clinically asymptomatic, 

contained state, known as latent tuberculosis infection, that affects approximately one-quarter of 

the global population1. Although fewer than one in ten individuals eventually progress to active 

disease2, tuberculosis is a leading cause of death from infectious disease worldwide3. Despite 

intense efforts, immune factors that influence the infection outcomes remain poorly defined. Here 

we used integrated analyses of multiple cohorts to identify stage-specific host responses to Mtb 
infection. First, using high-dimensional mass cytometry analyses and functional assays of a cohort 

of South African adolescents, we show that latent tuberculosis is associated with enhanced 

cytotoxic responses, which are mostly mediated by CD16 (also known as FcγRIIIa) and natural 

killer cells, and continuous inflammation coupled with immune deviations in both T and B cell 

compartments. Next, using cell-type deconvolution of transcriptomic data from several cohorts of 

different ages, genetic backgrounds, geographical locations and infection stages, we show that 

although deviations in peripheral B and T cell compartments generally start at latency, they are 

heterogeneous across cohorts. However, an increase in the abundance of circulating natural killer 

cells in tuberculosis latency, with a corresponding decrease during active disease and a return to 

baseline levels upon clinical cure are features that are common to all cohorts. Furthermore, by 

analysing three longitudinal cohorts, we find that changes in peripheral levels of natural killer cells 

can inform disease progression and treatment responses, and inversely correlate with the 

inflammatory state of the lungs of patients with active tuberculosis. Together, our findings offer 

crucial insights into the underlying pathophysiology of tuberculosis latency, and identify factors 

that may influence infection outcomes.

Although most Mtb infections do not lead to the manifestation of clinical disease, few 

studies have focused on delineating the immune factors that are associated with the 

asymptomatic states that comprise latent tuberculosis infection (LTBI). To broadly 

characterize this immune state, we used high-dimensional cytometry by time-of-flight 

(CyTOF), a proteomics technology that assesses the abundance of cell subsets, protein 

expression and activation of signalling pathways at the single-cell resolution4 (Fig. 1a). We 

analysed peripheral blood mononuclear cells (PBMCs) from uninfected and latently infected 

adolescents (aged 13–18 years) from South Africa (Supplementary Table 1). This cohort is 
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from a highly endemic area but has a lower rate of active tuberculosis (TB) than is seen in 

young children and adults5, indicating a well-controlled Mtb infection.

An initial analysis (Supplementary Table 2) of 14 uninfected controls and 14 individuals 

with LTBI identified four cell subsets (defined by cell-surface protein expression) with a 

significantly higher percentage (of total live cells) in individuals with LTBI than uninfected 

controls (false discovery rate (FDR) of <1%). These four subsets comprised total CD16-

expressing cells, natural killer (NK) cells and two closely related populations of 

CD27−CD8+ αβ T cells that differed in their CD38 expression. By contrast, two other cell 

subsets, total B cells and naive B cells, were significantly less abundant in individuals with 

LTBI (Fig. 2a and Extended Data Fig. 1a–c). Similar differences in NK cell and B cell 

percentages between uninfected controls and individuals with LTBI were also observed in an 

additional 20 individuals analysed by CyTOF, and another 32 individuals analysed by flow 

cytometry (Extended Data Fig. 1d). Because latently infected individuals show no 

significant change in peripheral monocyte or lymphocyte counts compared to uninfected 

controls6,7, changes in the percentage of a given cell type most likely reflect corresponding 

alterations in its abundance.

Significant differences in the percentage of immune effector cell subsets between samples 

from uninfected controls and individuals with LTBI were also identified. Granzyme B 

(GZMB) and perforin (PRF) expressing cells were significantly higher in individuals with 

LTBI. These mostly consisted of NK cells and GZMB+PRF+IFNγ+TNF+ polyfunctional 

cells, which largely comprised CD27−CD8+ αβ T cells, but also included NK cells and γδ T 

cells (Fig. 2b and Extended Data Fig. 2a–c). These cells also expressed significantly higher 

levels of GZMB (Extended Data Fig. 2d, e), indicating an enhanced cytotoxic potential on a 

per-cell basis. Indeed, NK cells from individuals with LTBI showed significantly higher 

target cell lysis than those from uninfected controls (n = 10 per group, P = 0.003; Fig. 2c). 

Additionally, there were higher percentages of CD16+GZMBhigh cells within the 

compartments of the NK cells, CD8+ αβ T cells and γδ T cells in PBMCs from individuals 

with LTBI (Fig. 2d and Extended Data Fig. 2f). PBMCs from individuals with LTBI also 

mounted significantly higher antibody-dependent cell-mediated cytotoxicity (ADCC) 

responses than those from uninfected controls (n = 12 per group, P = 0.006; Fig. 2e and 

Extended Data Fig. 2g). ADCC allows antibodies, in addition to T cells, to contribute to the 

antigen-specific cytotoxic response. In this context, it was reported that antibodies from 

individuals with LTBI, compared to those from patients with active TB, have unique Fc 

functional profiles that promote selective binding to CD16 and effectively drive intracellular 

Mtb killing8.

The ability of cells to respond to immune challenges is an important factor in maintaining 

host immune competence. To determine the signalling capacity of immune cells, we used 

CyTOF (Supplementary Table 2) to investigate their ability to transiently phosphorylate 

signalling effectors in response to PMA and ionomycin, IFNγ, TNF or combined anti-CD3 

and anti-CD28 stimulation. We found that in individuals with LTBI, all T cell subsets 

exhibited diminished responsiveness through the S6 signalling pathway, irrespective of the 

stimulation condition, with the exception of γδ T cells after stimulation with both anti-CD3 

and anti-CD28, as compared to cells from uninfected controls (Fig. 2f). S6, a ribosomal 
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component, is phosphorylated after mTOR activation. This signalling pathway is critical for 

ribosome biogenesis, cell growth and proliferation9.

Although alterations in the T cell compartment in individuals with LTBI did not lead to 

alteration in the levels of T cells in the periphery (Extended Data Fig. 1e), changes in the B 

cell compartment resulted from a decrease in the abundance of total B cells, which was 

largely driven by a reduction in circulating naive B cells. Reductions in the levels of 

peripheral B cells could be due to preferential sequestration of these cells at the site of 

infection (lungs and associated lymph nodes) and/or altered output of B cells from the bone 

marrow; inflammation can lead to enhanced myelopoiesis with diminished B cell output10. 

Analysis of 184 plasma proteins (Supplementary Table 3) showed significantly higher levels 

of inflammation-associated molecules, such as CXCL8 (also known as IL-8; P = 0.01), 

adenosine deaminase (ADA; P = 0.035) and NAD kinase (NADK; P = 0.004) in samples 

from individuals with LTBI relative to uninfected controls (n = 27 per group). By contrast, 

the plasma levels of CCL23, which has been shown to inhibit myelopoiesis11, was 

significantly lower in individuals with LTBI (P = 0.02; Fig. 2g and Extended Data Fig. 3), 

suggesting altered myelopoiesis in LTBI. Taken together, our results identified multiple 

immune components that operate together in LTBI. Specifically, in the presence of ongoing 

inflammation coupled with deviations in B and T cell compartments, enhanced cytotoxic 

responses that are mostly mediated by CD16 and NK cells appeared to be key factors 

associated with maintaining latency, which we propose represents successful immune 

control of Mtb infection.

Because alterations in peripheral immune cell distributions have not previously been 

commonly associated with TB latency, we tested whether such changes were observed in 

other LTBI cohorts, including those of children and adults (Fig. 1b). Although their PBMCs 

were not available for analysis, transcriptional profiles of whole-blood or PBMC samples 

from these cohorts were publicly available. We applied a computational approach to infer 

leukocyte representations from gene-expression profiles using support vector regression12 

with the leukocyte expression signature matrix ‘immunoStates’13. Analysis of gene-

expression datasets from 189 uninfected controls and 145 subjects with LTBI from six 

clinical cohorts (Supplementary Table 4), including children and adults from four continents, 

showed that NK cells were significantly more abundant (FDR = 0.018%) in cohorts of 

individuals with LTBI (Fig. 3a). Changes in B cell percentages were heterogeneous across 

the cohorts. However, analysis from all cohorts combined indicated a significant reduction in 

the percentages of total B cells (FDR = 1%) and naive B cells (FDR = 0.38%) in samples 

from individuals with LTBI (Fig. 3a and Extended Data Fig. 4a). No significant differences 

in total T cell abundance (FDR = 74%) (Fig. 3a) or those of the CD4+ and CD8+ subsets 

(FDR = 44% for both subsets; Extended Data Fig. 5a) were observed between the uninfected 

and LTBI cohorts. Thus, the analyses from multiple LTBI cohorts were consistent with our 

findings obtained from the cohort of South African adolescents.

To evaluate whether and how these immune cell frequencies change during active disease, 

we analysed transcriptome profiles from PBMC or whole-blood samples from 409 

individuals with LTBI and 543 patients with active TB from nine clinical cohorts 

(Supplementary Table 4), profiling children and adults, with and without HIV comorbidity, 
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across three continents. Deconvolution estimations showed that NK cells were present at 

significantly (FDR = 0%, P < 2.2 × 10−16) lower frequencies in samples from patients with 

active TB, with notable consistency across all cohorts (Fig. 3b). Flow cytometry analysis of 

whole-blood samples from adults collected from 24 uninfected controls, 17 individuals with 

LTBI and 23 patients with active TB (Supplementary Table 5) from a non-endemic region 

(Shenzhen) in China also confirmed the stage-specific changes in NK cell frequencies (Fig. 

3d).

Our deconvolution estimations also showed significantly reduced levels of B cells in patients 

with active TB compared to uninfected individuals (Extended Data Fig. 6). The analysis of 

B cells in an adult Italian cohort is one such example7. In general, the decrease in the 

frequencies of B cells and naive B cells was observed in either latency or active disease 

relative to uninfected individuals (Fig. 3a, b and Extended Data Fig. 4a, b), with the 

exception of an Indonesian cohort, in which no change in B cell frequencies was observed. 

Notably, similar to the Indonesian cohort, no change in B cell frequencies was observed in 

the adult Chinese cohort, assessed by flow cytometry (Fig. 3d). These observations 

underscore the heterogeneity of immune states in Mtb infection. Although our South African 

adolescent cohort showed no significant changes in T cell abundance between uninfected 

controls and individuals with LTBI, both CD4+ and CD8+ αβ T cell populations showed 

significantly diminished responsiveness through the S6 pathway, which may foretell the 

eventual drop in peripheral T cell levels observed in patients with active TB (Fig. 3b, 

Extended Data Fig. 5b). Flow cytometry assessment of the Chinese cohort confirmed the 

significant decrease in peripheral T cell levels in patients with active TB compared to 

uninfected controls (Fig. 3d). Whether reduced T cell signalling capacity is a common 

feature of LTBI requires further analysis. Nonetheless, our results suggest that immune 

deviations in both T and B cell compartments start in latency and progress further in active 

disease.

To test whether the disease-induced reductions in peripheral lymphocyte populations recover 

after successful treatment, we deconvoluted PBMC or whole-blood transcriptome profiles of 

76 samples from patients with active TB and 97 samples from patients at the end of 

treatment from four independent cohorts of HIV-negative adults (Supplementary Table 4) 

from three continents. NK cell frequencies, together with all major immune cell populations, 

except CD4+ αβ T cells, were significantly higher in successfully treated individuals relative 

to patients with active TB, reaching reference levels observed in healthy, Mtb-uninfected 

individuals (Fig. 3c and Extended Data Fig. 4c, 5c). A longer recovery time for CD4+ αβ T 

cells might be indicative of a post-treatment inflammatory state due to ongoing subclinical 

disease as seen by positron emission tomography and computed tomography (PET–CT) 

analysis14. The trajectories of estimated immune cell frequencies through the different 

stages of infection and after treatment are summarized in Extended Data Fig. 7.

Because of the apparent correlation between changes in NK cell frequencies and the stages 

of Mtb infection, we tested whether the levels of peripheral NK cells could inform TB 

disease progression and response to treatment (Fig. 1c) by analysing three independent 

longitudinal follow-up studies of South African cohorts, which included individuals who (1) 

acquired latent Mtb infection (defined as converting from QuantiFERON (QFT)-negative to 
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QFT-positive), (2) progressed from latent infection to active disease (South African 

adolescent progressor cohort)15,16 and (3) proceeded from active disease to treatment 

completion (Catalysis-TB cohort)17. Deconvolution estimations showed that relative to pre-

infection, levels of NK cells did not change significantly after acquisition of Mtb infection (n 
=17; Fig. 4a) and decreased during the progression from latent infection to active disease (n 
= 17; Fig. 4b (left)). Consistent with this latter computational finding, flow cytometry 

analysis of 32 individuals with LTBI (12 progressors and 20 non-progressors) 

(Supplementary Table 6) showed that NK cell frequencies decreased in each of the 

progressors, 0–180 days before TB diagnosis, whereas the non-progressors showed no 

significant change in peripheral NK cell frequencies during the two-year study period (Fig. 

4b (right)). Statistical analysis of the predictive power of NK cell levels for progression to 

active disease using receiver operating characteristic curves showed an area under the curve 

of 0.69 (95% confidence interval 0.57–0.82) in the seven months preceding TB diagnosis 

(Fig. 4c). In addition, deconvolution analysis of gene-expression data from the Catalysis 

Foundation for Health study of patients with active TB under treatment showed that in 

individuals who responded to treatment (classified as ‘definite cure’, n = 76), NK cell levels 

were significantly higher at the end of treatment (week 24) compared to baseline (pre-

treatment, P < 0.0001; Fig. 4d). By contrast, treatment non-responders (classified as ‘no 

cure’, n = 7), showed no significant change in their NK cell percentages between baseline 

and end of treatment (P = 0.1250; Fig. 4d). Furthermore, we found that the inflammatory 

burden of the lung indicated by the total glycolytic activity index, as measured by PET–

CT14, inversely correlated with peripheral NK cell frequencies at diagnosis (pre-treatment; 

Fig. 4e) and at week 4 after treatment initiation (Extended Data Fig. 8). Therefore, changes 

in peripheral NK cell levels reflect changes in the activity level and burden of Mtb in the 

lung. These observations support the view that circulating NK cells reflect key features of 

the host immune state, can serve as surrogates of the immune response at the nidus of 

infection and that longitudinal measurements of peripheral NK cells can inform disease 

progression and treatment efficacy.

NK cells have been shown to kill Mtb-infected cells directly or through ADCC18. Moreover, 

NK cells become activated and expand in the lung during the early response in a mouse 

model of aerosol exposure with Mtb, but depleting NK cells from these immunocompetent 

mice does not alter the course of infection19. Nevertheless, in mice with T cell deficiencies, 

NK cells were found to confer protection against Mtb infection20. Although mice infected 

with Mtb do not establish latency, these observations are consistent with the proposition that 

in the immune state that we observed here in TB latency, NK cells could contribute to 

protective immunity. Along this line, TB is the most common fatal opportunistic infection in 

HIV/AIDS21, and NK cells are noted for controlling HIV infections22. Progressive 

impairment of NK cell functions and depletion of NK cells, especially the CD16+ subsets, 

have been noted in HIV infection23. Additionally, anti-TNF therapy, which is associated 

with increased incidence of TB disease in autoimmune patients with LTBI24, was shown to 

impair NK cell function25 and reduce the expression of PRF and granulysin in 

lymphocytes26.

Taken together, our analyses offer a better understanding of the immune state of latent Mtb 
infection and factors that mediate and/or predict transitions from latent infection to active 
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disease. These findings may be useful for generating hypotheses that could lead to new 

intervention strategies.

METHODS

Data reporting.

No statistical methods were used to predetermine sample size. The experiments were not 

randomized and the investigators were not blinded to allocation during experiments and 

outcome assessment.

Study design and participants.

A South African adolescent cohort (Adolescent Cohort Study (ACS))5, aged 13–18 years, 

who were either uninfected or latently infected with Mtb (LTBI) (Supplementary Table 1), 

were analysed to characterize the immune state of TB latency. All adolescents whose parents 

or legal guardians provided written, informed consent and who provided written, informed 

assent themselves were enrolled. The study protocols were approved by the relevant human 

research ethics committees. Individuals were classified as latently infected if diagnosed 

positive by a QuantiFERON TB Gold In-tube assay (Qiagen; >0.35 IU ml−1). All 

participants were healthy without signs or symptoms of active disease. Only adolescents 

who remained disease-free for two years from the time of enrolment were included in the 

analysis.

Cohorts associated with publicly available datasets27–37 that were used for the analysis of 

immune cell distributions at different stages of Mtb infection, and end-of-treatment, by cell-

mixture deconvolution, are described in Supplementary Table 4.

An adult Chinese cohort (Supplementary Table 5) from Shenzhen, a non-endemic region in 

China was assessed for immune cell distributions at different stages of Mtb infection using 

flow cytometry analysis of PBMC samples. Individuals were defined as latently infected if 

diagnosed positive by the interferon gamma release assay (IGRA+) but showed no symptom 

or chest X-ray signs suggestive of active disease. Tuberculosis was defined as intrathoracic 

disease with positive sputum smears and/or cultures for Mtb. The study protocols were 

approved by the relevant human research ethics committees.

Three independent longitudinal South African progressor cohorts were analysed for the 

kinetics of the frequency changes in NK cells using deconvolution of gene expression 

datasets. These cohorts transitioned from: (1) an uninfected state to latency (GSE116014), 

for which samples were obtained from an Mtb-acquisition sub-cohort, selected from the 

larger ACS cohort5,16, who were diagnosed as QFT-negative at multiple time points, six 

months apart, and then converted to QFT-positive, indicating a newly acquired Mtb infection 

(Extended Data Fig. 9); (2) latency to active disease, individuals enrolled in the ACS cohort 

described above, were assessed longitudinally every six months during a 2-year follow-up 

study15. Adolescents who developed active tuberculosis disease during this 2-year follow-up 

were included as ‘progressors’, and those who did not, were classified as LTBI ‘non-

progressors’ (Supplementary Table 6). Active TB was defined as intrathoracic disease, with 

either two sputum smears that were positive for acid-fast bacilli or one positive sputum 
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culture confirmed to be M. tuberculosis complex (mycobacterial growth indicator tube, BD 

BioSciences). Participants were excluded if they were known to be HIV-positive; (3) active 

disease to end-of-treatment, the Catalysis-TB cohort17.

Mass cytometry measurements and analysis.

CyTOF experiments were performed as previously described38. In brief, cryopreserved 

PBMCs were thawed and rested in complete RPMI with 10% FCS at 37 °C for 2 h at cell 

densities of approximately 107 cells per ml. Cells from each sample were equally split into 

two parts and were either left untreated or stimulated for 4 h with 150 ng ml−1 phorbol-12-

myristate-13-acetate (PMA) and 1 μM ionomycin in the presence of brefeldin A and 

monensin (eBioscience). Cells (5 × 106) were then stained (1 h; room temperature) with a 

mixture of metal-tagged antibodies (a complete list of antibodies and their catalogue 

numbers is provided in Supplementary Table 2). All antibodies were validated by the 

manufacturers for mass cytometry applications (as indicated on the manufacturer’s 

datasheet, available online) and were conjugated using MAXPAR reagents (Fluidigm Inc.). 

Cisplatin and iridium intercalators were used to identify live and dead cells. We used 

palladium barcoding (Fluidigm Inc.) according to the manufacturer’s instructions. Cells 

were washed twice with PBS, fixed in 1.6% paraformaldehyde (PFA) (Sigma-Aldrich; 1 h), 

washed again in ultrapure water and analysed using CyTOF mass cytometry on a CyTOF 2 

instrument (Fluidigm). Intracellular phosphorylated-protein staining was carried out as 

previously described39. In brief, cryopreserved PBMCs were thawed and rested as described 

above. Rested cells were incubated with cisplatin for 1 min and immediately quenched with 

four volumes of complete RPMI with 10% FCS, and rested again for 30 min at 37 °C. 

Subsequently, cells were split into five tubes; one was left untreated and the others were 

stimulated with (1) PMA and ionomycin, (2) IFNγ (50 ng ml−1), (3) TNF (50 ng ml−1) or 

(4) anti-CD3 (500 ng ml−1) and anti-CD28 (2 μg ml−1) for 15 min at 37 °C. The reaction 

was stopped by adding PBS with 2% PFA (incubated for 10 min; room temperature), 

followed by palladium barcoding as recommended by the manufacturer (Fluidigm). After 

barcoding, cell samples were washed and then combined for surface-marker staining (1 h; 

room temperature). Subsequently, cells were washed and permeabilized in MeOH at −80 °C 

overnight. The next day, cells were washed and incubated with the cocktail of antibodies to 

intracellular signalling proteins at room temperature for 1 h, followed by DNA staining as 

described above.

Cell events were acquired at approximately 500 events s−1. In addition, we spiked each 

sample with internal metal-isotope bead standards for sample normalization using the 

CyTOF software (Fluidigm Inc.). Data processing and gating of dead cells and 

normalization beads was done on the Cytobank website (http://www.cytobank.org). To 

account for intra-run declines in mean marker intensity over time, we performed a within-

sample-over-time normalization step by using a running window to adjust mean marker 

intensity throughout each individual run, such that the mean expression over time was equal 

to that measured at the beginning of the run. Data was debarcoded using Fluidigm’s 

Debarcoder tool. Data was arcsinh-transformed for analysis.
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Analysis of CyTOF data.

Citrus (cluster identification, characterization and regression).—Cell subset 

abundance and functional marker expression in PBMCs from uninfected controls and 

subjects with LTBI were compared using the Citrus algorithm available from the Cytobank 

website. Citrus40 uses regularized supervised learning algorithms to identify stratifying 

clusters (subsets) and cell response features. It is data driven and corrected for multivariate 

comparisons. In brief, Citrus analysis consists of the following steps. First, FCS files of 

normalized, ‘live cell/no beads’ samples were randomly sampled for n single-cell events. 

Second, collected single-cell events were pooled and iteratively hierarchically clustered 

based on similarity of expression of subsets of the measured channels. This procedure 

yielded overlapping clusters with the largest cluster encompassing all of the sampled events. 

Third, the pooled dataset was split back into its constitutive samples, and the relative 

abundance of cells in each cluster was computed, as well as the median expression of each 

functional marker in each cluster. Only clusters for which the abundance in one or more of 

the measured samples was greater than some lower-bound P values were considered for 

downstream differential analysis. Fourth, to determine differences in cell subset abundances 

or functional marker medians expression, we used the SAM algorithm in Citrus, which 

assesses FDR by permutations. For each set of analysis, we set n to 20,000 and the 

clustering threshold to 1% of total cells and performed the analysis iteratively such that 

20,000 events from the entire dataset were chosen randomly for the multiple rounds of 

analysis. We also analysed the entire dataset in R. These analyses yielded qualitatively 

similar results.

Analyses of abundance from unstimulated and stimulated samples were done separately (see 

Extended Data Figs. 1, 2) because stimulation changed the expression levels of certain cell-

surface markers. Manual inspection of Citrus output was used to identify the closest known 

gross-cell type. We characterized cell clusters using standard cell subset definitions: B cells 

(CD19+), CD8+ αβ T cells (CD3+TCRβ+CD8+), CD4+ αβ T cells (CD3+TCRβ+CD4+), γδ 
T cells (CD3+TCRδ+), monocytes (CD3−CD19−CD33+CD14+HLA-DR+), NK cells 

(CD3−CD19−CD14−HLA-DR−CD16+CD56bright/dim). In all conditions, we report cluster 

abundance differences at a FDR < 1%.

viSNE analysis.—Single-cell analysis using the dimensionality reduction technique 

viSNE reduces the multi-parametric data into two dimensions for visualization of similarity 

and heterogeneity across individual cells41. To account for different scales between 

parameters, the data was arcsinh transformed. viSNE analysis was performed on raw CyTOF 

data from the Cytobank database.

Manual gating.—Manual gating was performed on the Cytobank website on normalized, 

debarcoded data files. A hierarchical gating strategy was used to identify live, single cells of 

the main PBMC populations (Extended Data Fig. 1a) and their subsets based on the 

expression of surface, cytokine or signalling molecules.
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NK cell cytotoxicity measured by calcein-release assay.

NK cells were enriched from PBMCs using the NK Cell Isolation Kit from Miltenyi 

Biotech. The NK cell cytotoxicity assay was carried out as described42 with some 

modifications. In brief, after cell counting, NK cells were mixed with calcein-acetoxymethyl 

(calcein-AM) labelled target K562 cells (which are susceptible to NK cell-mediated killing 

because of the lack of surface MHC class I expression), at an effector to target ratio of 2:1. 

For staining of the target cells, 2 mM of calcein-AM (Life Technologies) was added to the 

target cells (2 × 106 per ml) and incubated at 37 °C for 30 min with periodic mixing. The 

target cells were washed, the enriched NK cells were added, and the mixture was incubated 

at 37 °C for 4 h. Maximum and spontaneous release controls were set up as three replicates 

using 1% Triton X-100 (final concentration) and plain medium, respectively. After the 4-h 

incubation, the cells were gently mixed to evenly distribute the released calcein in the 

supernatant and the plate was spun at 400g for 2 min to pellet the cells and any debris. For 

the calcein-release assay, 150 μl of the supernatant was collected and transferred to a flat 

black-bottom plate. The fluorescence was read using a FlexStation3 microplate reader 

(excitation/emission: 485/530 nm). The percentage of specific lysis was calculated using the 

formula: ((test release − spontaneous release)/(maximum release − spontaneous release)) × 

100.

FcγR-mediated antibody-dependent cell mediated cytotoxicity.

ADCC was carried out as previously described43 with some modifications. In brief, P815 

cells (a mouse leukaemia cell line) were stained with 0.25 μM carboxy-fluorescein 

succinimidyl ester (CFSE; Molecular Probes) and incubated with the 10 μg ml−1 

concentration of the P815-specific monoclonal antibody, 2.4G2. Coated and uncoated P815 

cells were then cocultured with previously cryopreserved PBMC samples at an 

effector:target ratio of 10:1 in 10% FCS, penicillin, glutamine and streptomycin. The 

percentage of target cells that were killed through ADCC was monitored by flow cytometry 

staining using 7-amino-actinomycin D (7-AAD) viability staining solution (BioLegend). 

The percentage of cells killed by FcγR-mediated ADCC was obtained by subtracting the 

percentage 7-AAD+ CFSE-labelled uncoated target cells from the percentage of 7-AAD+ 

CFSE-labelled coated target cells. A minimum of 300,000 cells were analysed on a BD 

LSRII, and analysis was then performed using FlowJo (version 10.2) software.

Plasma protein quantification using a proximity extension assay.

For analysis, 20 μl of frozen (−80 °C) plasma samples were thawed and sent to Olink 

Proteomics. In proximity extension assays, plasma proteins were dually recognized by pairs 

of antibodies coupled to a cDNA strand that ligates when brought into proximity to its 

target, extended by a polymerase and detected using a BioMark HD 96 × 96 dynamic PCR 

array (Fluidigm). The quantification cycle (Cq) values from a DNA extension control are 

subtracted from the measured Cq value, an interpolate control is corrected for, and finally a 

correction factor is subtracted to yield a normalized protein expression value, which is log2-

transformed.
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Cell-mixture deconvolution and cell percentage meta-analysis.

This was carried out as previously described12,13. In brief, publicly available gene 

expression datasets were collected, pre-processed using the MetaIntegrator R package44 and 

annotated45. Each microarray dataset was converted into a gene-expression matrix, whereas 

for GSE7936215,16, which is an RNA-seq dataset, the total read counts per gene were first 

computed. A Hedge’s g effect size was then computed to estimate changes in cell subset 

proportions. Effect sizes from all individual datasets were integrated into a summary effect 

size and significance was computed as previously described44,46. To delineate cell 

trajectories over time, we computed a cumulative effect size score for each cell type in 

uninfected controls, LTBI, active TB disease, and end-of-treatment stages. We started by 

setting a reference effect size of 0 for healthy, Mtb-uninfected controls and then computed 

all following scores by adding the summary effect size value corresponding to case class for 

that specific comparison (LTBI, active TB, treated). We computed cumulative standard 

errors by assuming summary effect sizes to be normally distributed and independent of each 

other at each stage. Plots and statistics were generated using the R programming language.

Analysis of cell abundance using flow cytometry.

For flow cytometry experiments, PBMCs were thawed and rested as described in ‘Mass 

cytometry measurements and analysis’. Cells (3–5 × 106) were incubated with antibodies for 

30 min at 4 °C, then washed with FACS staining buffer (PBS containing 1% bovine serum 

albumin and 0.05% sodium azide). The following monoclonal antibodies were used: Pacific 

Blue-conjugated anti-CD3 (BioLegend, 300417), PE–Cy7-conjugated anti-CD19 

(BioLegend, 302216), APC–Cy7-conjugated anti-CD14 (BioLegend, 325620), APC-

conjugated HLA-DR (BioLegend, 307610), PE–Dazzle-conjugated anti-CD16 (BioLegend, 

302054) and Brilliant Violet 785-conjugated CD56 (BioLegend, 362550). The live/dead 

aqua-amine reactive dye was used for gating dead cells. All antibodies were validated by the 

manufacturers for flow cytometry application, as indicated on the manufacturer’s website. 

Data were analysed using FlowJo version 10.2.

Statistical analysis.

Analysis of CyTOF data are described in ‘Citrus (cluster identification, characterization and 

regression)’. In all other experiments, significance levels were determined using Prism 

version 7 (GraphPad Software). Experiments were analysed using the Mann–Whitney U-test 

or one-way analysis of variance (ANOVA), as indicated for each experiment. The diagnostic 

performance of NK cells to discriminate latent TB from active disease cases was evaluated 

using receiver operating characteristic (ROC) curve analysis, for which the true positive rate 

(sensitivity) is plotted as a function of the false-positive rate (100 − specificity). The area 

under the ROC curve is a measure of the probability that a classifier (for example, NK cell 

frequencies) will rank a randomly chosen positive instance (for example, active TB) higher 

than a randomly chosen negative one (for example, LTBI). ROC curves were plotted using 

Prism version 7.
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Extended Data

Extended Data Fig. 1 |. Broad alterations of peripheral immune cell distributions in LTBI.
PBMCs from 14 latently infected and 14 uninfected participants of a South African 

adolescent cohort were characterized using CyTOF with antibody panel 1 (Supplementary 

Table 2), followed by Citrus analysis and clustering. This unsupervised hierarchical 

clustering analysis produced a branching structure (dendrogram) that allowed the grouping 

of total live cells into known immune cell compartments (contoured). Cell clusters are 
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represented as nodes (circles) in this Citrus-derived circular dendrogram, which delineates 

lineage relationships that were identified from the data. Cluster granularity (that is, cell 

subset specificity) increases from the centre of the diagram to the periphery. a, Annotation of 

cluster hierarchy plots based on surface marker expression. The expression intensity of each 

marker used for cell population characterization is overlaid per cluster on the Citrus circular 

dendrogram and is indicated, independently for each marker, by the coloured gradient for 

which the range corresponds to the arcsinh-transformed expression of the median marker 

expression measured across all Citrus clusters. For each marker, we also provide a dot plot 

graph demonstrating the marker labelling in the manually gated indicated population. b, 

Citrus plots showing, based on cell-surface protein expression, clusters (in red, designated 

A–F) that exhibit significantly different abundances (SAM analysis with FDR < 1%) 

between the uninfected and latently infected individuals. Individual cell clusters are mapped 

to well-established, gross-cell types: B cells (CD19+), CD8+ αβ T cells (CD3+TCRβ
+CD8+), CD4+ αβ T cells (CD3+TCRβ+CD4+), γδ T cells (CD3+TCRδ+), monocytes 

(CD3−CD19−CD33+CD14+HLA-DR+), NK cells (CD3−CD19−CD14−HLA-DR
−CD16+CD56bright/dim), identifiable by annotated shaded background groupings. c, The 

phenotype and the composition of cells in each of the stratifying cell subsets (A–F), 

identified by Citrus analysis. d, Percentages of NK cells and B cells determined by manual 

gating of 20 additional samples using CyTOF antibody panel 2 (left; Supplementary Table 2) 

and 32 samples using flow cytometry (right). e, Percentages of CD4+ αβ T cells, CD8+ αβ 
T cells and γδ T cells in uninfected controls and latently infected individuals, analysed by 

CyTOF (n = 24 per group; top) and flow cytometry (n = 16 per group; bottom). Throughout, 

P values were derived using a Mann–Whitney U-test. Mean and error bars representing the 

95% confidence intervals are shown for each comparison.
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Extended Data Fig. 2 |. Enhanced effector function response in LTBI.
a, Cell subsets, shown as red nodes in a Citrus-derived circular dendrogram and designated 

as 1–5, were identified as significantly different in abundance (SAM analysis at FDR < 1%) 

based on CyTOF analysis of effector and cell-surface molecule expression on PBMCs 

(antibody panel 1, Supplementary Table 2) from uninfected controls and individuals with LT 

BI (n = 14 per group) after 4-h PMA and ionomycin stimulation. Mapping of individual cell 

clusters to established, grosscell types are identified by annotated shaded background 

groupings. b, Expression intensity of selected effector molecules is indicated by the coloured 
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gradient for which the range corresponds to the arcsinh-transformed expression of the 

median marker expression measured across all C itrus clusters. c, Effector molecule 

expression and the composition of cells in each of the stratifying cell clusters (1–5), 

identified by Citrus analysis. d, viSNE analysis of GZMB expression level in immune-cell 

subsets, representative of 14 uninfected and 14 individuals with LTBI (the colour gradient 

corresponds to the arcsinh-transformed expression level). e, Quantification of intracellular 

GZMB expression level in NK cells, CD8+ αβ T cells and γδ T cells in uninfected controls 

and individuals with LTBI (n = 14 per group). P values were derived using a Mann–Whitney 

U-test. Mean and error bars representing the 95% confidence intervals are shown for each 

comparison. f, Dot plots from CyTOF analysis of CD16+GZMBhigh cells within each 

lymphocyte subset, representative of 14 uninfected controls and 14 individuals with LTBI. g, 

Gating strategy for ADCC. ADCC was measured using NK-resistant P815 cells, which were 

either coated with antibody (2.4G2) or left uncoated (control), and labelled with the 

intracellular dye CFSE, followed by the DNA dye 7AAD. CFSE+7AAD+ cells were defined 

as dead target cells.

Extended Data Fig. 3 |. Alterations in plasma protein levels in LTBI.
The relative levels of plasma proteins (Supplementary Table 3), shown on a log2 scale, 

between uninfected controls and individuals with LTBI (n = 27 per group). Plasma proteins 

that were present at significantly higher levels (a) and significantly lower levels (b) in 

individuals with LTBI. Plasma protein quantification was performed using the proximity 
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extension assay. P values were derived using a unpaired two-tailed Student’s t-test. Mean 

and error bars representing the 95% confidence intervals are shown for each comparison.

Extended Data Fig. 4 |. Changes in frequencies of peripheral B cell subsets in LTBI, active TB 
and after treatment.
Forest plots for estimated frequencies of B cell subsets: naive B cells, memory B cells and 

plasma cells. a, Comparison between the uninfected state (n = 189) and LTBI (n = 145). b, 

Comparison between LTBI (n = 409) and active T B (n = 543). c, Comparison between 

active TB (n = 76) and end-of-treatment (n = 97). Cohort GSE identifiers are listed on the 
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left. In the plots, boxes represent the standardized mean difference in estimated cellular 

proportions in a cohort between two comparison groups. The size of the box is proportional 

to the sample size of a given cohort. Lines indicate the 95% confidence interval of the 

corresponding effect sizes. Diamonds indicate the summary effect size (Summary), obtained 

by integrating the effect sizes from individual cohorts. The width of the diamond 

corresponds to its 95% confidence interval. The P values and q values for the summary 

effect sizes are shown above each plot.
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Extended Data Fig. 5 |. Changes in frequencies of peripheral T cell subsets, monocytes and 
granulocytes in LTBI, active TB and after treatment.
Forest plots for estimated frequencies of CD4+αβ T cells, CD8+αβ T cells, monocytes and 

granulocytes. a, Comparison between the uninfected state (n = 189) and LTBI (n = 145). b, 

Comparison between LTBI (n = 409) and active TB (n = 543). c, Comparison between active 

TB (n = 76) and end-of-treatment (n = 97). Boxes represent the standardized mean 

difference in estimated cellular proportions in a cohort between two comparison groups. The 

size of the box is proportional to the sample size of a given cohort. Lines indicate the 95% 

confidence interval of the corresponding effect sizes. Diamonds indicate the summary effect 

size (Summary), obtained by integrating the effect sizes from individual cohorts. The width 

of the diamond corresponds to its 95% confidence interval. The P values and q values for the 

summary effect sizes are shown above each plot.

Extended Data Fig. 6 |. Comparison of the frequencies of peripheral NK cells, B cells and T cells 
between uninfected controls and patients with active TB.
Forest plots comparing changes in the levels of NK cells, B cells and T cells between 

uninfected individuals (n = 191) and patients with active TB (n = 178). Boxes represent the 

standardized mean difference in estimated cellular proportions in a cohort between two 

comparison groups. The size of the box is proportional to the sample size of a given cohort. 

Lines indicate the 95% confidence interval of the corresponding effect sizes. Diamonds 

indicate the summary effect size (Summary), obtained by integrating the effect sizes from 

individual cohorts. The width of the diamond corresponds to its 95% confidence interval. 

The P values and q values for the summary effect sizes are shown above each plot.
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Extended Data Fig. 7 |. Trajectories of different immune cell populations from the acquisition of 
Mtb infection to end-of-treatment.
Changes in the frequency distribution patterns of different peripheral leukocyte populations 

(a) and B and T cell subpopulations (b) at the different stages of infection. Lines indicate 

cumulative effect size scores starting from a healthy baseline level up to treatment of active 

TB disease. Error bars indicate corresponding standard errors.

Extended Data Fig. 8 |. Correlation between peripheral NK cell percentage and lung 
inflammation.
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Correlation plot showing the relationship between estimated peripheral NK cell frequencies 

in patients with active TB at week 4 after treatment initiation and total glycolytic activity 

index (TGAI) of the lung measured by PET–CT imaging at the corresponding time point. 

The line represents the best fit and the shaded area the 95% confidence interval. NK cell 

frequencies were determined by deconvolution.

Extended Data Fig. 9 |. Synchronization of the adolescent cohort who underwent QuantiFERON 
conversion following Mtb acquisition.
To identify changes in peripheral NK cell frequencies after acquisition of Mtb infection by 

cell-mixture deconvolution analysis, the timescale of the gene expression dataset 

(GSE116014) was realigned according to the time of first infection diagnosis instead of 

study enrolment, allowing the identification of gene-expression profiles obtained before 

infection diagnosis. Each individual is represented by a horizontal bar. The length of the bar 

represents the number of days between study enrolment and diagnosis with Mtb infection. 

During follow-up, each individual transitioned from an uninfected state (blue) to infected 

state (brown), that is, underwent QFT conversion. The black circles represent time points for 

which gene-expression data were available. Pre-infection (Pre) data (180–360 days) were 

compared to data obtained at the time of infection diagnosis or the nearest time point after 

diagnosis (Post) (0–360 days).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Schematic representation of the experimental design.
a, Identification of immune features distinguishing uninfected and latently infected 

individuals from a cohort of South African adolescents. t-SNE, t-distributed stochastic 

neighbour embedding. viSNE, visualization using t-SNE. b, Analysis of changes in immune 

cell subset abundance at different stages of infection and end-of-treatment using cell-type 

deconvolution of transcriptomic data from multiple cohorts, and fluorescence-activated cell 

sorting (FAC S) analysis of PBMCs from an adult Chinese cohort. c, Evaluation of changes 

in NK cell frequencies in longitudinal cohorts, for individuals who (1) acquired Mtb 
infection (QuantiFERON converters); (2) progressed from LTBI to active TB, and (3) 

patients with active TB who proceeded to treatment completion; and their correlations with 

pulmonary pathology as measured by PET–CT imaging. ATB, active tuberculosis; EOT, 

end-of-treatment; UC, uninfected controls.
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Fig. 2 |. Immune state of TB latency identified in a cohort of South African adolescents.
a,b, Frequencies of cell subsets were defined by surface marker (a) and effector molecule 

(b) expression that are present in significantly (FDR < 1% by SAM analysis) different 

abundances between uninfected controls and individuals with LT BI (n = 14 per group) as 

determined by Citrus analysis of CyTOF results (Extended Data Figs. 1, 2). c, Cytolytic 

responses of NK cells isolated from PBMCs of uninfected controls and individuals with LT 

BI (n = 10 per group), quantified by calcein-release from calcein-labelled target (K562) cells 

upon lysis. d, Percentages of CD16+GZMBhigh cells within each lymphocyte subset in 

uninfected controls and individuals with LT BI (n = 14 per group) (Extended Data Fig. 2f). 

e, ADCC response of total PBMCs from uninfected controls and individuals with LTBI (n = 

12 per group) as determined by antibody-mediated killing of CFSE-labelled target (P815) 

cells (Extended Data Fig. 2g). f, Frequencies of phosphorylated ribosomal protein S6 (pS6)+ 

cells within T cell subsets under different stimulation conditions in uninfected controls and 

individuals with LTBI (n = 10 per group). g, Volcano plot of plasma protein abundance in 

uninfected controls and individuals with LTBI (n = 27 per group) (Supplementary Table 3). 

Throughout, P values were derived using a Mann–Whitney U-test, unless otherwise stated. 

Mean and error bars representing the 95% confidence intervals are shown for each 

comparison. See Supplementary Table 1.
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Fig. 3 |. Peripheral lymphocyte distributions at different infection stages from global cohorts.
Forest plots comparing changes in the levels of NK cells, B cells and T cells were calculated 

using cell-mixture deconvolution. a, Comparison between uninfected controls (n = 189) and 

individuals with LTBI (n = 145). b, Comparison between individuals with LT BI (n = 409) 

and patients with active TB (n = 543). c, Comparison between patients with active TB before 

(n = 76) and after six months of treatment (end-of-treatment) (n = 97). Cohort GSE 

identifiers are listed on the left. Boxes represent the standardized mean difference in 

estimated cellular proportions in a cohort between two comparison groups (effect size). The 

size of the box is proportional to the sample size of a given cohort. Whiskers represent the 

95% confidence interval of the corresponding standardized mean difference in cellular 

proportions. Diamonds represent the overall difference in cellular proportions between two 

groups by integrating the standardized mean differences across all individual cohorts-

summary effect sizes (Summary). The width of the diamond corresponds to its 95% 

confidence interval. The q values (FDR) for the summary effect sizes are shown above each 

plot. d, Percentages of peripheral NK cells, B cells and T cells in a Chinese cohort of 

uninfected controls (n = 24), individuals with LTBI (n = 17) and patients with active T B (n 
= 23) assessed by flow cytometry. P values were derived using a one-way ANOVA with 

Tukey’s multiple comparisons test. Mean and error bars representing the 95% confidence 

intervals are shown for each comparison. See Supplementary Tables 4, 5.
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Fig. 4 |. Correlations between peripheral NK cell percentages and disease progression, treatment 
response and inflammation in the lung.
a, Changes in peripheral NK cell percentages in South African adolescents after acquisition 

of Mtb infection (Extended Data Fig. 9, n = 17) were determined by cell-mixture 

deconvolution. Pre-infection (Pre) gene-expression data (180–360 days) were compared to 

data obtained at the time of infection diagnosis or the nearest time point after diagnosis (0–

360 days) (Post). b, Changes in peripheral NK cell percentages during progression from 

LTBI to active disease at different time points before TB diagnosis and non-progressors over 

a span of two years (Supplementary Table 6) were determined by cell-mixture deconvolution 

(17 progressors and 41 non-progressors) (left) and flow cytometry (12 progressors and 20 

non-progressors) (right). All P values were derived using a Wilcoxon rank-sum test. Mean 

and error bars representing the 95% confidence intervals are shown. c, Receiver operating 

characteristic curves of the potential of estimated NK cell frequencies as a predictor of TB 

disease progression. d, Estimated NK cell percentages in patients with active TB from the 

Catalysis-TB cohort at baseline (pre-treatment) and at various time points during treatment. 

Definite cure indicates sputum culture negative by month 6 after treatment initiation (n = 

76); no cure indicates sputum culture positive after six months of treatment initiation (n = 7). 

P values were derived using a Wilcoxon rank-sum test. Mean and error bars representing the 

95% confidence intervals are shown. e, Correlation plot showing the relationship between 

estimated peripheral NK cell frequencies in patients with active TB at baseline (pre-

treatment) and total glycolytic activity index (TGAI) measured by PET–CT imaging of the 

lungs at baseline. The line represents the best fit and the shaded area the 95% confidence 

interval. NK cell frequencies were determined by deconvolution.
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