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Abstract	 	

Mycorrhizas	are	among	the	most	significant	biological	inter-kingdom	interactions,	as	

they	 involve	~340,000	 land	plants	and	~50,000	taxa	of	soil	 fungi.	 In	 these	mutually	

beneficial	interactions,	fungi	receive	photosynthesis-derived	carbon	and	provide	the	

host	plant	with	mineral	nutrients	such	as	phosphorus	and	nitrogen	in	exchange.	Over	

150	 years	 of	 research	 on	 mycorrhizas	 has	 raised	 awareness	 of	 their	 biology,	

biodiversity	and	ecological	impact.	In	this	Review,	we	focus	on	recent	phylogenomic,	

molecular	and	cell	biology	studies	to	present	the	current	state	of	knowledge	on	the	

origin	 of	 mycorrhizal	 fungi	 and	 the	 evolutionary	 history	 of	 their	 relationship	 with	

land	plants.	As	mycorrhizas	 feature	a	variety	of	phenotypes,	depending	on	partner	

taxonomy,	 physiology	 and	 cellular	 interactions,	 we	 explore	 similarities	 and	

differences	 between	 mycorrhizal	 types.	 During	 evolution,	 mycorrhizal	 fungi	 have	

refined	their	biotrophic	capabilities	to	take	advantage	of	their	hosts	as	food	sources	

and	 protective	 niches,	 while	 plants	 have	 developed	 multiple	 strategies	 to	

accommodate	 diverse	 fungal	 symbionts.	 Intimate	 associations	 with	 pervasive	

ecological	success	have	originated	at	the	crossroads	between	these	two	evolutionary	

pathways.	 Our	 understanding	 of	 the	 biological	 processes	 underlying	 these	

symbioses,	where	fungi	act	as	biofertilisers	and	bioprotectors,	provides	the	tools	to	

design	 biotechnological	 applications	 addressing	 environmental	 and	 agricultural	

challenges.		
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Mycorrhizas	 are	 ubiquitous	mutualistic	 symbioses	 established	between	plant	 roots	

and	 soil	 fungi.	 In	 this	 Review,	 Bonfante	 and	 colleagues	 explore	 the	 origin	 and	

evolution	 of	 mycorrhizal	 fungi,	 the	 diversity	 of	 their	 interactions	 with	 host	 plants	

through	 the	 identification	 of	 common	 and	 unique	 traits,	 and	 the	 potential	 of	

application	of	mycorrhizal	symbioses	in	the	development	of	sustainable	agricultural	

and	environmental	strategies.		

	

[H1]	Introduction	

Mycorrhizas	 are	 ubiquitous	mutualistic	 symbioses	 established	between	plant	 roots	

and	 soil	 fungi.	 Across	 the	 intimate	 cellular	 contact	 between	 the	 two	 symbiotic	

partners,	mycorrhizal	 fungi	 receive	 fixed	carbon	 from	their	photosynthetic	hosts	 in	

exchange	 for	mineral	 nutrients,	 such	 as	 phosphorus	 and	 nitrogen,	 with	 a	 positive	

impact	 on	 plant	 growth1.	 The	 beneficial	 effect	 of	 symbiosis	 on	 host	 plants	 also	

includes	 an	 increased	 tolerance	 to	 biotic	 and	 abiotic	 stresses2.	 In	 addition,	

mycorrhizas	 offer	 several	 ecosystem	 services	 in	 natural	 and	 agricultural	

environments.	In	fact,	mycorrhizal	fungi	are	known	drivers	of	carbon	sequestration3	

and	 particle	 aggregation	 in	 soil,	 and	 have	 a	 major	 impact	 on	 the	 composition	 of	

microbial	 and	 plant	 communities4.	 For	 these	 reasons,	mycorrhizas	 are	 believed	 to	

have	 shaped	 biosphere	 evolution	 since	 plant	 terrestrialization	 and,	 in	 the	 current	

context	 of	 growing	 environmental	 concerns,	 they	 represent	 crucial	 actors	 of	

ecosystem	functioning4,5.	

Between	 320,000	 and	 340,000	 extant	 vascular	 and	 non-vascular	 plants	 can	 form	

mycorrhizas6.	 Among	 them,	 angiosperms	 account	 for	 the	 largest	 and	most	 diverse	

group	of	mycorrhizal	 species	 (~85–90%).	They	 include	 trees,	 shrubs,	herbs	and	 the	

majority	 of	 staple	 crops	 such	 as	 rice,	wheat,	maize,	 potato,	 sweet	 potato,	 tomato	

and	 cassava7.	 As	 for	 the	 fungal	 partners,	 at	 least	 50,000	 fungal	 species	 of	

Ascomycota,	Basidiomycota	and	Mucoromycota	are	estimated	to	form	mycorrhizas4.	

This	startling	diversity,	supported	by	over	400	million	years	of	co-evolution	between	

plants	and	 fungi,	has	generated	 four	main	mycorrhizal	 types	 that	have	emerged	at	

different	 times	 during	 plant	 evolution	 and	 feature	 specific	 morphological	 traits:	

ectomycorrhizas	(ECM),	arbuscular	mycorrhizas	(AM),	orchid	mycorrhizas	(ORM)	and	

ericoid	mycorrhizas	 (ERM;	 Fig.	 1).	 Cell-to-cell	 interactions	 in	 each	mycorrhizal	 type	



(Box	 1)	 have	 fascinated	 plant	 biologists	 since	 the	 pioneering	 ultrastructural	

observations	in	the	1980s8,9	and	set	the	foundation	for	subsequent	investigations	on	

signaling	and	gene	regulation	in	these	symbioses.	

Mycorrhizas	are	formed	by	the	majority	of	plants,	but	display	an	uneven	distribution:	

AM	 are	 the	 dominant	 type	 (72%),	 followed	 by	 ORM	 (10%),	 ECM	 (2%)	 and	 ERM	

(1.4%)6.	 Multiple	 mycorrhizal	 types	 co-exist	 in	 many	 ecosystems,	 with	 plant	 and	

fungal	species	establishing	—	in	some	cases	—	more	than	one	mycorrhizal	type	(Fig.	

1).	 In	addition,	a	single	fungus	can	colonize	different	hosts,	establishing	a	‘common	

mycorrhizal	 network’	 (Fig.	 1),	 that	 is,	 an	 underground	 hyphal	 network	 connecting	

distinct	plant	individuals10.		

Mycorrhizal	fungi	are	now	considered	among	the	dominant	components	of	the	plant	

microbiota11,	 the	 biodiverse	 ecosystem	of	microbial	 communities	 that	 live	 in	 close	

association	with	multicellular	individuals	and	impact	plant	health12,13.	In	this	context,	

mycorrhizal	 fungi	could	act	as	drivers	of	 the	so-called	Microbial	Revolution,	 that	 is,	

the	 development	 of	 sustainable,	 microbiome-based	 tools	 to	 enhance	 plant	 health	

and	productivity.		

In	 this	 Review,	 we	 explore	 the	 biological	 diversity	 of	 mycorrhizas,	 which	 have	

historically	been	grouped	according	to	their	morphological	features	(Box	1),	through	

the	 identification	 of	 unique	 and	 common	 traits	 between	 types.	 Fossil	 data	 and	

phylogenomic	 studies	 offer	 an	 evolution-based	 guideline	 to	 illustrate	 how	 ancient	

saprotrophic	 fungi	 	 feeding	on	decaying	organic	matter	evolved	a	novel	nutritional	

strategy	based	on	biotrophism	.	Furthermore,	we	discuss	how	fungal	biotrophism	is	

supported	 by	 multiple	 signalling	 and	 colonization	 processes,	 underpinned	 by	

relatively	 conserved	 genetic	 bases	 in	 plants.	 Lastly,	 we	 outline	 the	 potential	 of	

mycorrhizal	 symbioses	 as	 important	 actors	 in	 a	 global	 scenario	 that	 calls	 for	 the	

increasing	use	of	sustainable	agricultural	and	environmental	strategies	(Box	2).	

	

[H1]	Origin	and	evolution	of	mycorrhizas				

Due	 to	 their	 importance	 in	 ancient	 and	 extant	 ecosystems,	 the	 evolution	 of	

mycorrhizas	 has	 been	 explored	 in	 several	 reviews	 on	 the	 basis	 of	 data	 from	

palaeontology,	 genomic	 and	 phylogenomic	 studies,	 as	 well	 as	 plant	 and	 fungal	



diversity6,14,15,	with	the	final	aim	to	decipher	the	origin	of	their	pervasive	ecological	

success.	

The	earliest	fossil	evidence	of	plant–fungus	associations	is	in	the	407	million	year	old	

Rhynie	 chert	 ,	 where	 rhizomes	 of	 extinct	 plants	 like	 Aglaophyton	 majus	 hosted	

arbuscule-like	structures.	These	structures	are	similar	to	the	AM	observed	in	extant	

plant	 roots16	 (Box	 1),	 suggesting	 that	 the	 AM	 symbiosis	 has	 played	 a	 role	 in	 land	

colonization	 by	 the	 earliest	 plants.	 Liverworts	 	 are	 the	 earliest	 diverging	 group	

among	living	plants	and	the	occurrence	of	AMs	in	extant	species	(Fig.	2)	supports	this	

hypothesis,	 even	 though	mycorrhizal	 fossils	 of	 these	 non-vascular	 plants	 have	 not	

been	 found.	 Rhynie	 chert	 specimens	 	 suggest	 that	 AM	 fungi	 assigned	 to	 the	

subphylum	Glomeromycotina17	were	not	alone	in	colonizing	the	first	land	plants,	as	

additional	intracellular	fungi	morphologically	similar	to	extant	Mucoromycotina	have	

been	 found18.	 Indeed,	 phylogenomic	 evidence	 places	 the	 origin	 of	 both	

Mucoromycotina	 and	 Glomeromycotina	 (AM	 fungi)	 in	 the	 mid-late	 Silurian,	 ~420	

million	years	ago	(MYA)17,19,20,21.	

Even	though	the	origin	of	ECM	(Fig.1	and	Box	1)	likely	correlates	with	the	appearance	

of	 Pinaceae	 (gymnosperms	 ),	 between	 170	 and	 270	 	MYA14,	 ECM	 fossils	 are	more	

recent	 and	 date	 back	 to	 52	 MYA,	 in	 the	 early	 Eocene22.	 The	 Gnepine	 hypothesis		

suggests	 that	 Gnetales	 are	 a	 sister	 group	 of	 Pinaceae23,	 and	 it	 is	 interesting	 that	

members	 of	 the	 genus	 Gnetum	 also	 bear	 ECM.	 However,	 other	 Gnetales	

(Welwitschia	 	 and	 Ephedra	 genera)	 are	 AM	 plants,	 as	 well	 as	 the	 remaining	

gymnosperms,	 including	 the	 ‘living	 fossil’	 Ginkgo	 biloba.	 These	 data	 indicate	 that	

only	some	gymnosperms	lost	their	primal	AM	status	to	embrace	ECM,	possibly	under	

the	pressure	of	environmental	constraints.	 In	general	 terms,	 the	dominance	of	AM	

symbiosis	 in	 angiosperms	 mirrors	 the	 ecological	 success	 of	 this	 lineage	 since	 its	

evolutionary	 burst	 ~140–180	 MYA.	 Major	 exceptions	 are	 represented	 by	

Orchidaceae	 and	 Ericaceae,	 two	 families	 that	 developed	 different	 mycorrhizal	

interactions.	Convincing	fossils	of	ORM		are	currently	not	available	(Box	3),	but	their	

appearance	must	follow	the	late	Cretaceous	origin	(76–84	MYA)	of	this	family24.	ERM			

developed	 in	 the	 Ericaceae	 from	 AM	 ancestors25	 and	 their	 most	 ancient	 fossils,	

belonging	to	the	extant	genus	Leucothoe,	date	from	66–72	MYA14.	



Despite	the	discontinuity	of	the	fossil	record,	mycorrhizal	interactions	likely	evolved	

in	 non-vascular	 ancestors	 of	 extant	 plants	 with	 the	 instrumental	 role	 of	 favoring	

plant	 nutrient	 acquisition	 from	 the	harsh	primeval	 soils.	 In	 this	 regard,	 the	 limited	

occurrence	of	mycorrhizal	 interactions	 in	extant	early	diverging	plants	 (Bryophytes)	

appears	 puzzling.	 Mycorrhizas	 are	 in	 fact	 absent	 in	 mosses	 (including	 the	 model	

species	Physcomitrella	 patens)	 and	 are	 found	 rather	 erratically	 in	 hornworts	 6	 and	

liverworts	 (Fig.	 2),	where	 the	 congeneric	Marchantia	paleacea	 and	M.	polymorpha	

are	mycorrhizal	 and	 non-mycorrhizal,	 respectively26.	 A	 recent	 survey	 revealed	 that	

less	 than	30%	of	 the	examined	 liverworts	engage	associations	with	symbiotic	 fungi	

and	those	with	Glomeromycotina	are	particularly	few27.	However,	a	limited	number	

of	species	have	been	examined	so	far.	Similarly,	AM	fungi	are	not	dominant	among	

early-diverging	 tracheophytes	 like	 ferns	 and	 club	 mosses6,28.	 A	 clue	 to	 this	

conundrum	 may	 come	 from	 the	 observation	 that	 photosynthesis	 and	 growth	

promotion	in	AM	liverworts	are	enhanced		under	high	CO2	conditions
29,	resembling	

those	 of	 the	 Paleozoic	 atmosphere.	 It	 is	 therefore	 tempting	 to	 speculate	 that	 the	

progressive	 reduction	 in	 atmospheric	 CO2	 concentration	 during	 more	 recent	

geological	eras	eroded	the	usefulness	of	AM	in	some	of	these	early	diverging	plants.	

Biosphere	 evolution	 can	 therefore	 be	 added	 to	 some	 more	 obvious	 ecological	

considerations:	 in	 particular,	 bryophytes	 live	 in	 very	 humid	 environments	 and	 in	

close	contact	with	the	wet	soil	surface,	possibly	reducing	the	need	for	AM	fungi	as	

suppliers	of	water	and	minerals.	On	 the	other	hand,	 the	preference	of	 seed	plants	

(gymnosperms	 	 and	 angiosperms	 )	 for	 AM	 may	 reflect	 the	 positive	 impact	 of	

mycorrhizal	symbiosis	on	seed	quality.	 In	fact,	studies	on	crop	plants	such	as	maize	

and	 wheat	 have	 demonstrated	 that	 mycorrhizal	 plants	 have	 larger	 seeds	 with	 a	

higher	 nutritional	 content30,31.	 This	 observation	 alone	 suggests	 a	 direct	

transgenerational	effect	with	obvious	implications	in	the	success	of	mycorrhizal	seed	

plants32,33.	

	

[H1]	Evolutionary	trends	in	mycorrhizal	fungi		

			

Mycorrhizal	fungi	are	highly	diverse	in	terms	of	their	evolutionary	history.	However,	

genome	 sequencing	 of	 a	 substantial	 number	 of	 fungal	 species	 (see	 the	 fungal	



genomic	resource	MycoCosm	())	suggests	that	mechanisms	of	convergent	evolution	

may	have	 shaped	 their	 genomes.	 The	most	 notable	 trait	 shared	by	 all	mycorrhizal	

fungi	 is	 the	 	expansion	of	 small	 secreted	protein	 families	 that	may	act	as	effectors	

(Fig.	 3)	 to	 manipulate	 host	 responses	 and	 to	 facilitate	 mutualistic	 interactions34.	

However,	 this	 genomic	 feature	 is	 also	 found	 in	 other	 plant-interacting	

microorganisms,	 like	 plant	 pathogens,	 where	 effector	 functions	 have	 been	

extensively	 characterized35,36.	 In	 addition,	 a	 limited	 complement	 of	 plant	 cell	 wall	

degrading	 carbohydrate-active	 enzymes	 (CAZymes)	 characterizes	 the	 evolutionarily	

oldest	 AM	 and	 ECM	 fungi34,37.	 In	 saprotrophic	 fungi	 ,	 plant	 cell	 wall	 degrading	

enzymes	are	instrumental	for	the	degradation	of	the	organic	soil	litter.	Whereas	no	

data	exists	to	 	support	the	origin	of	AM	fungi	 from	saprotrophic	CAZyme-equipped	

ancestors,	phylogenomic	reconstructions	clearly	show	that	Basidiomycota	ECM	fungi	

evolved	 independently	 from	 saprotrophs,	mainly	wood	 decaying	white	 and	 brown	

rot	 fungi,	 that	possessed	genes	 for	 lignin	and/or	cellulose	degradation38,39.	 In	most	

cases,	 the	ECM	 lifestyle	 favored	 the	 loss	of	genes	 involved	 in	 the	 	of	 lignocellulose	

and	phenolic	 compounds	 present	 in	 soil	 organic	matter40.	However,	 the	 degree	 to	

which	 individual	 ECM	 species	 have	 maintained	 saprotrophy-related	 genes	 differs	

among	 lineages37,	 likely	 reflecting	 their	 evolutionary	history	 and	 specific	 ecological	

functions,	 such	 as	 the	 ability	 to	 provide	 host	 plants	 with	 organic	 matter-derived	

nitrogen41.	 Genome	 sequencing	 of	 Pezizomycotina	 ECM,	 such	 as	 the	 widespread	

Cenoccoccum	geophilum42	 and	 several	 truffles	 belonging	 to	 the	 Tuberaceae43,	 also	

revealed	a	reduction	in	lignocellulose-degrading	enzymes	in	Ascomycota.	

Irrespective	of	their	evolutionary	history,	 the	small	complement	of	CAZymes	 in	AM	

and	ECM	suggests	that	fungal	colonization	of	plant	tissues	may	be	largely	modulated	

by	the	host	plant,	according	to	its	nutritional	needs	and	physiological	status.	Notably,	

the	poor	ability	of	 fungi	 to	degrade	plant	cell	wall	polysaccharides	would	also	 limit	

the	release	of	degradation	by-products,	which	are	potent	elicitors	of	plant	defence44.		

In	contrast	with	such	apparently	similar	evolutionary	trends	in	AM	and	ECM	(Fig.	2),	

a	surprisingly	large	set	of	cell	wall	degrading	enzymes	was	found	in	the	genomes	of	

ORM	 and	 ERM	 fungi37.	 Their	 occurrence	 in	 ORM	 fungi	 like	 the	 Agaricomycetes	

Serendipita	 vermifera	 (order	 Sebacinales)	 and	 Tulasnella	 calospora	 (order	

Cantharellales)	 aligns	 with	 the	 role	 of	 these	 fungi	 in	 plant	 nutrition.	 In	 the	 early	



stages	 of	 their	 development,	 orchids	 are	 heterotrophic	 and	ORM	 fungi	 feed	 them	

with	carbohydrates	likely	extracted	from	soil	organic	matter1.	Beside	polysaccharide-

degrading	 enzymes,	 the	 genomes	 of	 ERM	 Ascomycetes	 Oidiodendron	 maius	 and	

Rhizoscyphus	 ericae	 also	 contain	 numerous	 lipases,	 proteases	 and	 secondary	

metabolism	 enzymes,	 much	 like	 saprotrophs	 and	 non-mycorrhizal	 fungal	

endophytes45,46.	Overall,	 the	genomic	features	of	phylogenetically	distant	ORM	and	

ERM	 fungi,	 where	 a	 large	 suite	 of	 small	 secreted	 proteins	 (likely	 involved	 in	 their	

interactions	with	hosts)	associate	with	an	array	of	cell	wall	degrading	enzymes	(Fig.	

3),	mirror	their	dual	biotrophic	and	saprotrophic	capabilities.	This	may	be	the	result	

of	 an	 evolutionary	 incomplete	 transition	 from	 the	 saprotrophic	 to	 the	mycorrhizal	

habit34,37,	likely	due	to	the	recent	origin	of	these	symbioses,	both	found	exclusively	in	

angiosperm	 taxa.	 However,	 some	 ECM	 lineages	 also	 originated	 quite	 recently	 but	

underwent	a	strong	reduction	in	CAZymes.	For	example,	molecular	data	indicate	that	

ECM	 fungal	 lineages	 in	 the	 Laccaria	 genus	 have	 diversified	 from	 saprotrophic	

ancestors	 ~56–66	 MYA48,	 whereas	 phylogenomics	 placed	 the	 origin	 of	 ERM	 fungi	

~118	MYA,	about	the	same	time	proposed	for	the	origin	of	the	family	Ericaceae45.	A	

more	intriguing	hypothesis	to	explain	the	genomic	features	of	ERM	and	ORM	fungi,	

in	 contrast	 to	 those	 of	 AM	 and	 ECM	 fungi,	 derives	 from	 the	 observation	 that	

specialization	to	narrow	ecological	niches	commonly	leads	to	gene	loss49.	Thus,	one	

could	hypothesize	that	AM	(and	to	a	 lesser	degree	ECM)	fungi	evolved	as	exclusive	

mycorrhizal	symbionts	with	the	loss	of	specific	genes,	whereas	ERM	and	ORM	fungi	

retained	a	much	broader	ecological	niche4,47,	which	allows	them	to	switch	between	

saprotrophic	(in	soil),	mycorrhizal	(in	roots)	and	even	pathogenic	strategies46.	

Genome	sequencing	of	AM	fungi	has	provided	clues	to	explain	their	peculiar	status	

of	 obligate	 biotrophs	 and	 several	 of	 their	 characteristic	 functional	 traits.	 Different	

AM	fungal	species	feature	an	overall	comparable	number	of	genes	spread	over	very	

large	genomes	rich	 in	transposable	elements,	ranging	from	125	Mb	in	Rhizophagus	

irregularis	to	770	Mb	in	Gigaspora	margarita50,51.	Phosphate	uptake	was	established	

as	 the	 most	 iconic	 feature	 of	 AM	 fungi	 since	 the	 earliest	 studies	 on	 symbiosis	

functioning52,	 but	 only	 the	 recent	 sequencing	 of	 the	 G.	 margarita	 genome	 has	

revealed	an	expansion	of	phosphate	metabolism-related	genes,	 supporting	 the	key	

role	of	these	fungi	as	biofertilizers51.	Some	genome	erosion	has	also	occurred	and	all	



sequenced	 AM	 fungi	 lack	 a	 few	 basic	metabolic	 processes,	 such	 as	 fatty	 acid	 and	

thiamine	 (also	 known	 as	 vitamin	 B1)	 biosynthesis.	 The	 absence	 of	 fatty	 acid	

synthase53	 inspired	 the	 recent	 discovery	 that	 AM	 fungi	 —	 characterized	 by	 the	

extensive	 accumulation	 of	 reserve	 lipids	—	 are	 fatty	 acid	 auxotrophs	 	 and	 rely	 on	

lipids	 received	 from	 the	host	plant54,55.	Although	 tracing	back	 the	ancestors	of	AM	

fungi	 is	 not	 an	 easy	 task,	 Glomeromycotina	 cluster	 with	 the	 lipid-rich	 but	

predominantly	 saprotrophic	 Mortierellomycotina	 and	Mucoromycotina17,21.	 Crucial	

information	on	a	potential	saprotrophic	origin	will	come	from	genome	sequencing	of	

the	 earliest	 diverging	 taxa	 of	 Glomeromycotina,	 including	Geosyphon	 pyriforme,	 a	

non-AM	fungus	that	associates	with	photosynthetic	cyanobacteria56.	

In	 conclusion,	 fungal	 phylogenomics	 provides	 a	 first	 insight	 into	 the	 evolution	 of	

mycorrhizal	 fungi	 that	 fits	 with	 the	 fossil	 record	 (Box	 3).	 These	 data	 identify	

Glomeromycotina	and/or	Mucoromycotina21	 as	 the	most	 ancient	mycorrhizal	 fungi	

and	 highlight	 biotrophism	 as	 a	 common	 trait	 that	 resulted	 from	 different	

evolutionary	pathways.		

	

[H1]	Symbiotic	signatures			

Regardless	 of	 the	 taxonomy,	 origin	 and	 evolutionary	 history	 of	 mycorrhizal	 fungi,	

host	 plants	 have	 represented	 a	 common	 challenge	 to	 all	 plant-interacting	 fungi.	

Studies	focused	on	AM	plants	have	revealed	that	a	core	set	of	genes		is	necessary	to	

establish	symbiosis57	and	that	this	plant	symbiotic	‘toolkit’	is	conserved	across	plant	

taxa58,59.	 This	 genetic	 signature	 includes	 members	 of	 the	 so-called	 common	

symbiotic	 signaling	pathway	 (CSSP),	 namely	SYMRK,	CCaMK	and	CYCLOPS,	 that	 are	

conserved	in	all	AM	host	species59,60,61	and	are	also	required	for	the	establishment	of	

symbiotic	 nitrogen	 fixation	 in	 legumes57	 and	 actinorhizal	 plants62.	 Unexpectedly,	 a	

few	 of	 these	 genes	 occur	 in	 charophytes,	 the	 closest	 living	 algal	 relatives	 of	 land	

plant	ancestors58.	The	absence	of	known	mycorrhizal-like	interactions	in	algae	opens	

several	 intriguing	questions	about	 the	 function	of	 'symbiotic'	 genes	 in	 charophytes	

and	 the	process	by	which	 this	 set	of	 genes	has	been	exapted	 for	new	 functions	 in	

early	 plants58.	 This	 symbiotic	 toolkit	 also	 includes	 transcription	 factors	 that	

coordinate	 the	 expression	 of	 a	 set	 of	 downstream	plant	 genes	 involved	 in	 specific	

symbiotic	functions,	such	as	phosphate	transport	and	lipid	synthesis	and	transport59.	



Plant	 phylogenomics	 and	 functional	 analysis	 of	 the	 symbiotic	 toolkit	 have	 been	

instrumental	for	the	identification	of	this	gene	hierarchy	in	AM	hosts63.	

The	 fungal	 symbiotic	 toolkit	 appears	 to	 have	 followed	 a	 different	 evolutionary	

trajectory.	 Transcriptomic	 analyses	 in	 ECM	 revealed	 that	 many	 fungal	 symbiotic	

genes,	 that	 is	 those	 up-regulated	 in	 mycorrhizal	 roots,	 are	 restricted	 to	 a	 single	

fungal	 species37.	 Indeed,	 the	 majority	 of	 symbiosis-induced	 genes	 do	 not	 have	

homologs	between	Laccaria	amethystina	and	L.	bicolor,	that	diverged	only	around	20	

MYA.	 Also,	 the	 comparison	 across	 AM	 species	 of	 expressed	 candidate	 secreted	

proteins,	 expected	 to	play	 a	 key	 role	 in	plant-fungus	 interactions35,36,	 revealed	 the	

prevalence	 of	 lineage-specific	 proteins64.	 Remarkably,	 the	 expression	 of	 some	 of	

these	secreted	proteins	can	even	differ	within	the	same	AM	species,	depending	on	

the	host	plant64.	Genomics	data	also	point	to	large	differences	in	the	gene	repertoire	

of	 closely	 related	AM	 fungal	 species50,51.	Although	 the	majority	of	 these	genes	has	

not	been	characterized,	these	observations	indicate	that	lineage-specific	genes	with	

possible	roles	in	symbiosis	have	evolved	several	times	in	the	genome	of	mycorrhizal	

fungi,	 even	 over	 a	 relatively	 short	 evolutionary	 timescale37,51,64.	 Consequently,	

distinctive	 features	 of	 symbiotic	 fungi	 are	 not	 limited	 to	 the	 convergent	 loss	 of	

CAzymes	—	at	 least	 for	AM	and	ECM	—	but	also	 include	 the	evolution	of	 lineage-

specific	functional	innovations.		

In	addition	to	the	necessary	genetic	toolkits,	symbiotic	partners	need	to	sense	each	

other	 in	 the	 soil,	 and	 signal	 exchange	 is	 an	 essential	 step	 in	 the	 development	 of	

mycorrhizal	symbioses.	Such	presymbiotic	chemical	dialogue	has	been	studied	more	

deeply	in	AM,	where	a	number	of	molecules	have	been	characterized	as	reciprocally	

active	symbiotic	signals65.	Host	plant	roots	actively	exude	strigolactones66,67,	a	class	

of	 apocarotenoids	 that	 are	 sensed	 by	 AM	 fungi	 and	 promote	 spore	 germination	 ,	

hyphal	branching,	nuclear	divisions	and	respiratory	metabolism68,69.	With	respect	to	

fungi,	 a	 few	 chitin-derived	molecules	 (or	Myc-factors)	 have	 been	 identified	 in	 AM	

fungal	exudates	as	biologically	active	signals70,71	triggering	the	CSSP	in	the	host	plant.	

Such	 Myc-factors	 include	 chito-oligosaccharides	 (COs)	 made	 of	 four	 to	 five	 N-

acetylglucosamine	 residues71,72,73	 as	 well	 as	 lipo-chitooligosaccharides	 (LCOs)70,	

where	a	fatty	acid	chain	and/or	a	sulphate	group	are	bonded	to	the	oligosaccharidic	

chain.	 The	 sensing	 of	 COs	 and	 LCOs	 by	 the	 host	 plant74	 activates	 responses	 that	



prepare	the	plant	for	fungal	colonizationand	range	from	the	regulation	of	symbiosis-

supporting	genes75,76,77	to	physiological,	metabolic	and	developmental	changes	on	a	

cellular,	organ	and	organismal	scale78,79,80.	

Our	 knowledge	of	presymbiotic	 signaling	 in	other	mycorrhizal	 interactions	 remains	

limited.	Molecules	 acting	 as	 presymbiotic	 signals	 have	 not	 been	 identified	 in	 ERM	

and	ORM,	but	 the	key	genetic	 components	of	 the	plant	CSSP	have	been	 identified	

through	 homology	 searches	 in	 the	 genome	 of	 some	 orchid	 species81,82	 and	 in	 the	

root	 transcriptome	 of	 the	 ERM	 species	 Rhododendron	 fortunei59.	 These	 findings,	

together	with	the	ability	of	the	CCaMK	gene	of	the	orchid	Bletilla	striata	to	restore	

both	 AM	 and	 nodule	 formation	 in	 a	 CCaMK-defective	 Lotus	 japonicus	 mutant81,	

suggest	a	wide	conservation	of	the	CSSP	across	plants	forming	different	mycorrhizal	

types.	 Interestingly,	 some	genes	 involved	 in	early	signaling,	 including	key	genes	 for	

strigolactone	 biosynthesis	 and	 secretion,	 are	 present	 in	 multiple	 copies	 in	 the	

genome	of	Gastrodia	elata,	a	non-photosynthetic	orchid	that	strictly	depends	on	its	

ORM	 fungus	 for	 nutrients82.	 This	 condition	may	 increase	 the	 ability	 of	G.	 elata	 to	

interact	with	the	ORM	fungal	partner	and	to	establish	the	symbiotic	relationship82.	

Molecules	acting	as	ECM	presymbiotic	signals	have	been	recently	identified83	in	the	

ECM	fungus	L.	bicolor,	which	releases	a	cocktail	of	LCOs	able	to	activate	the	CSSP	in	

poplar	 roots.	However,	CSSP	conservation	 in	poplar	 is	 likely	 related	 to	 its	ability	 to	

also	host	AM	fungi.	 Indeed,	a	comparative	analysis	of	over	120	plant	genomes	and	

270	transcriptomes59			demonstrated	that	a	broad	set	of	genes	(not	limited	to	CSSP	

members)	 is	 conserved	 in	 all	 plant	 lineages	 hosting	 intracellular	 symbionts	 —	

including	AM,	ORM,	ERM	as	well	as	nitrogen	 fixing	symbioses	—	but	has	been	 lost	

several	 times	 during	 the	 evolution	 of	 lineages	 hosting	 extracellular	 symbionts	

(including	 ECM	 and	 cyanobacterial	 associations)	 or	 those	 that	 are	 plainly	 non-

symbiotic	(Fig.	3).	

In	conclusion,	the	CSSP	is	emerging	as	a	key	pathway	regulating	all	endomycorrhizal	

interactions.	A	few	observations	suggest	a	more	general	role,	at	 least	for	 individual	

CSSP	members.	 In	 particular,	 L.	 japonicus	CCamK	 and	SymRK,	 or	 their	 orthologs	 in	

other	 species,	 were	 found	 to	 play	 a	 role	 in	 plant	 responses	 to	 beneficial	

microorganisms84,	 nematodes85,	 parasitic	plants86,	 fungal	 endophytes87,	 pathogenic	

fungi88	and	thigmotropic	stimuli	85,89.	These	observations	point	to	additional	roles	for	



individual	 CSSP	 members,	 in	 agreement	 with	 their	 presence	 in	 the	 genomes	 of	

charophytes,	where	their	function	has	unfortunately	not	been	characterized20,58.	

	

[H1]	Plant–fungus	interfaces	and	colonization			

Following	reciprocal	signaling	and	recognition,	the	sub-apical	region	of	young	lateral	

roots	is	the	most	common	site	of	plant–fungus	contacts8.	The	broad	developmental	

plasticity	and	responsiveness	of	this	area	may	be	a	major	requirement	for	symbiont	

accommodation.	 An	 even	 more	 pronounced	 plasticity	 can	 be	 envisaged	 for	 post-

embryonic	cells	of	orchid	protocorms		in	ORM	(Box	1).	

Intriguingly,	AM	fungi	are	the	only	known	fungal	symbionts	to	develop	a	specialized	

adhesion	structure	—	the	hyphopodium90.	This	broad	and	often	branched	expansion	

of	 the	 hyphal	 tip	 represents	 a	 substantial	 resource	 investment	 by	 the	 fungus	 and	

generates	 a	 large	 contact	 surface	 with	 epidermal	 cells.	 Its	 development	 may	 be	

related	to	the	inability	of	AM	fungi	to	actively	pierce	the	plant	cell	wall	enzymatically	

and	the	consequent	need	to	elicit	accommodation	responses	 in	 the	host	 (including	

prepenetration	 apparatus	 assembly	 and	 local	 cell	 wall	 loosening	 under	 the	

hyphopodium).	 In	 fact,	 epidermal	 cell	 penetration	 occurs	 several	 hours	 after	 the	

partner	contact91,		in	contrast	with	the	direct	penetration	of	epidermal	cell	walls	by	

both	 ERM	 and	 ORM,	 both	 of	 which	 express	 numerous	 plant	 cell	 wall	 degrading	

enzymes	during	interaction	with	the	plant37,45.	

In	 ECM,	 extensive	 hyphal	 proliferation	 between	 and	 beneath	 epidermal	 cells	 is	

associated	with	a	weakening	of	plant	cell	wall	 cohesion.	Fungal	 colonization	of	 the	

resulting	 apoplastic	 space	 is	 believed	 to	 depend	 on	 the	 chemical	 degradation	 of	

middle	 lamella	 pectins,	 combined	with	mechanical	 forces	 developed	 by	 hyphal	 tip	

growth34,92.	Notably,	in	L.	bicolor	this	process	was	recently	shown	to	be	enhanced	by	

a	symbiosis-induced	endoglucanase	(LbGH5–CBM1)93.		

In	all	cases,	a	substantial	amount	of	fungal	mycelium,	either	intercellular,	as	in	ECM,	

or	 in	 the	 very	 lumen	 of	 individual	 plant	 cells,	 as	 in	 AM,	 ERM	 and	 ORM,	 is	

accommodated	 within	 the	 host	 tissues.	 This	 implies	 a	 massive	 reprogramming	 of	

plant	 development	 in	 coordination	 with	 fungal	 growth.	 In	 the	 case	 of	 ECM,	 this	

reprogramming	primarily	 involves	 root	meristems	 ,	which	 initially	generate	a	novel	

pattern	of	recursive	dichotomous	branching	and	eventually	stop	their	activity	as	the	



fungal	mantle	envelops	them34.	Alterations	of	root	auxin	signaling	by	the	colonizing	

ECM	 fungus	 have	 been	 proposed	 to	 play	 a	 major	 role	 in	 these	 developmental	

processes,	even	if	a	consistent	model	is	still	missing94.	Extensive	root	branching	has	

been	observed	in	both	ERM	and	AM	since	the	earliest	interaction	with	the	symbiotic	

fungi.	 However,	 the	 most	 striking	 developmental	 changes	 characterizing	 all	

endomycorrhizal	 interactions	 (AM,	 ERM	and	ORM)	 take	 place	 inside	 the	 colonized	

cells,	with	the	appearance	of	de	novo	assembled	cell	compartments	containing	cell	

wall	components	that	are		lined	by	the	host	cell	membrane	(Box	1).		

A	 common	 feature	 emerging	 from	 this	 scenario	 is	 that	 symbiotic	 fungal	 hyphae	

never	 have	 direct	 access	 to	 the	 host	 cell	 cytoplasm	 and	 they	 are	 confined	 to	 the	

apoplastic	 space	within	 diverse	 symbiotic	 interfaces.	 These	 interfaces	 are	 also	 the	

main	 sites	 of	 nutrient	 exchange,	 thus	 representing	 the	 functional	 core	 of	 all	

mycorrhizal	symbioses.	 In	AM,	the	generation	of	a	symbiotic	 interface	seems	to	be	

dependent	on	CSSP	signaling78,95,	in	striking	analogy	with	other	plant	symbioses,	such	

as	 symbiotic	 nitrogen	 fixation	 and	 actinorrhizas62.	 The	 numerous	 structural	

similarities	 observed	 among	AM,	 ERM	and	ORM,	 as	well	 as	 the	 induction	of	many	

homologs	 of	 AM-induced	 genes	 in	 ORM81,96,97,	 hint	 at	 the	 possible	 use	 of	 similar	

signaling	 and	 developmental	 processes	 across	 endomycorrhizal	 interactions.	

Furthermore,	the	development	of	apoplastic	 interfaces	 is	common	to	several	other	

plant—microorganism	 interactions,	 ranging	 from	 the	 infection	 thread	 in	 legume-

rhizobium	 symbiosis98	 to	 actinorrhizal	 interactions99,	 to	 less	 characterized	bacterial	

and	fungal	endophytic	associations100,101	and	the	more	studied	biotrophic	pathogenic	

interactions102,103.	At	least	some	of	the	plant	cell	responses	may	be	conserved	among	

all	 such	 diverse	 interactions85,104,	 but	 further	 investigations	 are	 needed	 before	 a	

global	model	of	microorganism	accommodation	processes	in	plants	can	be	outlined.	

	

[H1]	Strategies	for	successful	colonization			

	

To	sustain	such	an	intimate	functional	association,	mycorrhizal	colonization	requires	

a	 reprogramming	 of	 the	whole	 plant	metabolism.	 Extensive	 plant	 gene	 expression	

modulation	 was	 described	 in	 AM	 plants	 with	 up	 to	 thousands	 of	 differentially	

expressed	genes,	mirroring	the	deep	cellular	reorganization	upon	fungal	entry31,75,77.	



A	 few	 of	 these	 genes	 (such	 as	 the	 Medicago	 truncatula	 phosphate	 transporter	

MtPT4)	 have	 been	 identified	 as	 AM-specific	 and	 are	 currently	 used	 as	markers	 of	

symbiosis	functionality.	By	contrast,	in	ECM	roots,	gene	expression	was	found	to	be	

more	extensively	regulated	in	the	fungus	(up	to	20%	of	the	analysed	transcripts)	than	

in	the	plant	(2–5%	of	the	transcripts)105,106.	On	the	same	line,	ECM	development	has	

not	been	associated	with	the	expression	of	symbiosis-specific	plant	marker	genes.	

Since	 the	 first	 transcriptomic	 studies	of	 both	AM	and	ECM,	particular	 interest	was	

raised	by	genes	involved	in	plant	defence.	Cell	wall	components	of	mycorrhizal	fungi	

can	indeed	be	perceived	by	the	host	plants	as	microbe-associated	molecular	patterns	

(MAMPs)	 and	 elicit	 plant	 immune	 responses107.	 The	 transient	 activation	 of	 such	

defence	 responses	 during	 early	 AM	 formation	 	 has	 been	 detected	 in	 several	

studies108,109,110,111.	This	activation	has	been	explained	as	a	 form	of	plant	priming112	

that	 contributes	 to	 the	 so-called	mycorrhiza-induced	 resistance	 (MIR)	 and	 leads	 to	

higher	 resistance	 of	 AM	 plants	 to	 biotrophic	 and	 necrotrophic	 pathogens,	

nematodes,	insects	and	viruses31,113,114,115.		

Among	MAMPs,	chitin-related	molecules	have	a	pivotal	role	as	elicitors	of	the	plant	

response	.	Even	 if	the	picture	 is	 far	from	clear,	such	chitin-based	signals	have	been	

shown	to	trigger	different	plant	responses	depending	on	the	length	of	their	chitinous	

backbone.	Short-chain	chitin	oligomers	(tetra-	and	pentamers)	are	potent	elicitors	of	

the	 CSSP	 in	 all	 AM	 hosts	 tested	 so	 far70,71,72	—	 a	 function	 that	 in	 legumes	 is	 also	

played	by	 chitin	oligomer	derivatives	bearing	 lateral	 substitutions	 such	as	 sulphate	

groups	 and	 a	 lipid	 tail64,52.	 By	 contrast,	 longer	molecules	 (such	 as	 chito-octamers)	

activate	 pathogen-associated	 molecular	 pattern-triggered	 immunity	 (PTI)107,	

mitogen-activated	 protein	 kinase	 signaling,	 reactive	 oxygen	 species	 release	 and	

defence	gene	expression116,117.	Indeed,	recent	studies	in	rice	have	demonstrated	that	

the	 same	 LysM	 receptor-like	 kinase,	 OsCERK1,	 is	 involved	 in	 either	 symbiotic	 or	

pathogenic	 signal	 perception118,119,	 likely	 depending	 on	 the	 cohort	 of	 co-receptors	

that	discriminate	between	long	and	short	chitin	chains65,74,	120.	One	study	discovered	

an	 important	 element	 to	 this	 scenario,	 revealing	 that	 a	 secreted	 fungal	 protein	

(RiSLM)	 with	 high	 affinity	 for	 long	 chain	 chitin	 molecules	 can	 play	 a	 role	 in	

sequestering	and	masking	such	pathogen-like	molecules,	thus	promoting	recognition	

of	symbiotic	signals	in	AM	fungal	exudates121.	



Early	 plant	 responses	 to	 ECM	 fungi	 also	 involve	 nonspecific,	 broad-spectrum	

defences,	 including	 increased	 chitinase	 and	 peroxidase	 activities	 during	 hyphal	

penetration	into	the	apoplastic	space	of	the	root	cortex.	This	pattern	is	attenuated	in	

mature	 ECM105,122,123,.	 Thus,	 the	 transitory	 induction	 of	 plant	 defence	 responses	

appears	 to	 be	 shared	between	AM	and	 ECM;	 in	 both,	 plant	 hormone	 signals	 have	

been	proposed	to	play	a	major	role34,124,125.	

Fungal	effectors	are	emerging	actors	in	the	molecular	mechanisms	modulating	plant	

responses	 and	 a	 large	 repertoire	 of	 putative	 effectors	 has	 been	 identified	 in	

AM50,64,126,127,128,129	 and	 ECM	 fungal	 genomes	 or	 transcriptomes37,42,43,125.	 A	 few	 of	

these	 effectors	 have	 been	 demonstrated	 to	 enter	 the	 host	 cell	 and	 interfere	with	

gene	regulation.	A	seminal	study129	provided	the	first	evidence	of	translocation	of	an	

AM	 fungal	 protein	 (SP7)	 into	 the	 plant	 cell	 nucleus,	 where	 it	 was	 suggested	 to	

counteract	 the	 plant	 immune	 response	 by	 interacting	with	 a	 pathogenesis-related	

transcription	 factor.	 Another	 AM	 effector	 (RiCRN1)	 was	 also	 recently	 shown	 to	

localize	in	plant	host	nuclei	and	to	be	crucial	for	symbiosis	progression	and	arbuscule	

development130.	Concerning	ECM,	the	Laccaria	bicolor	MiSSP7	effector	was	proposed	

to	 interfere	 with	 plant	 immunity	 by	 repressing	 jasmonic	 acid-responsive	 genes125.	

Although	several	small	secreted	proteins	that	may	act	as	effectors	were	identified	in	

the	 genomes	 of	 ERM	 and	 ORM	 fungi37,45,	 only	 a	 hydrophobin-like	 protein	 was	

characterized	 in	 the	ERM	 fungus	O.	maius131,	 but	 its	mechanism	of	 action	 remains	

unknown.	

This	 overview	 of	 plant	 and	 fungal	 strategies	 supporting	mycorrhizal	 establishment	

highlights	 a	 few	 common	 traits	 (Fig.	 3).	 Strikingly,	 some	 of	 these	 molecular	 tools	

(such	 as	 MAMPs	 and	 effectors)	 and	 processes	 (pattern-	 and	 effector-triggered	

immunity)	 are	 also	 fundamental	 during	 pathogenic	 interactions.	 The	 current	

challenge	 is	 to	 decipher	 the	 regulatory	 networks	 that	 discriminate	 between	 plant	

responses	activated	upon	pathogen	attacks	from	those	allowing	the	establishment	of	

a	 long-lasting	beneficial	 interaction	with	mutualistic	symbionts.	This	knowledge	will	

be	 instrumental	 in	 understanding	 how	 mycorrhizal	 fungi	 regulate	 plant	 immunity	

and	behave	as	additional	layers	of	defence	against	biotic	stresses132.	

	

[H1]	Conclusions	and	outlook		



Our	bird's	eye	view	of	mycorrhizal	interactions	highlights	the	morphological	diversity	

of	mycorrhizal	types	developed	by	~340,000	plant	species,	with	functions	that	largely	

reflect	 the	 metabolic	 and	 ecological	 capabilities	 of	 theirfungal	 partners.	

Notwithstanding	 the	 individual	 evolutionary	 history	 of	 each	 plant	 taxon,	 the	

mycorrhizal	status	seems	to	stem	from	common	genetic	bases	already	present	in	the	

common	ancestor	of	land	plants.	The	coevolution	of	land	plants	with	AM	fungi	was	

revealed	by	 fossil	 reports	and	 is	acknowledged	as	a	dogma	among	plant	biologists,	

but	 plant-fungal	 coevolution	 can	 also	 be	 hypothesized	 for	 the	 other	 more	 recent	

mycorrhizal	 types.	 Thanks	 to	 a	 number	of	 independent	 evolutionary	 events,	 a	 few	

gymnosperm	 and	 angiosperm	 taxa,	 such	 as	 Pinaceae	 (170–270	 MYA)	 and	 rosids	

(100–109	 MYA),	 started	 to	 establish	 ECM	 interactions	 with	 fungi	 that	 had	 lost	

ancient	saprotrophic	strategies	—	including	lignin	decaying	capabilities	—	in	order	to	

grant	cell	viability	to	their	hosts4.	Plant—fungus	coevolution	in	ORM	has	likely	been	

shaped	by	the	peculiar	nutritional	strategies	of	orchids.	In	fact,	ORM	fungi	ensure	the	

ecological	success	of	members	of	this	large	plant	family	by	feeding	them	with	organic	

carbon	 during	 early	 plant	 development,	 if	 not	 along	 the	 whole	 life	 cycle	 of	 the	

numerous	achlorophyllous	species133.	Although	ERM	plants	interact	with	a	relatively	

small	 number	 of	 fungal	 taxa,	 a	 possible	 coevolution	 in	 this	 symbiosis	 is	 less	 clear	

because	of	the	broad	ecological	niche	of	most	fungal	partners.		

The	 low	 frequency	 of	 mycorrhizal	 associations	 in	 early	 diverging	 plants,	 such	 as	

bryophytes	 and	 pteridophytes,	 remains	 enigmatic.	 Marchantia	 paleacea	 and	 M.	

polymorpha	 appear	 an	 ideal	 system	 for	 comparative	 'omics	 investigations	 to	 shed	

light	on	their	different	attitude	towards	symbiotic	fungi,	and	phylogenomics	of	early	

diverging	 plants	 is	 expected	 to	 provide	 a	 broader	 picture.	 Even	 though	 fungal	

genome	 sequencing	 has	 identified	 key	 players	 in	 the	 interaction,	 such	 as	 secreted	

effectors,	AM	fungi	unfortunately	remain	beyond	reach	for	genetic	approaches,	and	

although	a	few	species	of	mycorrhizal	Ascomycota	and	Basidiomycota	are	amenable	

for	 genetic	 transformation,	 a	 limited	 number	 of	 functional	 studies	 has	 been	

published.		

In	the	context	of	environmental	global	changes,	the	influence	of	the	anthropogenic	

impact	on	mycorrhizal	establishment	and	functioning	has	not	been	fully	understood.	

For	example,	high	phosphate	availability,	which	is	the	expected	condition	in	intensive	



agriculture,	 inhibits	AM	establishment134,	 probably	 affecting	 early	 signaling	 events.	

On	the	other	hand,	soil	contaminants,	resulting	from	industrial	activities,	may	lead	to	

the	selection	of	heavy	metal-tolerant	fungi	that	could	potentially	be	more	successful	

in	 their	 symbiotic	 performance175.	 These	 examples	 suggest	 that	 environmental	

conditions	 may	 overcome	 the	 genetic	 blueprint	 of	 both	 the	 partners	 as	 a	 major	

determinant	 of	 symbiosis	 development	 and	 functioning,	 and	 urge	 for	 further	

investigations.		

Although	mycorrhizal	 interactions	occur	 in	the	roots	of	higher	plants,	their	benefits	

extend	 to	 the	 whole	 individual,	 and	 even	 to	 its	 progeny,	 through	 the	 impact	 of	

symbiosis	on	seed	production	and	quality.	Such	systemic	effects	are	at	the	basis	of	

the	 well-known	 ‘growth	 effect’	 described	 in	 mycorrhizal	 interactions:	 the	

characterization	 of	 plant	 mechanisms	 underlying	 such	 systemic	 effects,	 such	 as	

phytohormone,	miRNAs	or	peptide	based	signalling135	 for	all	mycorrhizal	 types	 is	a	

crucial	 challenge	 for	 future	 research	 in	 this	 field.	 We	 envisage	 that	 the	 growing	

number	 of	 studies	 based	 on	 big	 data,	 implementation	 of	 models	 and	 correlation	

networks,	 are	 bound	 to	 provide	 new	 clues	 and	 lead	 the	 way	 to	 new	 research	

avenues	 addressing	 the	 biological	 and	 ecological	 complexity	 of	 mycorrhizal	

interactions	 and	 novel	 strategies	 for	 agricultural	 applications	 in	 a	 changing	

environment.		
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Related	links	

MycoCosm		

	

Glossary	

		

Angiosperms:	vascular	plants	with	seeds	and	flowers;	they	are	the	largest	and	most	
diverse	group	within	the	kingdom	Plantae		
	
Auxotrophy:		the	inability	of	an	organism	to	synthesize	a	particular	organic	
compound		required	for	its	growth	
	
Biotrophism:	the	nutritional	strategy	of	a	pathogen		or	a	mutualist	that	needs	its	host	
in	order	to	stay	alive	
	
Bryophytes:	the	term	refers	to	an	informal	group	of	early	diverging,	non-vascular	
plants,	consisting	of	three	divisions:	liverworts,	hornworts	and	mosses.	All	of	them	
are	characterized	by	a	dominant	ganethophytic	phase	
	
Cyanobacteria:	a	group	of	nitrogen-fixing	bacteria	forming	filamentous	colonies	
arranged	in	a	gelatinous	sheath.	
	
Gnepine	Hypothesis:	according	to	this	hypothesis	on	the	evolution	of		Gymnosperms,	
Gnetophytes	are	a	sister	group	to	Pinaceae.	
	

Gymnosperms:	a	group	of	vascular,	non-flowering		seed-producing	plants	that	
includes	among	the	others	conifers,	cycads,	and	Ginkgo	biloba.	
	

Hornworts:	see	Bryophytes.	
	



Liverworts:		commonly	referred	to	as	hepatics,	see	Bryophytes	
	

Meristem:	a	plant	tissue	consisting	of	proliferating	stem	cells	(meristematic	cells)	
that	generate	tissues	and	organs.	
	

Protocorm:	an	intermediate	tuber-like	structure	derived	from	the	embryo	after	
germination	of	orchid	seeds	and	before	seedling	development		
	
Rhynie	chert:	an	Early	Devonian	sedimentary	deposit	located	in	Scotland	and	
exhibiting	exceptionally	well		preserved	fossils	of	plants,	fungi,	lichens	and	animals	
from	an	early	terrestrial	ecosystem.	
	
Saprotrophism:	nutritional	strategy	common	to	most	fungi	and	bacteria,	based	on	
the	extracellular	degradation	of	dead	organic	matter.	
	

Thigmotropism:		a	directional	growth	occurring	as	a	mechanosensory	response	to	a	
touch	stimulus.	
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Box	 1.	 Main	 cellular	 features	 of	 ectomycorrhiza,	 arbuscular,	 orchid	 and	 ericoid	

mycorrhiza	

The	majority	of	mycorrhizal	 interactions	belong	 to	 the	 four	 types	 illustrated	 in	 the	

scheme,	 which	 are	 also	 the	 most	 studied.	 In	 arbuscular	 mycorrhiza,	 hyphae	

originating	 from	 soil	 germinating	 spores	 contact	 the	 epidermal	 cell	 of	 host	 lateral	

roots	through	a	flattened,	often	branched	structure	called	the	hyphopodium79,90.	The	

hyphopodium	and	epidermal	cell	walls	attach	in	an	unclear	process	of	softening	and	

interweaving137.	 Penetrating	 hyphae	 then	 develop,	 cross	 the	 outer	 root	 cell	 layers	

with	 diverse	 colonization	patterns	 that	 include	 the	 formation	of	 loose	 intracellular	

coils	and	branched	hyphae,	and	finally	reach	inner	cortical	cells,	where	they	originate	

tree-like	 arbuscules138.	 Intracellular	 hyphae	 and	 arbuscules	 are	 always	 separated	

from	the	plant	cell	cytoplasm	by	an	apoplastic	interface	surrounded	by	a	perifungal	

membrane,	 a	 specialized	 extension	of	 the	host	 plasma	membrane	 (in	 green)	 .	 The	

periarbuscular	 interface	 is	 believed	 to	 be	 the	 main	 site	 of	 nutrient	 exchange139,	

possibly	facilitated	by	tubular	expansions	increasing	the	exchange	surface140,141.	

In	ericoid	mycorrhiza,	hyphae	penetrate	 the	 thick	epidermal	cell	walls	of	Ericaceae	

roots	without	the	development	of	apparent	adhesion	structures.	Dense	hyphal	coils	

are	 then	 produced	 inside	 each	 epidermal	 cell,	 also	 in	 this	 case	 surrounded	 by	 an	

interface	compartment	(green)	and	an	extension	of	the	plant	membrane8.		

In	orchid	mycorrhiza,	symbiotic	fungi	may	develop	in	germinating	seeds	and	seedling	

roots,	but	 the	best	described	colonization	process	 is	 in	protocorms,	 the	embryonic	

tuber-shaped	 structures	 that	 develop	upon	 seed	 germination.	 In	 this	 case,	 hyphae	

penetrate	epidermal	hair	cells	and	reach	the	cortical	parenchyma	where	they	form	

large	 hyphal	 coils,	 called	 pelotons8,	 within	 a	 membrane-delimited	 symbiotic	

interface.	

In	ectomycorrhiza,	sub-apical	epidermal	cells	of	emerging	lateral	roots	are	targeted	

by	soil-borne	hyphae.	Their	proliferation	generates	a	pseudoparenchymatous	tissue	

known	 as	 the	 sheathing	mantle,	 engulfing	 the	whole	 root	 tip8.	 The	mantle’s	 inner	

hyphae	further	develop	between	epidermal	cells	reaching	different	depths	 into	the	

cortical	 tissue	 (depending	 on	 the	 host	 plant).	 Such	 intraradical	 hyphae	 never	



penetrate	the	cell	lumen,	and	the	so-called	Hartig	net	forms	an	intercellular	interface	

(green).	

	

Box	2.	Towards	a	translational	research	

Mycorrhizal	 fungi	 have	become	acknowledged	 as	 potential	 beneficial	 drivers	 of	 an	

upcoming	 microbial	 revolution	 in	 the	 age	 of	 the	 microbiota,	 along	 with	 N-fixing	

bacteria,	other	plant	growth	promoting	microorganisms	and	endophytes142.	

Due	to	their	broad	diversification,	mycorrhizal	 fungi	have	been	successfully	applied	

in	very	different	sectors.	In	particular,	ectomycorrhizas	(ECM)	have	massive	potential	

in	forest	management143,	 including	regeneration	after	stand-replacing	forest	fires144	

and	ecological	 restoration	of	mine	 sites145.	 ECM	 fungal	 inocula	have	been	used	 for	

seedling	 production	 of	 both	 conifers146,147,148	 and	 broad-leaved	 trees149,150.	

Furthermore,	 a	 growing	 number	 of	 applicative	 studies	 have	 focused	on	 ECM	 fungi	

that	 produce	 worldwide	 appreciated	 delicacies	 such	 as	 boletes,	 chantarelles	 and	

truffles151,	 152,153.	 The	 inoculation	 of	 host	 tree	 seedlings	 with	 black	 truffle	 (Tuber	

melanosporum	Vittad.)	was	 so	 successful	 that	over	80%	of	black	 truffle	production	

occurs	in	orchards	in	France154.			

The	urgent	demand	for	food	safety	and	low-impact,	sustainable	agricultural	practices	

offers	 a	 broad	 field	 of	 application	 for	 mycorrhizal	 interactions.	 In	 this	 respect,	

arbuscular	mycorrhizal	(AM)	fungi	have	the	strongest	potential,	owing	to	their	ability	

to	 colonize	 the	 majority	 of	 crop	 plants,	 and	 their	 positive	 effects	 on	 plant	

productivity31,155-160	 and	 crop	 quality161,162,163.	 However,	 results	 on	 the	 benefits	

provided	by	AM	 fungi	 to	 host	 plants	 obtained	 in	 greenhouses	may	not	 directly	 be	

applicable	 in	the	field.	As	commented	on	 in	a	recent	 field	meta-analysis	study164,	a	

benefit	 in	terms	of	 increased	yield	is	not	often	evident,	especially	when	cereals	are	

considered.	 It	 is	also	worth	noting	that	AM	fungi	may	also	contribute	to	ecosystem	

functions	such	as	soil	aggregation165	and	reduced	nutrient	losses166.	In	addition,	the	

reduced	 need	 for	 fertilizers	 directly	 influences	 the	 profitability	 and	 environmental	

impact	 of	 AM-based	 agricultural	 practices,	 even	 in	 the	 absence	 of	 a	 net	 yield	

increase.	 As	 previously	 advocated167,	 new	 production	 systems	must	 be	 developed	

where	 the	 benefits	 for	 the	 host	 plant	 and	 the	 ecosystem	 services	 provided	 by	



mycorrhizal	 symbionts	 and	 other	 beneficial	 microorganisms	 are	 maximized	 to	

support	sustainable	agriculture142,168.	

In	 the	 face	 of	 this	 great	 potential,	 the	 application	 of	 AM	 fungi	 in	 agroecosystems	

poses	 some	 technical	 challenges.	 Firstly,	 environmental	 variables	 can	 substantially	

impact	the	beneficial	effects	of	AM169.	Secondly,	obligate	biotrophy	of	AM	fungi	has	

been	a	major	 limitation	to	 large	scale	 inoculum	production.	Feeding	AM	fungi	with	

lipids170,171	opens	new	opportunities	for	massive	in	vitro	production	of	pure	inocula.	

Lastly,	 the	 role	 of	 beneficial	 plant–fungus	 interactions	 has	 been	 overlooked	 for	

centuries	by	plant	breeders,	 leading	to	crop	varieties	that	have	a	high	performance	

in	 fertilized	 soils,	 but	 are	 not	 particularly	 prone	 to	 AM	 colonization172.	 A	 novel	

approach	 has	 recently	 been	 proposed,	 based	 on	 the	 demonstration	 that	 plant	

treatments	with	exogenous	Myc-factors	(such	as	short-chain	chitooligosaccharides		)	

promote	AM	establishment173.	 Field	 treatments	with	 such	AM	 fungal	 signals	 could	

facilitate	root	colonization	by	both	native	and	inoculated	AM	fungi.	

Despite	the	specific	applied	perspectives	of	each	type	of	mycorrhizal	fungi,	common	

challenges	 are	 emerging.	 Germplasm	 collection	 of	 fungal	 isolates	 has	 to	 increase,	

inoculum	production	and	formulation	must	be	optimized,	and	natural	variation	has	

to	 be	 investigated	 to	 identify	 the	 best	 performing	 plant–fungal	 combinations.	

Moreover,	the	impact	of	fungal	microbiota	on	the	beneficial	effects	of	mycorrhizas	is	

far	 from	 being	 fully	 understood11.	 Finally,	 the	 feasibility	 of	 large-scale	mycorrhizal	

plant	 production	 and	 development	 of	 technologies	 in	 developing	 countries	 are	

crucial	aspects	that	have	to	be	addressed.	

	

	

Box	3.	Research	themes	and	open	questions	

Origin	and	distribution	of	arbuscular	mycorrhizal	fungi	

Phylogenomics	 has	 demonstrated	 the	 origin	 and	 evolutionary	 trends	 of	

ectomycorrhizal	 fungi	 (ECM),	 whereas	 the	 origin	 of	 fungi	 forming	 arbuscular	

mycorrhizas	(AM)	remains	unclear.	In	particular:		

• Do	 arbuscular	 mycorrhizal	 fungi	 (Glomeromycotina)	 originate	 from	

saprotrophic	ancestors?	



• How	common	are	Mucoromycotina	 interactions	with	extant	plant	 lineages?	

What	was	their	role	in	plant	terrestrialization?	

• Is	 the	 available	 set	 of	 fossil	 data	 representative	 of	 the	 global	 process	 of	

mycorrhiza-assisted	plant	establishment	on	land?	

	

Signalling	in	mycorrhizas	

Despite	 the	 recent	 progress	 in	 the	 identification	 of	 the	 genetic	 and	 molecular	

determinants	 of	 signal	 exchange	 in	 different	 mycorrhizal	 types,	 several	 questions	

remain	open:	

• Which	genes	and	regulatory	networks	are	involved	in	the	production	of	short	

chito-	and	lipochito-oligosaccharides	in	AM	fungi?	Do	mycorrhizal	fungi	

possess	specific	acyltransferases	for	LCO	biosynthesis	similarly	to	rhizobia?	

• How	common	is	lipo-chitooligosaccharide-based	signalling	in	ECM	fungi?	Is	it	

conserved	in	ECM	fungi	interacting	with	plants	that	have	lost	the	common	

symbiotic	signaling	pathway?	

• What	signals	are	exchanged	between	partners	in	ericoid	mycorrhizas	(ERM)	

and	orchid	mycorrhizas	(ORM)?	Do	ERM	and	ORM	fungi	produce	chitin-

related	Myc-factors?		

• What	is	the	perception	mechanism	of	strigolactones	in	AM	fungi?	Are	other	

plant	molecules	involved	in	symbiotic	signaling?	

• What	is	the	function	of	'symbiotic'	genes	in	non-mycorrhizal	plants	and/or	in	

non-mycorrhizal	interactions?	

	

Towards	functional	symbioses	

After	signaling	their	presence	to	the	host	plant,	mycorrhizal	fungi	must	be	able	to	

colonize	the	plant	tissues	without	triggering	the	host	defence	responses	in	order	to	

establish	a	functional	mutualistic	symbiosis.	Key	questions	remain	in	this	area:		

• How	 do	 AM	 fungi	 colonize	 plant	 tissues	 with	 their	 limited	 CAZyme	

equipment?		



• How	do	 endomycorrhizal	 fungi	mitigate	 plant	 defence	 once	 inside	 the	 host	

cells?	 In	 particular,	 how	 do	 ERM	 fungi	 prevent	 triggering	 plant	 defence	 in	

spite	of	the	strong	CAZyme	upregulation	during	symbiosis?		

• Are	there	similarities	—	due	to	convergent	evolution	—	in	the	mechanisms	of	

action	 of	 effectors	 in	 the	 different	 mycorrhizal	 systems?	 Or	 are	 lineage-

specific	functions	more	prominent?	

• Are	 systemic	 signals	 that	 underpin	 plant	 stress	 response	 conserved	 in	 the	

different	mycorrhizal	types?		

• How	do	plants	modulate	their	susceptibility	to	mycorrhizal	fungi	in	response	

to	environmental	conditions,	such	as	nutrient	availability?	

	

	

	

Figure	legends	

	

Fig.	 1.	Major	mycorrhizal	 types.	 a|	 The	major	morphological	 distinctions	 between	

ectomycorrhizas	 (ECM),	 mostly	 involving	 trees	 and	 shrubs,	 and	 endomycorrhizas,	

which	include	ericoid	mycorrhizas	(ERM)	(restricted	to	Ericaceae),	orchid	mycorrhizas	

(ORM)	 (limited	 to	 Orchidaceae)	 and	 the	 more	 widespread	 arbuscular	 mycorrhizas	

(AM).	 b|	 The	 reciprocal	 exchange	 of	 nutrients	 in	 the	 mutualistic	 mycorrhizal	

symbiosis	is	shown.	In	AM,	organic	carbon	fixed	by	the	plant	through	photosynthesis	

is	 transferred	 to	 the	 fungus	 in	 exchange	 for	 soil-derived	 water	 and	 inorganic	

compounds	containing	phosphorus,	nitrogen,	sulfur	and	other	essential	nutrients.	c|	

Some	 fungal	 species	 such	 as	 Russula	 sp.	 develop	 different	 types	 of	 mycorrhizal	

interactions:	 ECM	 with	 a	 tree	 species	 and	 ORM	with	 an	 orchid,.	 d|	 The	 opposite	

situation	is	shown,	where	a	single	plant	host	(like	poplar)	can	develop	both	AM	and	

ECM.	e|	The	formation	of	a	common	mycorrhizal	network	within	plant	communities	

is	shown,	where	the	hyphae	of	fungal	 individuals	colonize	different	plants,	allowing	

the	exchange	of	nutrients	and	signals.	

	



Fig.	 2.	 Arbuscular	 mycorrhiza	 symbiosis	 in	 extant	 bryophytes.	 a|	 The	 transverse	

section	 of	 a	 Conocephalum	 sp.	 thallus	 reveals	 arbuscular	 mycorrhiza	 (AM)	 fungal	

structures	 in	 the	central	parenchyma	underlying	 the	photosynthetic	chlorenchyma.	

b|	 A	 higher	 magnification	 shows	 the	 details	 of	 arbuscule	 morphology,	 with	 large	

trunk	 hyphae	 originating	 thinner	 branches.	 c|	 Transmission	 electron	 microscopy	

shows	 that	 such	 intracellular	 hyphae	 are	 surrounded	 by	 the	 invaginated	 host	

membrane,	 producing	 an	 interface	 compartment,	 a	 constant	 feature	 of	 all	

endomycorrhizas.	Scale	bars,	150	µm	(part	a),	15	µm	(part	b)	and	0.25	µm	(part	c).	

Images	are	reproduced	from	ref.	with	permission.	

	

Fig.	3.	Unique	and	common	traits	in	mycorrhizal	interactions.	The	scheme	illustrates	

how	 the	 plant	 common	 symbiotic	 signaling	 pathway	 (CSSP)	 underpins	 all	 three	

endomycorrhizas	 (arbuscular	 mycorrhizas	 (AM),	 ericoid	 mycorrhizas	 and	 orchid	

mycorrhizas);	a	limited	equipment	of	fungal	carbohydrate-active	enzymes	(CAZymes)	

represents	a	common	trait	of	AM	and	ectomycorrhizas,	whereas	microbe-associated	

molecular	 patterns	 (MAMP)-	 and	 effector-mediated	 signaling	 is	 found	 in	 all	

mycorrhizas.	Notably,	 the	one	symbiosis	relying	on	all	 three	features	(AM)	 involves	

Glomeromycotina,	 the	 only	 obligate	 biotrophs	 among	 mycorrhizal	 fungi.	 Brown	

circlesrepresent	 the	 relative	 abundance	 of	 each	 type	 of	 mycorrhizal	 interaction	

across	plant	lineages.	
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